Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves

Information

  • Patent Grant
  • 11957577
  • Patent Number
    11,957,577
  • Date Filed
    Tuesday, March 31, 2020
    4 years ago
  • Date Issued
    Tuesday, April 16, 2024
    8 months ago
Abstract
Embodiments of delivery systems, devices and methods for delivering a prosthetic heart valve device to a heart chamber for expanded implementation are disclosed. More specifically, methods, systems and devices are disclosed for delivering a self-expanding prosthetic mitral valve device to the left atrium, with no engagement of the left ventricle, the native mitral valve leaflets or the annular tissue downstream of the upper annular surface during delivery, and in some embodiments with no engagement of the ventricle, mitral valve leaflets and/or annular tissue located downstream of the upper annular surface by the delivered, positioned and expanded prosthetic mitral valve device.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable


INCORPORATION BY REFERENCE

All references, including but not limited to publications, patent applications and patents mentioned in this specification are hereby incorporated by reference to the same extent and with the same effect as if each reference was specifically and individually indicated to be incorporated by reference.


FIELD OF THE INVENTION

The inventions described herein relate to delivery systems, devices and methods for delivering and/or positioning a cardiac valve.


BACKGROUND OF THE INVENTION

The human heart comprises four chambers and four heart valves that assist in the forward (antegrade) flow of blood through the heart. The chambers include the left atrium, left ventricle, right atrium and left ventricle. The four heart valves include the mitral valve, the tricuspid valve, the aortic valve and the pulmonary valve.


The mitral valve is located between the left atrium and left ventricle and helps control the flow of blood from the left atrium to the left ventricle by acting as a one-way valve to prevent backflow into the left atrium. Similarly, the tricuspid valve is located between the right atrium and the right ventricle, while the aortic valve and the pulmonary valve are semilunar valves located in arteries flowing blood away from the heart. The valves are all one-way valves, with leaflets that open to allow forward (antegrade) blood flow. The normally functioning valve leaflets close under the pressure exerted by reverse blood to prevent backflow (retrograde) of the blood into the chamber it just flowed out of.


Native heart valves may be, or become, dysfunctional for a variety of reasons and/or conditions including but not limited to disease, trauma, congenital malformations, and aging. These types of conditions may cause the valve structure to either fail to properly open (stenotic failure) and/or fail to close properly (regurgitant).


Mitral valve regurgitation is a specific problem resulting from a dysfunctional mitral valve. Mitral regurgitation results from the mitral valve allowing at least some retrograde blood flow back into the left atrium from the right atrium. This backflow of blood places a burden on the left ventricle with a volume load that may lead to a series of left ventricular compensatory adaptations and adjustments, including remodeling of the ventricular chamber size and shape, that vary considerably during the prolonged clinical course of mitral regurgitation.


Native heart valves generally, e.g., mitral valves, therefore, may require functional repair and/or assistance, including a partial or complete replacement. Such intervention may take several forms including open heart surgery and open heart implantation of a replacement heart valve. See e.g., U.S. Pat. No. 4,106,129 (Carpentier), for a procedure that is highly invasive, fraught with patient risks, and requiring not only an extended hospitalization but also a highly painful recovery period.


Less invasive methods and devices for replacing a dysfunctional heart valve are also known and involve percutaneous access and catheter-facilitated delivery of the replacement valve. Most of these solutions involve a replacement heart valve attached to a structural support such as a stent, commonly known in the art, or other form of wire network designed to expand upon release from a delivery catheter. See, e.g., U.S. Pat. No. 3,657,744 (Ersek); U.S. Pat. No. 5,411,552 (Andersen). The self-expansion variants of the supporting stent assist in positioning the valve, and holding the expanded device in position, within the subject heart chamber or vessel. This self-expanded form also presents problems when, as is often the case, the device is not properly positioned in the first positioning attempt and, therefore, must be recaptured and positionally adjusted. This recapturing process in the case of a fully, or even partially, expanded device requires re-collapsing the device to a point that allows the operator to retract the collapsed device back into a delivery sheath or catheter, adjust the inbound position for the device and then re-expand to the proper position by redeploying the positionally adjusted device distally out of the delivery sheath or catheter. Collapsing the already expanded device is difficult because the expanded stent or wire network is generally designed to achieve the expanded state which also resists contractive or collapsing forces.


Besides the open heart surgical approach discussed above, gaining access to the valve of interest is achieved percutaneously via one of at least the following known access routes: transapical; transfemoral; transatrial; and transseptal delivery techniques.


Generally, the art is focused on systems and methods that, using one of the above-described known access routes, allow a partial delivery of the collapsed valve device, wherein one end of the device is released from a delivery sheath or catheter and expanded for an initial positioning followed by full release and expansion when proper positioning is achieved. See, e.g., U.S. Pat. No. 8,852,271 (Murray, III); U.S. Pat. No. 8,747,459 (Nguyen); U.S. Pat. No. 8,814,931 (Wang); U.S. Pat. No. 9,402,720 (Richter); U.S. Pat. No. 8,986,372 (Murray, III); and U.S. Pat. No. 9,277,991 (Salahieh); and U.S. Pat. Pub. Nos. 2015/0272731 (Racchini); and 2016/0235531 (Ciobanu).


However, known delivery systems, devices and methods still suffer from significant flaws in delivery methodology including, inter alia, positioning and recapture capability and efficiency.


In addition, known “replacement” heart valves are intended for full replacement of the native heart valve. Therefore, these replacement heart valves physically engage the annular throat and/or valve leaflets, thereby eliminating all remaining functionality of the native valve and making the patient completely reliant on the replacement valve. Generally speaking, it is a preferred solