The present disclosure relates generally to systems, methods and devices for processing currency. More particularly, aspects of this disclosure relate to self-service coin processing machines and coin processing systems for depositing and recycling coins.
Some businesses, particularly banks and casinos, are regularly faced with large amounts of currency which must be organized, counted, authenticated and recorded. To hand count and record large amounts of currency of mixed denominations requires diligent care and effort, and demands significant manpower and time that might otherwise be available for more profitable and less tedious activity. To make counting of bills and coins less laborious, machines have been developed which automatically sort, by denomination, mixed assortments of currency, and transfer the processed currency into receptacles specific to the corresponding denominations. For example, coin processing machines for processing large quantities of coins from either the public at large or private institutions, such as banks, casinos, supermarkets, and cash-in-transit (CIT) companies, have the ability to receive bulk coins from users of the machine, count and sort the coins, and store the received coins in one or more coin receptacles, such as coin bins, coin cassettes, or coin bags. One type of currency processing machine is a redemption-type processing machine wherein, after the deposited coins and/or bank notes are counted, funds are returned to the user in a pre-selected manner, such as a payment ticket or voucher, a smartcard, a cash card, a gift card, and the like. Another variation is the deposit-type processing machine where funds which have been deposited by the user are credited to a personal account. Hybrid variations of these machines are also known and available.
A well-known device for processing coins is the disk-type coin sorter. In one exemplary configuration, the coin sorter, which is designed to process a batch of mixed coins by denomination, includes a rotatable disk that is driven by an electric motor. The lower surface of a stationary, annular sorting head (or “sort disk”) is parallel to and spaced slightly from the upper surface of the rotatable disk. A mixed batch of coins may be progressively deposited onto the top surface of the rotatable disk. As the disk is rotated, the coins deposited on the top surface thereof tend to slide outwardly due to centrifugal force. As the coins move outwardly, those coins which are lying flat on the top surface of the rotatable disk enter a gap between the disk and the sorting head. The lower surface of the sorting head is formed with an array of exit channels which guide coins of different denominations to different exit locations around the periphery of the disk. The exiting coins, having been sorted by denomination for separate storage, are counted by sensors located, for example, along the exit channel. A representative disk-type coin sorting mechanism is disclosed in U.S. Pat. No. 5,009,627, to James M. Rasmussen, which is incorporated herein by reference in its entirety and for all purposes.
It is oftentimes desirable in the sorting of coins to discriminate between valid coins and invalid coins. Use of the term “valid coin” can refer to genuine coins of the type to be sorted. Conversely, use of the term “invalid coin” can refer to items in the coin processing unit that are not one of the coins to be sorted. For example, it is common that foreign (or “stranger”) coins and counterfeit coins enter a coin processing system for sorting domestic coin currency. So that such items are not sorted and counted as valid coins, it is helpful to detect and discard these “invalid coins” from the coin processing system. In another application wherein it is desired to process only U.S. quarters, nickels and dimes, all other U.S. coins, including dollar coins, half-dollar coins, pennies, etc., are considered “invalid.” Additionally, coins from all other coins sets including Canadian coins and European coins, for example, would be considered “invalid” when processing U.S. coins. In another application it may be desirable to separate coins of one country (e.g., Canadian coins) from coins of another country (e.g., U.S. coins). Finally, any truly counterfeit coins (also referred to in the art as “slugs”) are always considered “invalid” regardless of application.
Self-service coin redemption machines are used in banking environments (e.g., in patron-accessible areas), business environments (e.g., armored transport services, telephone companies, etc.), and retail environments, (e.g., convenience stores, grocery stores, etc.). In operation, a user deposits a mixed batch of coins into a coin tray of the coin redemption machine. Coins are progressively fed into a coin processing unit whereby the machine discriminates items that are invalid, determines the value of the valid coins, and outputs a receipt indicative of the determined amount. In some systems, the receipt also indicates a second, lesser amount, which reflects a commission charged for use of the machine. In one example, a coin redemption and voucher dispensing machine disclosed in U.S. Pat. No. 6,976,570, which is incorporated herein by reference in its entirety, receives bunches of unsorted coins, counts the total value of the coins, and outputs a voucher or store coupon related to the total amount, less a commission charge for the use of the machine. Customers take the voucher/coupon to a cashier or clerk for redemption, following verification of the authenticity of the voucher by the cashier or clerk.
Coin recycling historically required user-deposited coins be pulled from circulation, shipped to a separate site for sorting and authentication, then repackaged and distributed for recirculation. Typically, coin recycling is performed by privately owned and operated armored car services (“armored carriers”). Generally, an armored car carrier sends out an armored vehicle to a number of different businesses, some of which provide customers with one or more self-service coin redemption machines having coin receptacles requiring pickup and processing. Once the armored car has picked up all of the redemption machines coins and dropped off packaged coins according to the requirements of the businesses, the armored car returns to the armored car carrier where the collected coins are processed and repackaged for delivery on subsequent routes. The armored carrier charges a “Deposit Pick Up Charge” for picking up the store's deposit each day, including excess notes, coin and checks, and a “Change Order Delivery Charge” for dropping off cash (coin/notes) needed by the store to fund daily activities. There are further fees, for example, for the “Currency Furnished” (e.g., $1.25 per $1000), “Rolled Coin Provided (per roll)” (e.g., $0.10 per roll) and a “Deposit Processing Charge” charged by the deposit processor (armored carrier or bank) to count and verify each deposit.
Currency processing systems, coin processing machines, coin processing units, and methods of processing batches of coins are presented herein. For example, aspects of the present disclosure are directed to disk-type coin processing units and currency processing machines with disk-type coin processing units. In some embodiments, a self-service coin processing and recycling machine is presented which denominates, authenticates, and off-sorts a portion of customer-deposited coins into handheld, portable coin totes or other receptacles that can be retrieved from the machine and used by the host, either at the machine's location or at another location. This allows the host to stock currency coins without the need for paying an armored carrier to retrieve, haul away and process bulk coin, and then buying back coin from that same or a different armored carrier with attendant service fees.
For some system configurations, the coin processing unit is provided with sorted exits for at least four denominations of coins (e.g., penny, nickel, dime, quarter) that are routed to respective containers. These containers may comprise dedicated coin totes that are accessible via a lockable drawer accessible at the front or back of the machine. Once a given tote has been filled to capacity or a predetermined amount of its denomination of coin, the remaining coins of that denomination are sent to a dedicated or mixed-denomination bin, e.g., for retrieval by armored carrier. For at least some configurations, the system utilizes a single mixed-denomination bin or dual mixed-denomination bins. As an example, a dual-bin configuration can use a conveyor belt to selectively move coins forward to a front bin and rearward to a rear bin. The conveyor system can be eliminated altogether on a single bin machine. Optional or alternative configurations could employ a gravity feed tube system to the front and/or rear bin.
In accordance with aspects of the present disclosure, various currency processing systems are presented. One such currency processing system includes a housing with a coin input area that is configured to receive a batch of coins, e.g., from a customer or other user. The currency processing system also includes coin receptacles that are operatively coupled to the housing and configured to stow processed coins. These receptacles include one or more coin-recycling receptacles and one or more coin-depositing receptacles. A disk-type coin processing unit is operatively coupled to the coin input area and the coin receptacles to transfer coins therebetween. The coin processing unit includes a rotatable disk that is configured to impart motion to a plurality of the coins, and a sorting head with a lower surface that is generally parallel to and at least partially spaced from the rotatable disk. The lower surface forms a number of shaped regions that guide the coins, under the motion imparted by the rotatable disk, to exit channels that sort and discharge the coins through a plurality of exit stations.
The currency processing system also includes one or more automated coin chutes, each of which has a chute body defining an input passage connected to coin-recycling and coin-depositing output passages. The automated coin chute includes a movable diverter plate that is configured to selectively transition (e.g., pivot back and forth) between first and second positions. When in the first position, coins received from one of the exit stations of the coin processing unit by the input passage are redirected by the diverter plate through the coin-recycling output passage to one of the coin-recycling receptacles. When in the second position, coins received by the input passage of the automated coin chute from the same exit station are redirected by the movable diverter plate through the coin-depositing output passage to one of the coin-depositing receptacles.
Other aspects of the present disclosure are directed to self-service coin processing machines. In an example, a self-service coin processing machine is presented that includes a housing with a coin input area configured to receive coins. A plurality of coin receptacles is removably positioned inside the housing and configured to receive and store processed coins. These coin receptacles include a plurality of coin-recycling receptacles and a plurality of coin-depositing receptacles. A coin processing unit is configured to receive coins from the coin input area, process the coins, and output the processed coins through coin exit stations. The coin processing machine also includes automated coin chutes, each of which has chute body defining an input passage connected to coin-recycling and coin-depositing output passages. Each automated coin chute includes a movable diverter plate that selectively transitions between a first position, whereby coins received by the input passage from a respective one of the exit stations are redirected through the coin-recycling output passage to a respective one of the coin-recycling receptacles, and a second position, whereby coins received by the input passage from the respective one of the exit stations are redirected through the coin-depositing output passage to a respective one of the coin-depositing receptacles.
According to other aspects of this disclosure, methods of processing and recycling batches of coins are disclosed. As an example, one method includes: receiving a batch of mixed coins in a self-service currency processing machine comprising a coin processing unit that is configured to authenticate and sort received coins, at least one coin-depositing receptacle, and a plurality of coin-recycling receptacles, each of the coin-recycling receptacles being associated with a single denomination of coin; discharging authenticated and sorted coins from the coin processing unit through a plurality of exit stations, each of the exit stations being associated with a single denomination of coin; receiving coins from each of the exit stations via one of a plurality of automated coin chutes, each of the automated coin chutes including a movable diverter plate that is configured to selectively transition between a first position, whereby coins received from the exit station are directed through a coin-recycling output passage, and a second position, whereby coins received from the exit station are directed through a coin-depositing output passage; discharging coins from the coin-recycling output passage of each of the automated coin chutes into a respective one of the coin-recycling receptacles; and discharging coins from the coin-depositing output passage of each of the automated coin chutes into the at least one coin-depositing receptacle.
According to yet other aspects of this disclosure, coin-recycling systems and coin-recycling dispenser assemblies are presented. In an example, disclosed is a coin-recycling dispenser assembly for sorting coins stowed in coin totes into a plurality of coin containers. The coin-recycling dispenser assembly includes a housing with a plurality of tote docking stations. Each tote docking station includes a guide mechanism and a drive mechanism. The coin-recycling dispenser assembly also includes a plurality of tote docks coupled to the housing. Each tote dock is rotatably mounted to one of the tote docking stations and is configured to seat therein one of the coin totes. Movement of each tote dock is limited by the guide mechanism. The drive mechanisms of tote docking stations are each selectively actuable to rotate one of the tote docks back and forth between a loading position, whereat the coin tote can be placed in or removed from the tote dock, and a dispensing position, whereat coins stowed inside the coin tote are dispensed, one at a time, into one of the coin containers.
As another example, a coin-recycling system is disclosed. In according to some such embodiments, the coin-recycling system includes an electronic display device that is configured to display information and user-selectable options to users. An electronic user input device is configured to receive one or more user selections to control one or more operations of the coin-recycling system. A central processing unit (CPU) or processor is communicatively coupled to the electronic display device and the electronic user input device for control thereof. The coin-recycling system also includes an assortment of hand-held coin totes. Each said coin tote has a respective rigid tote body with a wall defining therethrough a coin hole. A lid is attached to the tote body and is configured to move back and forth between a first position, whereat the lid covers the coin hole, and a second position, whereat the lid exposes the coin hole such that coins can be passed into and out of the tote body. The coin-recycling system further includes a coin till with a plurality of coin chutes attached to a till housing and a plurality of coin funnels stowed inside the till housing. Each coin funnel has removably mounted at a narrow end thereof a respective coin cylinder. Additionally, each coin chute is configured to direct coins, under the force of gravity, into a respective one of the coin cylinders through one of the coin funnels.
The coin-recycling system also includes a dispenser assembly housing with a plurality of tote docking stations. Each of the tote docking stations includes a respective guide track with a rotation stop, a respective motor-driven gear assembly, and a respective coin slot configured to transmit coins, under the force of gravity, one at a time, to one of the coin chutes. Juxtaposed on the dispenser assembly housing is a plurality of tote docks, each of which is rotatably mounted to a respective one of the tote docking stations. Each tote dock has a respective tote pocket that is configured to removably seat therein one of the coin totes, and a respective stopping shoulder configured to mate with a rotation stop of one of the tote docking stations and thereby limit rotation of the tote dock. Each of the tote docks also includes a respective guide rail that is configured to mate with a guide track of one of the tote docking stations and thereby limit lateral movement of the tote dock during rotation thereof. Each tote dock further comprises an automated coin disk assembly that is configured to separate coins received from the coin totes, and a respective toothed track that is engaged with the motor-driven gear assembly. The motor-driven gear assemblies are each selectively actuable to rotate a respective one of the tote docks back and forth between a loading position and a dispensing position. When in the loading position, a coin tote can be pushed into and removed from the tote dock. Conversely, when in the dispensing position, coins stowed inside the coin tote are dispensed, one at a time, from the tote dock, through the tote docking station, to the coin till and into one of the coin cylinders through one of the coin funnels.
Also disclosed herein are specialized coin containers. In an example, a coin bag for storing a plurality of coins is disclosed. The coin bag comprises an at least partially transparent and flexible polymeric body. The coin bag body has a first end with an opening configured to receive therethrough plural coins. The coin bag also includes a seal for securing close the opening in the first end. A second end of the coin bag body has a frangible portion that is configured to be manually opened such that coins can be emptied from the coin bag through the opened frangible portion. One or more segments of the coin bag body may be opaque. The coin bag body may be sized to fit in a single hand of an average adult male.
An advantage of one or more of the disclosed coin-recycling concepts is a reduction in carbon footprint by utilizing reusable coin totes instead of cardboard coin boxes and paper coin rolls, and by reducing fuel consumption required to transport coins to and from multiple business locations. Coin recycling, as disclosed herein, can also help to reduce operating costs by: (1) reducing/eliminating payments to CIT companies for coin processing and for rolled coin delivery; (2) reducing/eliminating expenses associated with CIT up charges for emergency coin orders and delivery services; and (3) allowing recycled coins to be shared among stores/branches within an organization. Customers can also enjoy an additional revenue stream by packaging and selling recycled coins at a premium to consumers and local businesses. Coin recycling can be leveraged for numerous coin activities in many businesses, including vending machines, self-service checkout lanes, point-of-sale (POS) lanes, cash tills, automated coin dispensers, etc.
The above summary is not intended to represent every embodiment or every aspect of the present disclosure. Rather, the foregoing summary merely provides an exemplification of some of the novel aspects and features set forth herein. The above features and advantages, and other features and advantages of the present disclosure, which are considered to be inventive singly or in any combination, will be readily apparent from the following detailed description of representative embodiments and modes for carrying out the present invention when taken in connection with the accompanying drawings and the appended claims.
The present disclosure is susceptible to various modifications and alternative forms, and some representative embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the inventive aspects are not limited to the particular forms illustrated in the drawings. Rather, the disclosure is to cover all modifications, equivalents, combinations, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
This disclosure is susceptible of embodiment in many different forms. There are shown in the drawings, and will herein be described in detail, representative embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the present disclosure and is not intended to limit the broad aspects of the disclosure to the embodiments illustrated. To that extent, elements and limitations that are disclosed, for example, in the Abstract, Summary, and Detailed Description sections, but not explicitly set forth in the claims, should not be incorporated into the claims, singly or collectively, by implication, inference or otherwise. For purposes of the present detailed description, unless specifically disclaimed or logically prohibited: the words “including” or “comprising” or “having” means “including without limitation.” Moreover, words of approximation, such as “about,” “almost,” “substantially,” “approximately,” and the like, can be used herein in the sense of “at, near, or nearly at,” or “within 3-5% of,” or “within acceptable manufacturing tolerances,” or any logical combination thereof, for example.
Wheeled bins 110A, 110B (also referred to herein as “coin receptacles”) function generally as mobile coin containers—receiving coins from a coin processing device, such as the disk-type coin sorter described below, and transporting the received coins to another location. As seen in
In the illustrated embodiment, the first and second wheeled bins 110A, 110B of
The lid 114A can also be provided with optional structural features for securely supporting another wheeled bin on top of the wheeled bin 110A. In the illustrated embodiment, these features comprise four recessed stacking platforms: a pair of recessed wheel platforms 128A at a forward end of the lid 114A for nesting the wheels of another bin, and a pair of recessed stanchion platforms 128C at a rearward end of the lid 114A for nesting the support stanchions of another bin. The recessed platforms 128A, 128C allow for another wheeled bin, such as the second wheeled bin 110B, to be generally immobilized and securely stacked on top of the first wheeled bin 110A. The lid 114A can also be provided with an optional RFID reader or transmitter/receiver for wirelessly communicating, receiving and storing information, as described in detail in U.S. Pat. No. 8,545,295, incorporated herein by reference in its entirety. Moreover, a clean sleeve 129A for holding and displaying a receipt or other printed information is situated on the top of the lid 114A adjacent the coin hole 180A.
The wheeled bin 110A is designed to be quickly and easily moved into and out of the bin station 130A. A socket 124A projects downward from a hitch chassis 126A, which projects from the rear side of the coin container 112A. A complementary socket-ball of a cantilevered dolly (not shown) can be inserted into the socket 124A. The cantilevered dolly provides a mechanical advantage (e.g., 10:1) for lifting the rear end of the container 112A. By inserting the socket-ball into the socket 124A and applying a downward force to the opposite end of the cantilevered dolly, a moment arm is applied to the coin container 112A causing the wheeled bin 110A to pitch slightly forward (e.g., counterclockwise in
When the wheeled bins 110A, 110B are properly lodged inside their respective bin stations 130A, 130B, this condition can be communicated to or detected by a processor of the coin processing system 100, for example, via wired or wireless communication. By way of non-limiting example, the bin logic system utilizes a number of electrically conductive interfaces for determining information. These electrically conductive interfaces are exemplified in the drawings by two contact blocks 150A and 150B that are connected to respective bin stations 130A, 130B, and a set of contact plates 162A and 164A (
This rotatable disk 214 is mounted for rotation on a shaft (not visible) and driven by an electric motor 216. The rotation of the rotatable disk 214 of
The underside of the inner periphery of the sorting head 212 is spaced above the pad 218 by a distance which is approximately the same as or, in some embodiments, just slightly less than the thickness of the thinnest coin that the coin processing unit 200 is designed to sort. While the disk 214 rotates, coins deposited on the resilient pad 218 tend to slide outwardly over the top surface of the pad 218 due to centrifugal force. As the coins continue to move outwardly, those coins that are lying flat on the pad 218 enter a gap between the upper surface of the pad 218 and the lower surface of the sorting head 212. As is described in further detail below, the sorting head 212 includes a plurality of coin directing channels (also referred to herein as “exit channels”) for manipulating the movement of the coins from an entry area to a plurality of exit stations (or “exit slots”) where the coins are discharged from the coin processing unit 200. The coin directing channels may sort the coins into their respective denominations and discharge the coins from exit stations in the sorting head 212 corresponding to their denominations. Sorting head 212 can also be provided with means for off-sorting invalid coins and foreign objects deposited into the unit 200.
Referring now to
An outer wall 236 of the entry channel 232 divides the entry channel 232 from the lowermost surface 240 of the sorting head 212. The lowermost surface 240 is preferably spaced from the pad 218 by a distance that is slightly less than the thickness of the thinnest coins that the coin processing unit 200 is designed to process. Consequently, the initial outward radial movement of all the coins is terminated when the coins engage the outer wall 236, although the coins continue to move more circumferentially along the wall 236 (e.g., in a counterclockwise direction in
While the pad 218 continues to rotate, those coins that were initially aligned along the wall 236 move across the ramp 262 leading to a queuing channel 266 for aligning the innermost edge of each coin along an inner queuing wall 270. The coins are gripped between the queuing channel 266 and the pad 218 as the coins are rotated through the queuing channel 266. The coins, which were initially aligned with the outer wall 236 of the entry channel 232 as the coins move across the ramp 262 and into the queuing channel 266, are rotated into engagement with inner queuing wall 270. As the pad 218 continues to rotate, the coins which are being positively driven by the pad move through the queuing channel 266 along the queuing wall 270 past a trigger sensor 234 and a discrimination sensor 238, which may be operable for discriminating between valid and invalid coins. In some embodiments, the discrimination sensor 238 may also be operable to determine the denomination of passing coins. The trigger sensor 234 sends a signal to the discrimination sensor 238 that a coin is approaching.
In the illustrated example, coins determined to be invalid are rejected by a diverting pin 242 that is lowered into the coin path such that the invalid coin impacts the pin 242 and thereby redirects the invalid coin to a reject channel 244. In some embodiments, the reject channel 244 guides the rejected coins to a reject chute that returns the coin to the user (e.g., rejected coins ejected into a coin reject tube to a coin dispensing receptacle). The diverting pin 242 depicted in
The gauging wall 252 aligns the coins along a common outer radius as the coins approach a series of coin exit channels 261-268 which discharge coins of different denominations through corresponding exit stations 281-288. The first exit channel 261 is dedicated to the smallest coin to be sorted (e.g., the dime in the U.S. coin set). Beyond the first exit channel 261, the sorting head 212 shown in
The innermost edges of the exit channels 261-268 are positioned so that the inner edge of a coin of only one particular denomination can enter each channel 261-268. The coins of all other denominations reaching a given exit channel extend inwardly beyond the innermost edge of that particular exit channel so that those coins cannot enter the channel and, therefore, continue on to the next exit channel under the circumferential movement imparted on them by the pad 218. To maintain a constant radial position of the coins, the pad 218 continues to exert pressure on the coins as they move between successive exit channels 261-268.
Further details of the operation of the sorting head 212 shown in
Turning next to
The CDR Unit 300 portrayed in
Base plate 302, which is shown as a single-piece unitary structure, is fabricated from a rigid, generally inflexible material, such as a stamped or laser-cut sheet of stainless steel or aluminum. Typically mounted within the outer housing of a coin processing machine (e.g., housing 14 of processing machine 10) or currency processing system (e.g., housing 134 of processing system 100 of
As best seen in
Returning to
Each coin chute 306 is selectively operable to direct coins received from the coin processing unit 200 to one of the coin-recycling ports 316A or, when desired, to one of the coin-depositing ports 316B. As shown, the automated coin chute 306 includes a curved diverter plate 336 that can selectively transition between a first position, shown at 336A in
As indicated above, CDR Unit 300 is designed to selectively sort processed coins received from a coin processing device into one or more coin-recycling receptacles, such as handheld coin totes 310A-310D of
For enhanced security and ease of use, the four handheld coin totes 310A-310B can be removably seated in a lockable tote drawer 308, which is movably mounted inside, yet at least partially retractable from the coin processing machine/system's housing. Tote drawer 308 of
In at least some system configurations, the handheld coin totes 310A-310D of
With continuing reference to
When the coin totes 310A-310D are in one or more predetermined positions, information about the location and/or condition of the totes can be communicated (such as via wired or wireless communication) to a CPU 348 and/or other controller of the CDR Unit 300. For example, such information may be communicated to a communication interface of a controller of the coin processing system/machine. As used herein, “wirelessly communicate” is inclusive of, but not exclusive to, the transmission of information signals between two devices without the use of connecting hardline or wired couplings between the two devices. By way of example, and not limitation, the CDR Unit 300 utilizes a number of electrically conductive interfaces for detecting and/or communicating information about or between one or more or all of the coin totes 310A-310D and a controller and/or CPU 348 of a coin processing system/machine (e.g.,
As indicated above, coins redirected by the automated coin chutes 306 through the coin ports 316B of the base plate 302 are deposited by the coin-mixing manifold 304 onto a conveyor belt assembly 314 for transport to coin-depositing receptacles, such as first and second coin bins 110A, 110B disposed inside the housing 134 (
Turning next to
As will be described in further detail below, the coin-recycling dispenser assembly 402 is capable of dispensing coins—one coin at a time—from each of plural handheld coin totes 410 into an assemblage of single-denomination coin cylinders 412 stowed inside the coin till assembly 404. According to some embodiments, the coin cylinders 412 are sized to hold three to four times the number of coins as traditional coin rolls, for example, they may be sized to hold 120-200 coins stacked therein. According to some embodiments, filled coin cylinders 412 may be removed and used in other devices such as coin dispensers and the removed coin cylinders 412 may be replaced with empty coin cylinders 412 so the device 400 may resume operating. It is desirable, for at least some configurations, that the dispenser assembly 402 dispense coins at about 300 to about 500 coins per minute or, in some embodiments approximately 400 coins per minute. According to at least some configurations, coin-recycling system 400 monitors the number and/or denomination of handheld coin totes 410 docked in the coin-recycling dispenser assembly 402, as well as whether there are coins remaining in any of the docked coin totes. For at least some configurations, the coin-recycling system 400 is capable of tracking the number of coins dispensed from a particular coin tote 410 and, optionally, is operable to provide a total number of dispensed coins and/or a total value of dispensed coins for a particular set of coin totes 410 emptied into the coin till 404. For at least some configurations, the dispenser assembly 402 is selectively and/or automatically operable to clear coin jams during emptying of a coin tote. Some implementations provide simplified disassembly or physical manipulation of key sections of the coin-recycling system 400 to allow for manual clearing of a jam condition.
According to the illustrated example, the coin-recycling dispenser assembly 402 is capable of docking four handheld coin totes 410, for example, a first (penny (10)) coin tote 410A, a second (nickel (50)) coin tote 410B, a third (dime (100)) coin tote 410C, and a fourth (quarter (250)) coin tote 410D. A series of tote docks or drums 414 secure these four coin totes 410A-410D to the dispenser assembly 402 for recycling of coins. As shown, the set of tote docks 414 includes a first (penny) dock 414A, a second (nickel) dock 414B, a third (dime) dock 414C, and a fourth (quarter) dock 414D. It is envisioned that the coin-recycling dispenser assembly 402 comprise greater or fewer than four tote docks 414 to accommodate greater or fewer than four coin totes 410, which may comprise any combination of coin denominations of any known currency or substitute currency. Some optional features for the dispenser assembly 402 include denomination labels and color coding for the tote docks 414 to ensure correct matching with the coin totes 410 of the corresponding denomination. By way of example, the first (penny (10)) coin tote 410A may have a blue color and/or a label with a visual indication of the denomination of coin stowed in the tote; the first (penny) dock 414A can take on the same/similar color and/or label to indicate the denomination processed at that dock. In the same vein, the tote docks 414 and coin totes 410 can be configured with complementary structural features to ensure that only totes of the corresponding denomination can be securely seated within a particular tote dock. In a similar regard, the tote docks 414 and coin totes 410 can be configured with complementary structural features to ensure that an apposite coin tote cannot be inserted incorrectly into a particular tote dock.
With continuing reference to
Tote docking station or cradle 418 of
When the tote dock 414 is properly seated on top of the tote docking station 418, arcuate sliding surface 429 lies generally flush against the complementary arcuate guide track 420. Concomitantly, inboard surfaces of the laterally spaced barrier rails 422A, 422B press against outwardly facing surfaces of the flanges 425A, 425B. Retention tabs 426A contemporaneously slidably press against an inner diameter (ID) surface of the first flange 425A, while retention tabs 426B slidably press against an ID surface of the second flange 425B. In so doing, the guide track 420, barrier rails 422A, 422B and retentions tabs 426A, 426B prevent radial and transverse rectilinear (i.e., non-rotational) movement of the tote dock 414 while still allowing for selective rotation of the drum-shaped dock body 428 and any contents thereof around central axis A1 (
As indicated above, the tote docks 414 are rotatably coupled to the tote docking stations 418 such that coin totes 410 seated in the docks 414 can be sufficiently rotated (e.g., turned upside down) to empty their contents into the coin till assembly 404. The coin totes 410 are seated in the docks 414 with the lids 468 in the open position so that when the docks are rotated coins may fall out of the coin totes 410 through the coin holes 465 in each tote 410. The tote docking station 418 is portrayed in
The retentions tabs 426A, 426B can also act as a rotation limiting/stopping mechanism. In the illustrated example, each of the tote docks 414 includes a first pair of stopping shoulders 431A (
Referring again to
With reference to
According to some embodiments, the tote docking station 418 includes an array electrical contacts 458 that electrically couples with first and second electrical contact pads 470 and 472 when the tote dock 414 is rotated to first and second predetermined dock orientations, respectively. For instance, rotation of the tote dock 414 to a first predetermined orientation (e.g., as seen in
In operation, when the tote dock 414′ is rotated into a coin dispensing position (as is
Turning back to
For at least some configurations, the handheld coin totes 410A-410D of
The coin totes 410A-410D can be configured to stow a predetermined quantity of a selected coin denomination. By way of non-limiting example, first (penny) tote 410A can be sized to hold approximately 2400-2500 coins (about 50 rolls of pennies); second (nickel) coin tote 410B can be sized to hold approximately 1500-1600 coins (about 37-40 rolls of nickels); third (dime) coin tote 410C can be sized to hold approximately 2500-3000 coins (about 50-60 rolls of dimes); and fourth (quarter) coin tote 410D can be sized to hold approximately 1100-1200 coins (about 30 rolls of quarters). As indicated above, each tote 410 is individually removable from and insertable into the tote drawer 308 and the coin-recycling dispenser assembly 402. It is desirable, for at least some applications, that the coin tote 410 be configured to inserted and removed at any time, whether full, partially full, or empty. As shown, the tote body 460 is ergonomic, robust and easy to carrying. The tote lid 468 can be locked, for example, with a security tie wrap. For at least some embodiments, the coin tote 410 must withstand drops from at least approximately 4 ft high without fracturing or loosing coins. For at least some embodiments, the coin tote 410, when fill, is not to exceed approximately 20 pounds or, for some embodiments, not to exceed approximately 17 pounds or, for some embodiments, weighs about 14-16.5 lbs. The total envelope dimensions for at least some configurations is about 4.5 inches by about 8 inches by about 5⅜ inches.
Turning to
When the tote drawer 2008 is positioned in an operable position such as the position 308A of tote drawer 308 in the coin depositing and recycling unit (CDR Unit) 300 of
Each tote lids 2068 has an infrared opaque flange 2068X. When a tote lid 2068 is positioned in its closed position (as seen in
Thus, according to some embodiments, whether any coin totes 2010A-2010D have a lid 2068 in a closed position can be determined using a single infrared source 2020 and a single infrared sensor 2030. Likewise, according to some embodiments, whether any coin totes 2010A-2010D have coins piled herein above a certain height can be determined using the same single infrared source 2020 and the same single infrared sensor 2030. According to some embodiments, if the infrared sensor 2030 stops detecting the infrared light beam from the infrared source 2020, a controller communicatively coupled to the infrared sensor 2030 sends a signal setting a full coin tote condition status in a memory communicatively coupled to the controller that in turn causes a controller or CPU to halt the coin sorter such as by halting the rotatable disk 214 shown in
Similarly, if an attendant loads coin totes 2010A-2010D onto the coin drawer 2008 and forgets to open a tote lid 2068 of any coin tote 2010A-2010D, the infrared sensor 2030 will detect this condition and prevent the coin processing machine or system, or coin depositing and recycling unit from starting.
Turning to
Each coin tote 2010A-2010D has a small piece of metal (like a rivet or something similar) imbedded into or coupled to the bottom wall of the tote 2010A-2010D. According to some embodiments, the small piece of metal is imbedded into or coupled to a wall of each tote 2010A-2010D in a location such that when a tote 2010A-2010D is seated in a coin tote compartment 2046 the metal is positioned adjacent the tote presence inductive coil 2084 of the compartment. The tote presence inductive coil 2084 in each compartment 2046 can sense if a coin tote 2010A-2010D has been seated in a corresponding compartment 2046 by sensing the presence of the metal imbedded into or coupled to the bottom of a corresponding coin tote 2010A-2010D. Accordingly, if an attendant forgets to place all coin totes 2010A-2010D in the tote drawer 2008 in the machine, the tote presence inductive coils 2084 detect that one or more coin totes 2010A-2010D are missing which in turn can be used to prevent the machine from operating. For example, when a tote presence inductive coils 2084 detect that one of coin totes 2010A-2010D is missing, a missing coin tote condition status can be set in a memory and when all tote presence inductive coils 2084 detect that all coin totes 2010A-2010D have been seated in the corresponding compartments 2046, the missing coin tote condition status can be cleared in memory. If the missing coin tote condition status is set in memory, then a controller or CPU controlling the operation of the coin sorter can detect this condition and prevent the coin sorter from being restarted or if the coin sorter is running to stop its operation.
The coin presence inductive coil 2082 which may be an eddy current sensor can detect if at least one coin is present within a corresponding coin tote 2010A-2010D seated in a corresponding compartment 2046 of the coin drawer 2008. Each coin presence sensor 2082 detects coins in an adjacent coin tote 2010A-2010D through the plastic body of the coin tote 2010A-2010D. After a full tote condition has occurred (such as when coins within one of the coin totes 2010A-2010D blocks infrared light from reaching infrared sensor 2030 and the associated coin sorter, system, machine or unit (e.g., 10, 1020, 1030, 100, 300) halts operation, a controller coupled to the coin presence inductive coil can sense if a coin tote reinserted into the corresponding compartment 2046 is empty of coins. If so, the controller can send a signal to the system controller or CPU to automatically clear the corresponding full coin tote condition status and in some embodiments setting an empty tote condition status in a communicatively coupled memory.
The information obtainable from the infrared sensor 2030, the coin presence inductive coils 2082, and the tote presence inductive coils 2084 can be used to determine various conditions regarding the state of the machine. For example, if an empty coin tote is installed in one of the compartments 2046 with its lid closed, a corresponding tote presence inductive coil 2084 can detect the presence of the coin tote 2010A-2010D, the corresponding coin presence inductive coil 2082 can detect that there are no coins on the coin tote 2010A-2010D, but the infrared sensor 2030 will fail to detect the infrared light beam because the infrared opaque flange 2068X of the closed lid will block the infrared light beam from reaching the infrared sensor 2030. This combination of conditions can be used to determine that an empty container has been placed in the machine with its lid closed and a corresponding error condition status can be set in the memory. The presence of this error condition can be used to display an appropriate error condition warning to a user of the machine such as via a displayed message on a display and/or an audible warning generated using a speaker. Likewise, the presence of the error condition can be used by an associated controller or CPU to prevent the machine from being started.
Each of the ESD bleedoff posts 2086 acts a ground for static electricity present on incoming coins deposited into a corresponding coin tote 2010A-2010D. Each post 2086 extends through a hole in the floor of each coin tote 2010A-2010D. Each post 2086 also provides a secondary benefit of acting as an additional alignment point for installing the coin totes 2010A-2010D into the compartments 2046.
As shown in
Coin bins 2110A and 110B (
Each corresponding tote docking station 418 comprises a motor 434, a plurality of contacts 458′ such as two contacts, a limit sensor 2584, and a count sensor 2586, all communicatively coupled to a processor 2550. Each processor 2550 is communicatively coupled to the CPU 2548. According to some embodiments, when contacts 458′ and 470′ are in physical contact, an electrical circuit is completed and power to drive the automated coin disk assembly or HIMECS dispenser 450′ is supplied to the automated coin disk assembly 450′ from the tote docking station 418 through the contacts 458′, 470′. The communications between the components can be made via hard wire and/or wirelessly. While an exemplary block diagram is provided, the exact configuration can be altered without departing from the spirit of the present disclosure. For example, the functionality of the three processors 2548 and 2450 could be combined into fewer or distributed to more processors.
A currency processing system comprising: a housing with a coin input area configured to receive a batch of coins; a plurality of coin receptacles operatively coupled to the housing, the plurality of coin receptacles including a coin-recycling receptacle and a coin-depositing receptacle; a disk-type coin processing unit operatively coupled to the coin input area and the coin receptacles to transfer coins therebetween, the coin processing unit including: a rotatable disk configured to impart motion to a plurality of the coins, and a sorting head having a lower surface generally parallel to and at least partially spaced from the rotatable disk, the lower surface forming a plurality of shaped regions configured to guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit channels configured to sort and discharge the coins through a plurality of exit stations; and an automated coin chute with an input passage connected to coin-recycling and coin-depositing output passages, the automated coin chute including a movable diverter plate configured to selectively transition between a first position, whereby coins received from one of the exit stations of the disk-type coin processing unit by the input passage are redirected through the coin-recycling output passage to the coin-recycling receptacle, and a second position, whereby coins received by the input passage from the one exit station are redirected through the coin-depositing output passage to the coin-depositing receptacle.
The currency processing system of embodiment 1, wherein the automated coin chute comprises a chute housing defining therein the input passage, the coin-recycling passage, and the coin-depositing passage.
The currency processing system of embodiment 2, wherein the movable diverter plate is rotatably mounted on a diverter shaft inside of the chute housing.
The currency processing system of embodiment 3, wherein the automated coin chute further comprises a motor connected to the diverter shaft, the motor being selectively actuable to transition the diverter plate between the first and second positions.
The currency processing system of embodiment 1, further comprising a base plate disposed between the disk-type coin processing unit and the plurality of coin receptacles, the base plate defining therethrough coin-recycling and coin-depositing ports, wherein the automated coin chute is mounted to the base plate with the coin-recycling and coin-depositing output passages aligned with the coin-recycling and coin-depositing ports, respectively.
The currency processing system of embodiment 5, wherein the coin-recycling ports are spaced circumferentially about the coin processing unit a first radial distance from the center of the rotatable disk, and the coin-depositing ports are spaced circumferentially about the coin processing unit a second radial distance, distinct from the first radial distance, from the center of the rotatable disk.
The currency processing system of embodiment 5, wherein the disk-type coin processing unit is mounted on the base plate adjacent the automated coin chute.
The currency processing system of embodiment 1, further comprising a plurality of the automated coin chutes, the respective input passage of each of the automated coin chutes being coupled to only one of the exit stations of the disk-type coin processing unit to receive coins therefrom.
The currency processing system of embodiment 8, wherein the coin receptacles include a plurality of coin-recycling receptacles, and wherein each of the automated coin chutes is operable to divert coins received from the coin processing unit to only one of the coin-recycling receptacles.
The currency processing system of embodiment 8, wherein all of the automated coin chutes are operable to divert coins received from the coin processing unit to the coin-depositing receptacle.
The currency processing system of embodiment 1, further comprising a coin-mixing manifold configured to receive coins sorted by the disk-type coin processing unit, combine the sorted coins, and direct the combined coins to the coin-depositing receptacle.
The currency processing system of embodiment 11, wherein the automated coin chute diverts coins received by the input passage from the one exit station to the coin-depositing receptacle via the coin-mixing manifold.
The currency processing system of embodiment 1, wherein the coin-depositing receptacle includes first and second coin bins disposed inside the housing.
The currency processing system of embodiment 13, further comprising a conveyor belt assembly disposed between the automated coin chute and the coin bins, the conveyor belt assembly being configured to selectively operate in a first direction, whereby coins received from the automated coin chute are delivered to the first coin bin, and a second direction, whereby coins received from the automated coin chute are delivered to the second coin bin.
The currency processing system of embodiment 1, wherein the coin-recycling receptacle comprises a plurality of handheld coin totes removably stowed inside the housing.
The currency processing system of embodiment 15, wherein the handheld coin totes are removably seated inside a tote drawer, the tote drawer being configured to transition between a stowed position, whereat the tote drawer is disposed at least substantially inside the housing, to an extracted position, whereat the tote drawer is disposed at least partially outside the housing such that the coin totes can be removed therefrom.
The currency processing system of embodiment 16, wherein the tote drawer includes a base defining a plurality of tote compartments, each of the tote compartments being configured to receive therein a base portion of one of the coin totes.
The currency processing system of embodiment 15, wherein each of the coin totes includes a first electrical contact configured to cooperate with a system interface contact to thereby communicate to a system controller a signal indicative of a presence of the coin tote in the tote drawer.
The currency processing system of embodiment 15, wherein each of the coin totes includes a second electrical contact configured to cooperate with a system interface contact to thereby communicate to a system controller a signal indicating a full coin tote in the tote drawer.
The currency processing system of embodiment 15, wherein each of the coin totes includes a third electrical contact configured to cooperate with a system interface contact to thereby communicate to a system controller a signal indicating an empty coin tote in the tote drawer.
The currency processing system of embodiment 11, further comprising a plurality of sorted coin chutes, each of the sorted coin chutes being configured to direct coins received from the coin processing unit into a respective one of the coin totes.
A self-service coin processing machine comprising: a housing with a coin input area configured to receive coins; a plurality of coin receptacles removably positioned inside the housing and configured to receive and store processed coins, the plurality of coin receptacles including a plurality of coin-recycling receptacles and a plurality of coin-depositing receptacles; a coin processing unit configured to receive coins from the coin input area, process the coins, and output the processed coins through coin exit stations; a plurality of automated coin chutes each having a chute body defining an input passage connected to coin-recycling and coin-depositing output passages, each of the automated coin chutes including a movable diverter plate configured to selectively transition between a first position, whereby coins received by the input passage from a respective one of the exit stations are redirected through the coin-recycling output passage to a respective one of the coin-recycling receptacles, and a second position, whereby coins received by the input passage from the respective one of the exit stations are redirected through the coin-depositing output passage to a respective one of the coin-depositing receptacles.
A method of processing and recycling coins, the method comprising: receiving a batch of mixed coins in a currency processing machine comprising a coin processing unit configured to sort received coins, at least one coin-depositing receptacle, and a plurality of coin-recycling receptacles, each of the coin-recycling receptacles being associated with a single denomination of coin; discharging sorted coins from the coin processing unit through a plurality of exit stations, each of the exit stations being associated with a single denomination of coin; receiving coins from each of the exit stations via one of a plurality of automated coin chutes, each of the automated coin chutes including a movable diverter plate configured to selectively transition between a first position, whereby coins received from the exit station are directed through a coin-recycling output passage, and a second position, whereby coins received from the exit station are directed through a coin-depositing output passage; discharging coins from the coin-recycling output passage of each of the automated coin chutes into a respective one of the coin-recycling receptacles; and discharging coins from the coin-depositing output passage of each of the automated coin chutes into the at least one coin-depositing receptacle.
The method of embodiment 23, wherein each of the automated coin chutes comprises a chute housing defining therein the coin-recycling passage and the coin-depositing passage.
The method of embodiment 25, wherein each of the automated coin chutes further comprises a motor connected to the diverter shaft, the motor being selectively actuable to transition the diverter plate between the first and second positions.
The method of embodiment 23, wherein the currency processing machine further comprises a base plate disposed between the coin processing unit and the coin receptacles, the base plate defining therethrough coin-recycling and coin-depositing ports, wherein each of the automated coin chutes is mounted to the base plate with the coin-recycling and coin-depositing output passages aligned with the coin-recycling and coin-depositing ports, respectively.
The method of embodiment 26, wherein the coin-recycling ports are spaced circumferentially about the coin processing unit a first radial distance from a center of the unit, and the coin-depositing ports are spaced circumferentially about the coin processing unit a second radial distance, distinct from the first radial distance, from the center of the unit.
The method of embodiment 23, wherein the coin processing unit is mounted on the base plate adjacent the plurality of automated coin chutes.
The method of embodiment 23, wherein the currency processing machine further comprises a coin-mixing manifold configured to receive coins sorted by the coin processing unit, recombine the sorted coins, and direct the recombined coins to the at least one coin-depositing receptacle.
The method of embodiment 29, wherein the plurality of automated coin chutes divert coins received from the exit stations to the at least one coin-depositing receptacle via the coin-mixing manifold.
The method of embodiment 23, wherein the at least one coin-depositing receptacle includes first and second coin bins.
The method of embodiment 31, wherein the currency processing machine further comprises a conveyor belt assembly configured to selectively operate in a first direction, whereby coins received from the automated coin chutes are delivered to the first coin bin, and a second direction, whereby coins received from the automated coin chutes are delivered to the second coin bin.
The method of embodiment 23, wherein the plurality of coin-recycling receptacles includes a plurality of handheld coin totes removably mounted inside a housing of the currency processing machine.
The method of embodiment 33, wherein the handheld coin totes are removably mounted to a tote drawer, the tote drawer being configured to transition from a stowed position, whereat the tote drawer is disposed at least substantially inside the housing, to an extracted position, whereat the tote drawer is disposed at least partially outside the housing such that the coin totes can be removed therefrom.
The method of embodiment 34, wherein the tote drawer includes a base defining a plurality of tote compartments, each of the tote compartments being configured to receive therein a base portion of one of the coin totes.
The method of embodiment 33, wherein each of the coin totes includes a first electrical contact, and the housing includes a second electrical contact configured to cooperate with the first electrical contact to thereby communicate to a system controller a signal indicative of a presence of the coin tote in the tote drawer.
The method of embodiment 33, wherein each of the coin totes includes a third electrical contact, and the housing includes a fourth electrical contact configured to cooperate with the third electrical contact to thereby communicate to a system controller a signal indicating a full coin tote in the tote drawer.
The method of embodiment 33, wherein each of the coin totes includes a fifth electrical contact, and the housing includes a sixth electrical contact configured to cooperate with the fifth electrical contact to thereby communicate to a system controller a signal indicating an empty coin tote in the drawer.
The method of embodiment 23, wherein the currency processing machine further comprises a plurality of sorted coin chutes, each of the sorted coin chutes being configured to direct coins received from the coin processing unit into a respective one of the coin totes.
A coin-recycling dispenser assembly for dispensing coins stowed in one or more coin totes into one or more coin containers, the coin-recycling dispenser assembly comprising: a housing with one or more tote docking stations, each of the tote docking stations including a guide mechanism and a drive mechanism; one or more tote docks coupled to the housing, each of the tote docks being rotatably coupled to one of the tote docking stations and configured to seat therein one of the coin totes, movement of each of the tote docks being limited by the guide mechanism, wherein each of the drive mechanisms is selectively actuable to rotate one of the tote docks between a loading position, whereat the coin tote is removable from the tote dock, and a dispensing position, whereat the coins stowed inside the coin tote are dispensed, one at a time, into one of the coin containers.
The coin-recycling dispenser assembly of embodiment 40, wherein each of the guide mechanisms of the tote docking stations includes a guide track, and each of the tote docks includes a guide channel configured to mate with the guide track and thereby limit rectilinear movement of the tote dock during rotation thereof.
The coin-recycling dispenser assembly of embodiment 41, wherein each of the guide tracks of the tote docking stations includes a retention tab pressing against a flange of the guide channel and thereby retaining the tote dock in contact with the tote docking station.
The coin-recycling dispenser assembly of embodiment 41, wherein each of the tote docks includes a drum-shaped body, the guide channel extending along the outer circumference of the drum-shaped body.
The coin-recycling dispenser assembly of embodiment 40, wherein each of the guide mechanisms of the tote docking stations includes a rotation stop, and each of the tote docks includes a stopping shoulder configured to abut the rotation stop and thereby limit rotation of the tote dock.
The coin-recycling dispenser assembly of embodiment 40, wherein each of the drive mechanisms of the tote docking stations includes a motor-driven gear assembly, and each of the tote docks includes a toothed track configured to engage with the motor-driven gear assembly.
The coin-recycling dispenser assembly of embodiment 45, wherein each of the tote docks includes a drum-shaped body, the toothed track extending along the outer circumference of the drum-shaped body.
The coin-recycling dispenser assembly of embodiment 40, wherein each of the tote docking stations includes a coin slot configured to transmit coins, one at a time, to one of the coin containers.
The coin-recycling dispenser assembly of embodiment 40, wherein each of the tote docks includes a tote pocket configured to slidably receive therein one of the coin totes.
The coin-recycling dispenser assembly of embodiment 48, wherein each of the tote pockets includes a contoured surface configured to lie flush against a complementary contoured wall of a coin tote and thereby ensure proper orientation of the coin tote when seated inside the tote pocket.
The coin-recycling dispenser assembly of embodiment 40, further comprising a coin till assembly with a till housing and one or more coin funnels stowed inside the till housing, each of the coin funnels having removably mounted at a narrow end thereof one of the coin containers.
The coin-recycling dispenser assembly of embodiment 50, wherein the coin till assembly further comprises one or more coin chutes attaching the till housing to the dispenser assembly housing, each of the coin chutes being configured to direct coins, under the force of gravity, into one of the coin containers through one of the coin funnels.
The coin-recycling dispenser assembly of embodiment 40, wherein each of the tote docks includes an automated coin disk assembly selectively actuable to separate coins received from the coin tote such that coins are transmitted one at a time from the tote dock to the tote docking station.
The coin-recycling dispenser assembly of embodiment 52, wherein each of the coin disk assemblies includes a disk motor and a rotor mounted to a roof deck of the tote dock, the rotor having disc-shaped openings configured to receive therein coins from the coin tote, the disk motor being selectively actuable to rotate the rotor.
The coin-recycling dispenser assembly of embodiment 52, wherein each of the tote docking stations includes an array of electrical contacts and each of the tote docks includes an electrical contact pad, wherein rotation of the tote dock to a predetermined position mates the electrical contact pad with the array of electrical contacts and thereby selectively actuates the disk motor.
The coin-recycling dispenser assembly of embodiment 40, wherein each of the tote docks includes a coin sensor configured to count coins received from the coin tote.
The coin-recycling dispenser assembly of embodiment 55, wherein each of the tote docking stations includes an electrical contact pad, and each of the tote docks includes an electrical contact, wherein rotation of the tote dock to a predetermined position mates the electrical contact with the electrical contact pad such that coin data is transferrable from the coin sensor.
A coin-recycling system comprising: an electronic display device configured to display information and user-selectable options; an electronic user input device configured to receive one or more user selections to control one or more operations of the coin-recycling system; a central processing unit communicatively coupled to the electronic display device and the electronic user input device; a plurality of hand-held coin totes, each of the hand-held coin totes having a respective rigid tote body with a wall defining a coin hole, and a lid attached to the tote body and configured to move between a first position, whereat the lid covers the coin hole, and a second position, whereat the lid exposes the coin hole such that coins can be passed therethrough; a coin till assembly with a till housing, a plurality of coin chutes attached to the till housing, and a plurality of coin funnels stowed inside the till housing, each of the coin funnels having removably mounted at a narrow end thereof a respective coin cylinder, and each of the coin chutes being configured to direct coins, under the force of gravity, into a respective one of the coin cylinders through one of the coin funnels; a dispenser assembly housing with a plurality of tote docking stations, each of the tote docking stations including a respective arcuate guide track with a rotation stop and laterally spaced rails, a respective motor-driven gear assembly, and a respective coin slot configured to transmit coins, one at a time, to one of the coin chutes; a plurality of tote docks juxtaposed on the dispenser assembly housing and rotatably coupled to a respective one of the tote docking stations, each of the tote docks having a respective tote pocket configured to removably seat therein one of the coin totes, a respective stopping shoulder configured to mate with the rotation stop and thereby limit rotation of the tote dock, a respective pair of guide channels configured to mate with the laterally spaced rails of the guide track and thereby limit lateral movement during rotation of the tote dock, and a respective coin disk configured to separate coins received from the coin tote, and a respective toothed track engaged with the motor-driven gear assembly, wherein each of the motor-driven gear assemblies is selectively actuable to rotate a respective one of the tote docks between a loading position, whereat the coin tote is pushable into and removable from the tote dock, and a dispensing position, whereat the coins stowed inside the coin tote are dispensed, one at a time, from the tote dock, through the tote docking station, to the coin till assembly and into one of the coin cylinders through one of the coin funnels.
A coin bag for storing a plurality of coins, the coin bag comprising: an at least partially transparent and flexible polymeric body with a first end having an opening configured to receive therethrough plural coins, a seal for securing close the opening in the first end, and a second end with a frangible portion configured to be manually opened such that coins can be emptied from the coin bag through the opened frangible portion.
A coin tote drawer comprising: a plurality of coin tote compartments, each tote compartment configured to accommodate a coin tote therein, wherein each tote compartment has at least two inductive sensors residing therein; wherein one of the inductive sensors in each compartment is a coin presence inductive coil and wherein one of the inductive sensors in each compartment is a tote presence inductive coil; wherein each coin tote configured to be accommodated in each compartment has a piece of metal imbedded into or coupled to a wall of the coin tote; and wherein the tote presence inductive coil in each compartment can sense if a coin tote has been positioned in a corresponding compartment by sensing the presence of the metal imbedded into or coupled to a corresponding coin tote.
The coin tote drawer of embodiment 59 wherein each tote compartment an electrostatic discharge (ESD) bleedoff post therein.
The present invention is not limited to the precise construction and compositions disclosed herein. Rather, any and all modifications, changes, and variations apparent from the foregoing descriptions are within the scope and spirit of the invention as defined in the appended claims. Moreover, the inventive aspects of the present disclosure expressly include any and all combinations and subcombinations of the preceding embodiments, elements and features.
The present application is a continuation of pending U.S. patent application Ser. No. 15/842,314, filed on Dec. 14, 2017, which is a continuation of U.S. patent application Ser. No. 15/230,123, filed on Aug. 5, 2016, now issued as U.S. Pat. No. 9,875,593 which claims priority to U.S. Provisional Application Ser. No. 62/202,571 filed on Aug. 7, 2015, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1099706 | Lindeen | Jun 1914 | A |
2570920 | Clough et al. | Oct 1951 | A |
2669998 | Buchholz | Feb 1954 | A |
2750949 | Kulo et al. | Jun 1956 | A |
2835260 | Buchholz | May 1958 | A |
2865561 | Rosapepe | Dec 1958 | A |
3132654 | Adams | May 1964 | A |
3376970 | Roseberg | Apr 1968 | A |
3771583 | Bottemiller | Nov 1973 | A |
3778595 | Hatanaka et al. | Dec 1973 | A |
3851755 | Hull et al. | Dec 1974 | A |
3916922 | Prumm | Nov 1975 | A |
3998237 | Kressin | Dec 1976 | A |
3998379 | Myers et al. | Dec 1976 | A |
4050218 | Call | Sep 1977 | A |
4059122 | Kinoshita | Nov 1977 | A |
4075460 | Gorgens | Feb 1978 | A |
4124111 | Hayashi | Nov 1978 | A |
4150740 | Douno | Apr 1979 | A |
4166945 | Inoyama et al. | Sep 1979 | A |
4172462 | Uchida et al. | Oct 1979 | A |
4179685 | O'Maley | Dec 1979 | A |
4179723 | Spencer | Dec 1979 | A |
4184366 | Butler | Jan 1980 | A |
4197986 | Nagata | Apr 1980 | A |
4208549 | Polillo et al. | Jun 1980 | A |
4228812 | Marti | Oct 1980 | A |
4232295 | McConnell | Nov 1980 | A |
4234003 | Ristvedt et al. | Nov 1980 | A |
4249552 | Margolin et al. | Feb 1981 | A |
4251867 | Uchida et al. | Feb 1981 | A |
4286703 | Schuller et al. | Sep 1981 | A |
RE30773 | Glaser et al. | Oct 1981 | E |
4310885 | Azcua et al. | Jan 1982 | A |
4317957 | Sendrow | Mar 1982 | A |
4341951 | Benton | Jul 1982 | A |
4355369 | Garvin | Oct 1982 | A |
4360034 | Davila et al. | Nov 1982 | A |
4369442 | Werth et al. | Jan 1983 | A |
4380316 | Glinka et al. | Apr 1983 | A |
4383540 | DeMeyer et al. | May 1983 | A |
4385285 | Horst et al. | May 1983 | A |
4412292 | Sedam et al. | Oct 1983 | A |
4416299 | Bergman | Nov 1983 | A |
4417136 | Rushby et al. | Nov 1983 | A |
4423316 | Sano et al. | Dec 1983 | A |
4434359 | Watanabe | Feb 1984 | A |
4436103 | Dick | Mar 1984 | A |
4454414 | Benton | Jun 1984 | A |
4474197 | Kinoshita et al. | Oct 1984 | A |
4488116 | Plesko | Dec 1984 | A |
4531531 | Johnson et al. | Jul 1985 | A |
4543969 | Rasmussen | Oct 1985 | A |
4549561 | Johnson et al. | Oct 1985 | A |
4556140 | Okada | Dec 1985 | A |
4558711 | Yoshiaki et al. | Dec 1985 | A |
4564036 | Ristvedt | Jan 1986 | A |
4570655 | Raterman | Feb 1986 | A |
4594664 | Hashimoto | Jun 1986 | A |
4602332 | Hirose et al. | Jul 1986 | A |
4607649 | Taipale et al. | Aug 1986 | A |
4620559 | Childers et al. | Nov 1986 | A |
4641239 | Takesako | Feb 1987 | A |
4674260 | Rasmussen et al. | Jun 1987 | A |
4681128 | Ristvedt et al. | Jul 1987 | A |
4705154 | Masho et al. | Nov 1987 | A |
4718218 | Ristvedt | Jan 1988 | A |
4731043 | Ristvedt et al. | Mar 1988 | A |
4733765 | Watanabe | Mar 1988 | A |
4749074 | Ueki et al. | Jun 1988 | A |
4753624 | Adams et al. | Jun 1988 | A |
4753625 | Okada | Jun 1988 | A |
4765464 | Ristvedt | Aug 1988 | A |
4766548 | Cedrone et al. | Aug 1988 | A |
4775353 | Childers et al. | Oct 1988 | A |
4775354 | Rasmussen et al. | Oct 1988 | A |
4778983 | Ushikubo | Oct 1988 | A |
4803347 | Sugahara et al. | Feb 1989 | A |
4804830 | Miyagisima et al. | Feb 1989 | A |
4812629 | O'Neil et al. | Mar 1989 | A |
4839505 | Bradt et al. | Jun 1989 | A |
4840290 | Nakamura et al. | Jun 1989 | A |
4844369 | Kanayachi | Jul 1989 | A |
4848556 | Shah et al. | Jul 1989 | A |
4863414 | Ristvedt et al. | Sep 1989 | A |
4883158 | Kobayashi et al. | Nov 1989 | A |
4884212 | Stutsman | Nov 1989 | A |
4900909 | Nagashima et al. | Feb 1990 | A |
4908516 | West | Mar 1990 | A |
4921463 | Primdahl et al. | May 1990 | A |
4936435 | Griner | Jun 1990 | A |
4953086 | Fukatsu | Aug 1990 | A |
4954697 | Kokubun et al. | Sep 1990 | A |
4964495 | Rasmussen | Oct 1990 | A |
4966570 | Ristvedt et al. | Oct 1990 | A |
4970655 | Winn et al. | Nov 1990 | A |
4971187 | Furuya et al. | Nov 1990 | A |
4988849 | Sasaki et al. | Jan 1991 | A |
4992647 | Konishi et al. | Feb 1991 | A |
4995848 | Goh | Feb 1991 | A |
5009627 | Rasmussen | Apr 1991 | A |
5010238 | Kadono et al. | Apr 1991 | A |
5010485 | Bigari | Apr 1991 | A |
5011455 | Rasmussen | Apr 1991 | A |
5022889 | Ristvedt et al. | Jun 1991 | A |
5025139 | Halliburton, Jr. | Jun 1991 | A |
5026320 | Rasmussen | Jun 1991 | A |
5031098 | Miller et al. | Jul 1991 | A |
5033602 | Saarinen et al. | Jul 1991 | A |
5039848 | Stoken | Aug 1991 | A |
5055086 | Raterman et al. | Oct 1991 | A |
5055657 | Miller et al. | Oct 1991 | A |
5056643 | Kirberg | Oct 1991 | A |
5064999 | Okamoto et al. | Nov 1991 | A |
5067928 | Harris | Nov 1991 | A |
5080633 | Ristvedt et al. | Jan 1992 | A |
5091713 | Horne et al. | Feb 1992 | A |
5104353 | Ristvedt et al. | Apr 1992 | A |
5105601 | Horiguchi et al. | Apr 1992 | A |
5106338 | Rasmussen et al. | Apr 1992 | A |
5111927 | Schulze | May 1992 | A |
5114381 | Ueda et al. | May 1992 | A |
5120945 | Nishibe et al. | Jun 1992 | A |
5123873 | Rasmussen | Jun 1992 | A |
5129205 | Rasmussen | Jul 1992 | A |
5135435 | Rasmussen | Aug 1992 | A |
5140517 | Nagata et al. | Aug 1992 | A |
5141443 | Rasmussen et al. | Aug 1992 | A |
5141472 | Todd et al. | Aug 1992 | A |
5145455 | Todd | Sep 1992 | A |
5146067 | Sloan et al. | Sep 1992 | A |
5154272 | Nishiumi et al. | Oct 1992 | A |
5163866 | Rasmussen | Nov 1992 | A |
5163867 | Rasmussen | Nov 1992 | A |
5163868 | Adams et al. | Nov 1992 | A |
5167313 | Dobbins et al. | Dec 1992 | A |
5175416 | Mansvelt et al. | Dec 1992 | A |
5176565 | Ristvedt et al. | Jan 1993 | A |
5179517 | Saibin et al. | Jan 1993 | A |
5183142 | Latchinian et al. | Feb 1993 | A |
5184709 | Nishiumi et al. | Feb 1993 | A |
5194037 | Jones et al. | Mar 1993 | A |
5197919 | Geib et al. | Mar 1993 | A |
5205780 | Rasmussen | Apr 1993 | A |
5207784 | Schwartzendruber | May 1993 | A |
5209696 | Rasmussen et al. | May 1993 | A |
5236071 | Lee | Aug 1993 | A |
5243174 | Veeneman et al. | Sep 1993 | A |
5251738 | Dabrowski | Oct 1993 | A |
5252811 | Henochowicz et al. | Oct 1993 | A |
5253167 | Yoshida et al. | Oct 1993 | A |
5259491 | Ward, II | Nov 1993 | A |
5263566 | Nara et al. | Nov 1993 | A |
5265874 | Dickinson et al. | Nov 1993 | A |
5268561 | Kimura et al. | Dec 1993 | A |
5277651 | Rasmussen et al. | Jan 1994 | A |
5282127 | Mii | Jan 1994 | A |
5286226 | Rasmussen | Feb 1994 | A |
5286954 | Sato et al. | Feb 1994 | A |
5291003 | Avnet et al. | Mar 1994 | A |
5291560 | Daugman | Mar 1994 | A |
5293981 | Abe et al. | Mar 1994 | A |
5297030 | Vassigh et al. | Mar 1994 | A |
5297598 | Rasmussen | Mar 1994 | A |
5297986 | Ristvedt et al. | Mar 1994 | A |
5299977 | Mazur et al. | Apr 1994 | A |
5302811 | Fukatsu | Apr 1994 | A |
5324922 | Roberts | Jun 1994 | A |
5326104 | Pease et al. | Jul 1994 | A |
5370575 | Geib et al. | Dec 1994 | A |
5372542 | Geib et al. | Dec 1994 | A |
5374814 | Kako et al. | Dec 1994 | A |
5379344 | Larson et al. | Jan 1995 | A |
5379875 | Shames et al. | Jan 1995 | A |
5382191 | Rasmussen | Jan 1995 | A |
5390776 | Thompson | Feb 1995 | A |
5401211 | Geib et al. | Mar 1995 | A |
5404986 | Hossfield et al. | Apr 1995 | A |
5410590 | Blood et al. | Apr 1995 | A |
RE34934 | Raterman et al. | May 1995 | E |
5425669 | Geib et al. | Jun 1995 | A |
5429550 | Mazur et al. | Jul 1995 | A |
5440108 | Tran et al. | Aug 1995 | A |
5443419 | Adams et al. | Aug 1995 | A |
5450938 | Rademacher | Sep 1995 | A |
5453047 | Mazur et al. | Sep 1995 | A |
5458285 | Remien | Oct 1995 | A |
5468182 | Geib | Nov 1995 | A |
5470079 | Lestmnge et al. | Nov 1995 | A |
5474495 | Geib et al. | Dec 1995 | A |
5474497 | Jones et al. | Dec 1995 | A |
5480348 | Mazur et al. | Jan 1996 | A |
5489237 | Geib et al. | Feb 1996 | A |
5500514 | Veeneman et al. | Mar 1996 | A |
5501631 | Mennie et al. | Mar 1996 | A |
5507379 | Mazur et al. | Apr 1996 | A |
5514034 | Jones et al. | May 1996 | A |
5520577 | Rasmussen | May 1996 | A |
5531309 | Kloss et al. | Jul 1996 | A |
5538468 | Ristvedt et al. | Jul 1996 | A |
5542880 | Geib et al. | Aug 1996 | A |
5542881 | Geib | Aug 1996 | A |
5553320 | Matsuura et al. | Sep 1996 | A |
5559887 | Davis et al. | Sep 1996 | A |
5564546 | Molbak et al. | Oct 1996 | A |
5564974 | Mazur et al. | Oct 1996 | A |
5564978 | Jones et al. | Oct 1996 | A |
5570465 | Tsakanikas | Oct 1996 | A |
5573457 | Watts et al. | Nov 1996 | A |
5584758 | Geib | Dec 1996 | A |
5592377 | Lipkin | Jan 1997 | A |
5602933 | Blackwell et al. | Feb 1997 | A |
5615625 | Cassidy et al. | Apr 1997 | A |
5620079 | Molbak | Apr 1997 | A |
5623547 | Jones et al. | Apr 1997 | A |
5625562 | Veeneman et al. | Apr 1997 | A |
5630494 | Strauts | May 1997 | A |
5641050 | Smith et al. | Jun 1997 | A |
5650605 | Morioka et al. | Jul 1997 | A |
5650761 | Gomm et al. | Jul 1997 | A |
5652421 | Veeneman et al. | Jul 1997 | A |
5665952 | Ziarno | Sep 1997 | A |
5679070 | Ishida et al. | Oct 1997 | A |
5684597 | Hossfield et al. | Nov 1997 | A |
5696366 | Ziarno | Dec 1997 | A |
5743373 | Strauts | Apr 1998 | A |
5746299 | Molbak et al. | May 1998 | A |
5774874 | Veeneman et al. | Jun 1998 | A |
5782686 | Geib et al. | Jul 1998 | A |
5799767 | Molbak | Sep 1998 | A |
5813510 | Rademacher | Sep 1998 | A |
5823315 | Hoffman et al. | Oct 1998 | A |
5830054 | Petri | Nov 1998 | A |
5838812 | Pare, Jr. et al. | Nov 1998 | A |
5842188 | Ramsey et al. | Nov 1998 | A |
5842916 | Gerrity et al. | Dec 1998 | A |
5850076 | Morioka et al. | Dec 1998 | A |
5854581 | Mori et al. | Dec 1998 | A |
5865673 | Geib | Feb 1999 | A |
5875879 | Hawthorn | Mar 1999 | A |
5880444 | Shibata et al. | Mar 1999 | A |
5892211 | Davis et al. | Apr 1999 | A |
5892827 | Beach et al. | Apr 1999 | A |
5909793 | Beach et al. | Jun 1999 | A |
5909794 | Molbak et al. | Jun 1999 | A |
5913399 | Takemoto et al. | Jun 1999 | A |
5918748 | Clark et al. | Jul 1999 | A |
5940623 | Watts et al. | Aug 1999 | A |
5941364 | Wei | Aug 1999 | A |
5944162 | Filiberti | Aug 1999 | A |
5944600 | Zimmermann | Aug 1999 | A |
5944601 | Hayashi et al. | Aug 1999 | A |
5951476 | Beach et al. | Sep 1999 | A |
5957262 | Molbak et al. | Sep 1999 | A |
5988348 | Martin et al. | Nov 1999 | A |
5995949 | Morioka et al. | Nov 1999 | A |
5997395 | Geib et al. | Dec 1999 | A |
6017270 | Ristvedt et al. | Jan 2000 | A |
6021883 | Casanova et al. | Feb 2000 | A |
6032859 | Muehlberger et al. | Mar 2000 | A |
6039644 | Geib et al. | Mar 2000 | A |
6039645 | Mazur | Mar 2000 | A |
6042470 | Geib et al. | Mar 2000 | A |
6047807 | Molbak | Apr 2000 | A |
6047808 | Neubarth et al. | Apr 2000 | A |
6056104 | Neubarth et al. | May 2000 | A |
6068194 | Mazur | May 2000 | A |
6080056 | Karlsson | Jun 2000 | A |
6082519 | Martin et al. | Jul 2000 | A |
6086471 | Zimmermann | Jul 2000 | A |
6095313 | Molbak et al. | Aug 2000 | A |
6116402 | Beach et al. | Sep 2000 | A |
6131625 | Casanova et al. | Oct 2000 | A |
6139418 | Geib et al. | Oct 2000 | A |
6142285 | Panzeri et al. | Nov 2000 | A |
6145738 | Stinson et al. | Nov 2000 | A |
6154879 | Pare, Jr. et al. | Nov 2000 | A |
6168001 | Davis | Jan 2001 | B1 |
6171182 | Geib et al. | Jan 2001 | B1 |
6174230 | Gerrity et al. | Jan 2001 | B1 |
6196371 | Martin et al. | Mar 2001 | B1 |
6196913 | Geib et al. | Mar 2001 | B1 |
6202006 | Scott | Mar 2001 | B1 |
6213277 | Blad et al. | Apr 2001 | B1 |
6230928 | Hanna et al. | May 2001 | B1 |
6264545 | Magee et al. | Jul 2001 | B1 |
6308887 | Korman et al. | Oct 2001 | B1 |
6318536 | Korman et al. | Nov 2001 | B1 |
6318537 | Jones et al. | Nov 2001 | B1 |
6349972 | Geiger et al. | Feb 2002 | B1 |
6386323 | Ramachandran et al. | May 2002 | B1 |
6412620 | Imura | Jul 2002 | B1 |
6431342 | Schwartz | Aug 2002 | B1 |
6438230 | Moore | Aug 2002 | B1 |
6456928 | Johnson | Sep 2002 | B1 |
6471030 | Neubarth et al. | Oct 2002 | B1 |
6474548 | Montross et al. | Nov 2002 | B1 |
6484863 | Molbak | Nov 2002 | B1 |
6484884 | Gerrity et al. | Nov 2002 | B1 |
6494776 | Molbak | Dec 2002 | B1 |
6499277 | Warner et al. | Dec 2002 | B1 |
6503138 | Spoehr et al. | Jan 2003 | B2 |
6520308 | Martin et al. | Feb 2003 | B1 |
6522772 | Morrison et al. | Feb 2003 | B1 |
6547131 | Foodman et al. | Apr 2003 | B1 |
6552781 | Rompel et al. | Apr 2003 | B1 |
6554185 | Montross et al. | Apr 2003 | B1 |
6579165 | Kuhlin et al. | Jun 2003 | B2 |
6581042 | Pare, Jr. et al. | Jun 2003 | B2 |
6602125 | Martin | Aug 2003 | B2 |
6609604 | Jones et al. | Aug 2003 | B1 |
6612921 | Geib et al. | Sep 2003 | B2 |
6637576 | Jones et al. | Oct 2003 | B1 |
6640956 | Zwieg et al. | Nov 2003 | B1 |
6644696 | Brown et al. | Nov 2003 | B2 |
6652380 | Luciano | Nov 2003 | B1 |
6655585 | Shinn | Dec 2003 | B2 |
6659259 | Knox et al. | Dec 2003 | B2 |
6662166 | Pare, Jr. et al. | Dec 2003 | B2 |
6663675 | Blake et al. | Dec 2003 | B2 |
6666318 | Gerrity et al. | Dec 2003 | B2 |
6719121 | Alexander et al. | Apr 2004 | B2 |
6755730 | Geib et al. | Jun 2004 | B2 |
6758316 | Molbak | Jul 2004 | B2 |
6761308 | Hanna et al. | Jul 2004 | B1 |
6766892 | Martin et al. | Jul 2004 | B2 |
6783452 | Hino et al. | Aug 2004 | B2 |
6786398 | Stinson et al. | Sep 2004 | B1 |
6854581 | Molbak | Feb 2005 | B2 |
6854640 | Peklo | Feb 2005 | B2 |
6863168 | Gerrity et al. | Mar 2005 | B1 |
6892871 | Strauts et al. | May 2005 | B2 |
6896118 | Jones et al. | May 2005 | B2 |
6928546 | Nanavati et al. | Aug 2005 | B1 |
6950810 | Lapsley et al. | Sep 2005 | B2 |
6953150 | Shepley et al. | Oct 2005 | B2 |
6957746 | Martin et al. | Oct 2005 | B2 |
6966417 | Peklo et al. | Nov 2005 | B2 |
6976570 | Molbak | Dec 2005 | B2 |
6988606 | Geib et al. | Jan 2006 | B2 |
6991530 | Hino et al. | Jan 2006 | B2 |
7004831 | Hino et al. | Feb 2006 | B2 |
7014029 | Winters | Mar 2006 | B2 |
7014108 | Sorenson et al. | Mar 2006 | B2 |
7017729 | Gerrity et al. | Mar 2006 | B2 |
7018286 | Blake et al. | Mar 2006 | B2 |
7028827 | Molbak et al. | Apr 2006 | B1 |
7036651 | Tam et al. | May 2006 | B2 |
7083036 | Adams | Aug 2006 | B2 |
7113929 | Beach et al. | Sep 2006 | B1 |
7131580 | Molbak | Nov 2006 | B2 |
7149336 | Jones et al. | Dec 2006 | B2 |
7152727 | Waechter | Dec 2006 | B2 |
7158662 | Chiles | Jan 2007 | B2 |
7188720 | Geib et al. | Mar 2007 | B2 |
7213697 | Martin et al. | May 2007 | B2 |
7243773 | Bochonok et al. | Jul 2007 | B2 |
7269279 | Chiles | Sep 2007 | B2 |
7303119 | Molbak | Dec 2007 | B2 |
7331521 | Sorenson et al. | Feb 2008 | B2 |
7337890 | Bochonok et al. | Mar 2008 | B2 |
7427230 | Blake et al. | Sep 2008 | B2 |
7438172 | Long et al. | Oct 2008 | B2 |
7464802 | Gerrity et al. | Dec 2008 | B2 |
7500568 | Cousin | Mar 2009 | B2 |
7520374 | Martin et al. | Apr 2009 | B2 |
7551764 | Chiles et al. | Jun 2009 | B2 |
7552810 | Mecklenburg | Jun 2009 | B2 |
7580859 | Economy | Aug 2009 | B2 |
7604107 | Richard et al. | Oct 2009 | B2 |
7654450 | Mateen et al. | Feb 2010 | B2 |
7658270 | Bochonok et al. | Feb 2010 | B2 |
7735125 | Alvarez et al. | Jun 2010 | B1 |
7743902 | Wendell et al. | Jun 2010 | B2 |
7778456 | Jones et al. | Aug 2010 | B2 |
7819308 | Osterberg et al. | Oct 2010 | B2 |
7874478 | Molbak | Jan 2011 | B2 |
7886890 | Blake et al. | Feb 2011 | B2 |
7931304 | Brown et al. | Apr 2011 | B2 |
7946406 | Blake et al. | May 2011 | B2 |
7949582 | Mennie et al. | May 2011 | B2 |
7963382 | Wendell et al. | Jun 2011 | B2 |
7980378 | Jones et al. | Jul 2011 | B2 |
8023715 | Jones et al. | Sep 2011 | B2 |
8042732 | Blake et al. | Oct 2011 | B2 |
8229821 | Mennie et al. | Jul 2012 | B2 |
8346610 | Mennie et al. | Jan 2013 | B2 |
8352322 | Mennie et al. | Jan 2013 | B2 |
8393455 | Blake et al. | Mar 2013 | B2 |
8443958 | Jones et al. | May 2013 | B2 |
RE44252 | Jones et al. | Jun 2013 | E |
8469173 | Inuki | Jun 2013 | B2 |
8523641 | Kuykendall et al. | Sep 2013 | B2 |
8545295 | Blake et al. | Oct 2013 | B2 |
8602200 | Blake | Dec 2013 | B2 |
8607957 | Blake et al. | Dec 2013 | B2 |
8616359 | Bochonok et al. | Dec 2013 | B2 |
RE44689 | Wendell et al. | Jan 2014 | E |
8684159 | Blake | Apr 2014 | B2 |
8684160 | Hallowell et al. | Apr 2014 | B2 |
8701860 | Blake et al. | Apr 2014 | B1 |
8950566 | Hallowell et al. | Feb 2015 | B2 |
8959029 | Jones et al. | Feb 2015 | B2 |
9092924 | Rasmussen et al. | Jul 2015 | B1 |
9330515 | Rasmussen et al. | May 2016 | B1 |
9384614 | Nagoya | Jul 2016 | B2 |
9430893 | Blake et al. | Aug 2016 | B1 |
9437069 | Blake et al. | Sep 2016 | B1 |
9501885 | Yacoubian et al. | Nov 2016 | B1 |
9508208 | Jagielinski et al. | Nov 2016 | B1 |
9633500 | Blake et al. | Apr 2017 | B1 |
9830762 | Blake et al. | Nov 2017 | B1 |
9870668 | Jagielinski et al. | Jan 2018 | B1 |
9875593 | Adams et al. | Jan 2018 | B1 |
9916713 | Yacoubian et al. | Mar 2018 | B1 |
9934640 | Blake et al. | Apr 2018 | B2 |
20010034203 | Geib et al. | Oct 2001 | A1 |
20010048025 | Shinn | Dec 2001 | A1 |
20020065033 | Geib et al. | May 2002 | A1 |
20020069104 | Beach et al. | Jun 2002 | A1 |
20020074209 | Karlsson | Jun 2002 | A1 |
20020085745 | Jones et al. | Jul 2002 | A1 |
20020095587 | Doyle et al. | Jul 2002 | A1 |
20020107738 | Beach et al. | Aug 2002 | A1 |
20020126885 | Mennie et al. | Sep 2002 | A1 |
20020130011 | Casanova et al. | Sep 2002 | A1 |
20020147588 | Davis et al. | Oct 2002 | A1 |
20020151267 | Kuhlin et al. | Oct 2002 | A1 |
20020174348 | Ting | Nov 2002 | A1 |
20020179401 | Knox et al. | Dec 2002 | A1 |
20030004878 | Akutsu et al. | Jan 2003 | A1 |
20030013403 | Blake et al. | Jan 2003 | A1 |
20030042110 | Wilfong | Mar 2003 | A1 |
20030081824 | Mennie et al. | May 2003 | A1 |
20030127299 | Jones et al. | Jul 2003 | A1 |
20030168309 | Geib et al. | Sep 2003 | A1 |
20030168310 | Strauts et al. | Sep 2003 | A1 |
20030182217 | Chiles | Sep 2003 | A1 |
20030190882 | Blake et al. | Oct 2003 | A1 |
20030230464 | Deaville et al. | Dec 2003 | A1 |
20030234153 | Blake et al. | Dec 2003 | A1 |
20040021898 | Ashizaki | Feb 2004 | A1 |
20040055902 | Peklo | Mar 2004 | A1 |
20040092222 | Kowalczyk et al. | May 2004 | A1 |
20040153406 | Alarcon-Luther et al. | Aug 2004 | A1 |
20040153421 | Robinson | Aug 2004 | A1 |
20040154899 | Peklo et al. | Aug 2004 | A1 |
20040173432 | Jones | Sep 2004 | A1 |
20040188221 | Carter | Sep 2004 | A1 |
20040195302 | Washington et al. | Oct 2004 | A1 |
20040199924 | Ganesh et al. | Oct 2004 | A1 |
20040200691 | Geib et al. | Oct 2004 | A1 |
20040238319 | Hand et al. | Dec 2004 | A1 |
20040238614 | Yoshioka et al. | Dec 2004 | A1 |
20040256197 | Blake et al. | Dec 2004 | A1 |
20050006197 | Wendell et al. | Jan 2005 | A1 |
20050035140 | Carter | Feb 2005 | A1 |
20050040007 | Geib et al. | Feb 2005 | A1 |
20050040225 | Csulits et al. | Feb 2005 | A1 |
20050045450 | Geib et al. | Mar 2005 | A1 |
20050067305 | Bochonok et al. | Mar 2005 | A1 |
20050077142 | Tam et al. | Apr 2005 | A1 |
20050086140 | Ireland et al. | Apr 2005 | A1 |
20050087425 | Peklo | Apr 2005 | A1 |
20050096986 | Taylor et al. | May 2005 | A1 |
20050098625 | Walker et al. | May 2005 | A1 |
20050108165 | Jones et al. | May 2005 | A1 |
20050109836 | Ben-Aissa | May 2005 | A1 |
20050121507 | Brown et al. | Jun 2005 | A1 |
20050124407 | Rowe | Jun 2005 | A1 |
20050150740 | Finkenzeller et al. | Jul 2005 | A1 |
20050156318 | Douglas | Jul 2005 | A1 |
20050205654 | Carter | Sep 2005 | A1 |
20050205655 | Carter | Sep 2005 | A1 |
20050228717 | Gusler et al. | Oct 2005 | A1 |
20050256792 | Shimizu et al. | Nov 2005 | A1 |
20060037835 | Doran et al. | Feb 2006 | A1 |
20060054455 | Kuykendall et al. | Mar 2006 | A1 |
20060054457 | Long et al. | Mar 2006 | A1 |
20060060363 | Carter | Mar 2006 | A2 |
20060064379 | Doran et al. | Mar 2006 | A1 |
20060065717 | Hurwitz et al. | Mar 2006 | A1 |
20060069654 | Beach et al. | Mar 2006 | A1 |
20060146839 | Hurwitz et al. | Jul 2006 | A1 |
20060148394 | Blake et al. | Jul 2006 | A1 |
20060149415 | Richards | Jul 2006 | A1 |
20060151285 | String | Jul 2006 | A1 |
20060154589 | String | Jul 2006 | A1 |
20060175176 | Blake | Aug 2006 | A1 |
20060182330 | Chiles | Aug 2006 | A1 |
20060196754 | Bochonok et al. | Sep 2006 | A1 |
20060205481 | Dominelli | Sep 2006 | A1 |
20060207856 | Dean et al. | Sep 2006 | A1 |
20060219519 | Molbak et al. | Oct 2006 | A1 |
20060253332 | Dobbins | Nov 2006 | A1 |
20060283685 | Cousin | Dec 2006 | A1 |
20070051582 | Bochonok et al. | Mar 2007 | A1 |
20070071302 | Jones et al. | Mar 2007 | A1 |
20070108015 | Bochonok et al. | May 2007 | A1 |
20070108267 | Johnsson | May 2007 | A1 |
20070119681 | Blake | May 2007 | A1 |
20070181676 | Mateen et al. | Aug 2007 | A1 |
20070187494 | Hanna | Aug 2007 | A1 |
20070221470 | Mennie et al. | Sep 2007 | A1 |
20070251800 | Castleberry | Nov 2007 | A1 |
20070269097 | Chiles et al. | Nov 2007 | A1 |
20070270997 | Brumfield et al. | Nov 2007 | A1 |
20080033829 | Mennie et al. | Feb 2008 | A1 |
20080044077 | Mennie et al. | Feb 2008 | A1 |
20080135608 | Ireland et al. | Jun 2008 | A1 |
20080220707 | Jones et al. | Sep 2008 | A1 |
20080223930 | Rolland et al. | Sep 2008 | A1 |
20090018959 | Doran et al. | Jan 2009 | A1 |
20090236200 | Hallowell et al. | Sep 2009 | A1 |
20090236201 | Blake et al. | Sep 2009 | A1 |
20090239459 | Watts et al. | Sep 2009 | A1 |
20090242626 | Jones et al. | Oct 2009 | A1 |
20090320106 | Jones et al. | Dec 2009 | A1 |
20100017017 | Adams | Jan 2010 | A1 |
20100038419 | Blake et al. | Feb 2010 | A1 |
20100065623 | Sauter | Mar 2010 | A1 |
20100155193 | Gunst | Jun 2010 | A1 |
20100198726 | Doran et al. | Aug 2010 | A1 |
20100234985 | Shuren et al. | Sep 2010 | A1 |
20100261421 | Wendell et al. | Oct 2010 | A1 |
20100276485 | Jones et al. | Nov 2010 | A1 |
20100327005 | Martin et al. | Dec 2010 | A1 |
20110098845 | Mennie et al. | Apr 2011 | A1 |
20110099105 | Mennie et al. | Apr 2011 | A1 |
20110259961 | Fold et al. | Oct 2011 | A1 |
20110270695 | Jones et al. | Nov 2011 | A1 |
20120067950 | Blake | Mar 2012 | A1 |
20120156976 | Blake et al. | Jun 2012 | A1 |
20130178139 | Hallowell et al. | Jul 2013 | A1 |
20130199890 | Blake | Aug 2013 | A1 |
20130205723 | Blake et al. | Aug 2013 | A1 |
20150302678 | Blake et al. | Oct 2015 | A1 |
20180108198 | Rasmussen | Apr 2018 | A1 |
20180108199 | Blake et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2235925 | Nov 1995 | CA |
2189330 | Dec 2000 | CA |
2143943 | Mar 2003 | CA |
06 60 354 | May 1938 | DE |
30 21 327 | Dec 1981 | DE |
0 351 217 | Jan 1990 | EP |
0 667 973 | Jan 1997 | EP |
0 926 634 | Jun 1999 | EP |
1 104 920 | Jun 2001 | EP |
1 209 639 | May 2002 | EP |
1 528 513 | May 2005 | EP |
2042254 | Feb 1971 | FR |
2514241 | Nov 1917 | GB |
2035642 | Jun 1980 | GB |
2175427 | Nov 1986 | GB |
2198274 | Jun 1988 | GB |
2458387 | Sep 2009 | GB |
2468783 | Sep 2010 | GB |
49-058899 | Jun 1974 | JP |
52-014495 | Feb 1977 | JP |
52-071300 | Jun 1977 | JP |
56-040992 | Apr 1981 | JP |
57-117080 | Jul 1982 | JP |
59-079392 | May 1984 | JP |
60-016271 | Feb 1985 | JP |
62-134168 | Aug 1987 | JP |
62-182995 | Aug 1987 | JP |
62-221773 | Sep 1987 | JP |
62-166562 | Oct 1987 | JP |
64-035683 | Feb 1989 | JP |
64-042789 | Feb 1989 | JP |
64-067698 | Mar 1989 | JP |
01-118995 | May 1989 | JP |
01-307891 | Dec 1989 | JP |
02-050793 | Feb 1990 | JP |
02-252096 | Oct 1990 | JP |
03-012776 | Jan 1991 | JP |
03-063795 | Mar 1991 | JP |
03-092994 | Apr 1991 | JP |
03-156673 | Jul 1991 | JP |
04-085695 | Mar 1992 | JP |
04-175993 | Jun 1992 | JP |
05-046839 | Feb 1993 | JP |
05-217048 | Aug 1993 | JP |
05-274527 | Oct 1993 | JP |
06-035946 | Feb 1994 | JP |
06-103285 | Apr 1994 | JP |
09-251566 | Sep 1997 | JP |
2002-117439 | Apr 2002 | JP |
2003-242287 | Aug 2003 | JP |
2004-213188 | Jul 2004 | JP |
44 244 | Sep 1988 | SE |
WO 8500909 | Feb 1985 | WO |
WO 9106927 | May 1991 | WO |
WO 9108952 | Jun 1991 | WO |
WO 9112594 | Aug 1991 | WO |
WO 9118371 | Nov 1991 | WO |
WO 9208212 | May 1992 | WO |
WO 9220043 | Nov 1992 | WO |
WO 9220044 | Nov 1992 | WO |
WO 9222044 | Dec 1992 | WO |
WO 9300660 | Jan 1993 | WO |
WO 9309621 | May 1993 | WO |
WO 9406101 | Mar 1994 | WO |
WO 9408319 | Apr 1994 | WO |
WO 9423397 | Oct 1994 | WO |
WO 9502226 | Jan 1995 | WO |
WO 9504978 | Feb 1995 | WO |
WO 9506920 | Mar 1995 | WO |
WO 9509406 | Apr 1995 | WO |
WO 9513596 | May 1995 | WO |
WO 9519017 | Jul 1995 | WO |
WO 9523387 | Aug 1995 | WO |
WO 9530215 | Nov 1995 | WO |
WO 9607163 | Mar 1996 | WO |
WO 9607990 | Mar 1996 | WO |
WO 9612253 | Apr 1996 | WO |
WO 9627525 | Sep 1996 | WO |
WO 9627859 | Sep 1996 | WO |
WO 9722919 | Jun 1997 | WO |
WO 9725692 | Jul 1997 | WO |
WO 9824041 | Jun 1998 | WO |
WO 9824067 | Jun 1998 | WO |
WO 9848383 | Oct 1998 | WO |
WO 9848384 | Oct 1998 | WO |
WO 9848385 | Oct 1998 | WO |
WO 9851082 | Nov 1998 | WO |
WO 9859323 | Dec 1998 | WO |
WO 9900776 | Jan 1999 | WO |
WO 9906937 | Feb 1999 | WO |
WO 9916027 | Apr 1999 | WO |
WO 9933030 | Jul 1999 | WO |
WO 9941695 | Aug 1999 | WO |
WO 9948057 | Sep 1999 | WO |
WO 9948058 | Sep 1999 | WO |
WO 0048911 | Aug 2000 | WO |
WO 0065546 | Nov 2000 | WO |
WO 0163565 | Aug 2001 | WO |
WO 02071343 | Sep 2002 | WO |
WO 03052700 | Jun 2003 | WO |
WO 03079300 | Sep 2003 | WO |
WO 03085610 | Oct 2003 | WO |
WO 03107280 | Dec 2003 | WO |
WO 04044853 | May 2004 | WO |
WO 04109464 | Dec 2004 | WO |
WO 05041134 | May 2005 | WO |
WO 05088563 | Sep 2005 | WO |
WO 06086531 | Aug 2006 | WO |
WO 07035420 | Mar 2007 | WO |
WO 07120825 | Oct 2007 | WO |
WO 2010032055 | Mar 2010 | WO |
Entry |
---|
Amiel Industries: AI-1500 ‘Pulsar’ High Performance Sorting and Bagging Machine, 13 pages (date unknown, but prior to Dec. 14, 2000). |
AUI: Coinverter—“No More Lines . . . Self-Serve Cash-Out,” by Cassius Elston, 1995 World Games Congress/Exposition Converter, 1 page (dated prior to 1995). |
Brandt: 95 Series Coin Sorter Counter, 2 pages (1982). |
Brandt: Model 817 Automated Coin and Currency Ordering System, 2 pages (1983). |
Brandt: Model 920/925 Counter, 2 pages (date unknown, prior to Jul. 2011, possibly prior to Mar. 17, 1997). |
Brandt: System 930 Electric Counter/Sorter, “Solving Problems, Pleasing Customer, Building Deposits,” 1 page (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997). |
Brandt: Model 940-6 High Speed Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989). |
Brandt: System 945 High-Speed Sorter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997). |
Brandt: Model 952 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989). |
Brandt: Model 954 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989). |
Brandt: Model 957 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989). |
Brandt: Model 958 Coin Sorter/Counter, 5 pages (201 1982). |
Brandt: Model 960 High-Speed Coin Sorter & Counter, 2 pages (1984). |
Brandt; Model 966 Microsort™ Coin Sorter and Counter, 4 pages, (1979). |
Brandt: Model 970 Coin Sorter and Counter, 2 pages (1983). |
Brandt: Model 1205 Coin Sorter Counter, 2 pages (1986). |
Brandt: Model 1400 Coin Sorter Counter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997). |
Brandt: Model 8904 Upfeed—“High Speed 4-Denomination Currency Dispenser,” 2 pages (1989). |
Brandt: Mach 7 High-Speed Coin Sorter/Counter, 2 pages (1992). |
Case ICC Limited: CDS Automated Receipt Giving Cash Deposit System, 3 pages (date unknown, prior to Nov. 15, 2000). |
Cash, Martin: Newspaper Article “Bank Blends New Technology With Service,” Winnipeg Free Press, 1 page (Sep. 4, 1992). |
Childers Corporation: Computerized Sorter/Counter, “To coin an old adage, time is money . . . ,”3 pages (1981). |
CTcoin: CDS602 Cash Deposit System, 1 page (date unknown, prior to Jan. 15, 2001). |
Cummins: Cash Information and Settlement Systems (Form 023-1408), 4 pages (date Dec. 1991). |
Cummins: The Universal Solution to All Coin and Currency Processing Needs (Form 13C1218 3-83), 1 page (Mar. 1983). |
Cummins: JetSort® High Speed Sorter/Counter Kits I & J—Operating Instructions (Form 022-7123-00) 12 pages (1994). |
Cummins: JetSort® Coin Sorter Counter/CA-130XL Coin Wrapper, Cummins Automated Money Systems (AMS) Case Study—Fifth-Third, “6,000 (Coin Per Minute Counter/Sorter Keeps pace With Fifth-Third Bank's Money Processing Needs,” (Form 13C1180), 2 pages (Nov. 1981). |
Cummins: JetSort®, “Venders Love JetSort,” (13C1255), 1 page (Mar. 1987). |
Cummins: JetSort® “High Speed Coin Sorter & Counter for Payphone Applications,” “CTOCS Ready” (Form 023-1365), 2 pages (Mar. 1989). |
Cummins: JetSort® mailer, “One moving part simplicity,” “Vendors—Are validators changing your coin and cuerrency needs?” (Form 023-1297), 3 pages (Apr. 1987). |
Cummins: JetSort® Series V High Speed Coin Sorter/Counter, (Form 023-1383), 2 pages (Sep. 1990). |
Cummins: JetSort® “Time for a Change, Be a smashing success!,” (Form 023-1328), 1 page (Jun. 1988). |
Cummins: JetSort® “Time for a Change—JetSort® vs. Brandt X,” (Form 023-1330), 1 page (Jun. 1988). |
Cummins: JetSort® “Time for a Change—No Coins Sorted After 3:00 or on Saturday,” (Form 023-1327), 1 page (Aug. 1988). |
Cummins: JetSort®, “What do all these Banks have in Common . . . ?”, JetSort, CA-130XL coin wrapper, CA-118 coin wrapper, CA-4000 JetCount, (13C1203), 3 pages (Aug. 1982). |
Cummins: JetSort® 700-01/CA-118 Coin Wrapper, Cummins Automated Money Systems (AMS) Case Study—University State Bank, “Cummins Money Processing System Boosts Teller Service at University State Bank,” (Form 13C1192), 2 pages (Mar. 1982). |
Cummins: JetSort® 700-01, Cummins Automated Money Systems (AMS) Case Study—First State Bank of Oregon, “JetSort® Gives Bank Coin Service Edge,” (Form 13C1196), 2 pages (Apr. 1982). |
Cummins: JetSort® 700-01 Coin Sorter/Counter, Operating Instructions, 14 pages (1982). |
Cummins: JetSort200 701, Cummins Automated Money System (AMS) Case Study—Convenco Vending, “High Speed Coint Sorter increase coin processing power at Convenco Vending,” (Form 13C1226), 2 pages (Jul. 1983). |
Cummins: JetSort Models 701 and 705, “State-of-the-art coins processing comes of age,” 2 pages (Feb. 1984). |
Cummins: JetSort® Model CA-750 Coin Processor (Item No. 50-152), 1 page (Jul. 1984). |
Cummins: JetSort® Model CA-750 Coin Sorter/Counter and CA-4050 JetCount currency counter, “Money Processing Made Easy,” (Form 13C1221) 2 pages (Jun. 1983). |
Cummins: JetSort® Model 1701 with JetStops, Operating Instructions Manual (Form 022-1329-00), 16 pages (1984). |
Cummins: JetSort® Model 1760 brochure, (Form 023-1262-00), 2 pages (Jul. 1985). |
Cummins: JetSort® Model 1770 and 3000, Communication Package specification and operating instructions, 10 pages (uncertain, possibly Nov. 1985). |
Cummins: JetSort® Model 1770, “JetSort® Speed and Accuracy, Now with Communications!”, (Form 023-1272) 1 page (Oct. 1986). |
Cummins: JetSort® 2000 Series High Speed Coin Sorter/Counter (Form 023-1488), 2 pages (Oct. 2000). |
Cummins: JetSort® 3000 Series High Speed Coin Sorter (Form 023-1468 Rev 1), 2 pages (Feb. 1995). |
Cummins: JetSort® 3000 Series Options, “Talking JetSort 3000” (Form 023-1338-00), 1 page (between Jan. 1989-Feb. 1989). |
Cummins: JetSort® 3000, “3000 Coins per Minute!,” (Form 023-1312), 1 page (date unknown, est. 1987). |
Cummins: JetSort® 3200, Enhanced electronics for the JetSort® 3200 (Form 023-1350), 1 page (Apr. 1987). |
De La Rue: CDS 500 Cash Deponier System, 6 pages (date unknown, p. 5 has date May 1994, p. 6 has date Dec. 1992) (German). |
De La Rue: CDS 5700 and CDS 5800 Cash Deponier System (German) and translation, 7 pages (date unknown, prior to Aug. 13, 1996). |
Diebold: Merchant MicroBranch, “Merchant MicroBranch Combines ATM After-Hour Depository Rolled-Coin Dispenser,” Bank Technology News, 1 page (Nov. 1997). |
Fa. GBS-Geldbearbeitungssysteme: GBS9401SB Technical Specification, 24 pages (date unknown, prior to Nov. 10, 2010). |
Frisco Bay: Commercial Kiosk, “Provide self-service solutions for your business customers,” 4 pages (date unknown, prior to Mar. 2, 2011, p. 4 has date 1996). |
Glory: AMT Automated Merchant Teller, 4 pages (date unknown, prior to Jan. 15, 2001). |
Glory: CRS-8000 Cash Redemption System, 2 pages (1996). |
Hamilton: Hamilton's Express Banking Center, In Less Space Than A Branch Manager's Desk, 4 pages (date unknown, prior to Jan. 15, 2001). |
Intellectual Australia Pty. Ltd.: Microbank, “From down under: Microbank,” “hand-held smart card terminal that combines smart card functions and telephone banking,” 2 pages (Feb. 1996). |
ISH Electronic: ISH 12005/500 Coin Counter (with translation), 4 pages (date unknown, prior to Aug. 1996). |
ISH Electronic: ISH 12005/501 Self-Service Unit (with translation), 4 pages (date unknown, prior to Aug. 1996). |
Namsys, Inc.: Namsys Express, Making currency management . . . more profitable, 2 pages (date unknown, prior to Jan. 15, 2001). |
NGZ Geldzahlmaschinengesellschaft: NGZ 2100 Automated Coin Depository, 4 pages (date unknown, prior to Sep. 1996). |
Perconta: Contomat Coin Settlement Machine for Customer Self Service, 2 pages (date unknown, prior to Apr. 2003). |
Prema GmbH: Prema 405 (RE) Self Service Coin Deposit Facility, 2 pages (date unknown, prior to Apr. 2003). |
Reis Eurosystems: CRS 6501/CRS 6510 Cash Receipt Systems for Self-Service Area, 3 pages (date unknown, prior to Aug. 13, 1996, maybe Feb. 1995). |
Reis Eurosystems: CRS 6520/ CRS 6525 Standard-Class Coin Deposit Systems, 1 page (date unknown, prior to Apr. 2003). |
Reis Eurosystems: CS 3510 Disc-Sorter, 1 page (date unknown, prior to Apr. 2003). |
Royal Bank: Hemeon, Jade, “Royal's Burlington drive-in bank provides customers 24-hour tellers,” The Toronto Star, 1 page (Aug. 21, 1991). |
Royal Bank: Leitch, Carolyn, “High-Tech Bank Counts Coins,” The Globe and Mail, 2 pages (Sep. 19, 1991). |
Royal Bank: Oxby, Murray, “Royal Bank Opens ‘Super Branch,’” The Gazette Montreal, 2 pages (Sep. 14, 1991). |
Royal Bank: SuperBranch, “Experience the Ultimate in Convenience Banking,” 2 pages (Feb. 1992). |
Scan Coin: International Report, 49 pages (Apr. 1987). |
Scan Coin: Money Processing Systems, 8 pages (date unknown, prior to Apr. 2003). |
Scan Coin: World, 2 pages (Feb. 1988). |
Scan Coin: CDS Cash Deposit System, 6 pages (date unknown, prior to Apr. 2003) [SC 0369]. |
Scan Coin: CDS Coin Deposit System—Technical Referens Manual, 47 pages (1989). |
Scan Coin: CDS 600 User's Manual, 14 pages (date unknown, prior to Apr. 2003). |
Scan Coin: CDS 600 & CDS 640 Cash Deposit System—Technical Manual, 45 pages (date unknown, prior to Apr. 2003). |
Scan Coin: CDS MK 1 Coin Deposit System—Technical Manual, 32 pages (1991). |
Scan Coin: SC 102 Value Counter Technical Manual, 28 pages (date unknown, prior to Apr. 2003). |
Pay by Touch: Secure ID News, “Piggly Wiggly Extends Biometric Payments Throughout the Southeast U.S.,” 2 pages, (Dec. 14, 2005). |
ESD, Inc: Smartrac Card System, “Coinless laundry makes quarters obsolete; Smartrac Card System really makes a change in laundry industry,” Business Wire, 2 pages (Feb. 23, 1996). |
Meece, Mickey: Article “Development Bank of Singapore Gets Cobranding Edge with Smart Cards,” American Banker, New York, NY, vol. 159, Iss. 195, p. 37, 2 pages (Oct. 10, 1994). |
Scan Coin: Coin Sachet System brochure, 4 pagesd (last page marked “© Scan Coin / Jun. 2007”). |
U.S. Appl. No. 13/836,117, filed Mar. 15, 2013, Blake et al., System, Method and Apparatus for Automatically Filling a Coin Cassette. |
U.S. Appl. No. 14/936,829, filed Nov. 10, 2015, John R. Blake et al., Systems, Methods and Devices for Processing Coins Utilizing a Multi-Material Coin Sorting Disk. |
U.S. Appl. No. 15/461,046, filed Mar. 16, 2017, Jagielinski, Systems, Methods and Devices for Processing Batches of Coins Utilizing Coin Imaging Sensor Assemblies. |
U.S. Appl. No. 15/492,561, filed Apr. 20, 2017, Blake et al., Systems, Methods and Devices for Managing Rejected Coins During Coin Processing. |
U.S. Appl. No. 15/782,343, filed Oct. 12, 2017, Rasmussen, Coin Sorting Head and Coin Processing System Using the Same. |
U.S. Appl. No. 15/827,573, filed Nov. 30, 2017, Blake et al., System, Method and Apparatus for Repurposing Currency. |
U.S. Appl. No. 15/835,989, filed Dec. 8, 2017, Jagielinski et al., Systems, Methods and Devices for Processing Coins with Linear Array of Coin Imaging Sensors. |
U.S. Appl. No. 15/842,314, filed Dec. 14, 2017, Adams et al., Systems, Methods and Devices for Coin Processing and Coin Recycling. |
U.S. Appl. No. 16/028,068, filed Jul. 5, 2018, Adams et al., Systems, Methods and Devices for Coin Processing and Coin Recycling. |
Number | Date | Country | |
---|---|---|---|
62202571 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15842314 | Dec 2017 | US |
Child | 16028068 | US | |
Parent | 15230123 | Aug 2016 | US |
Child | 15842314 | US |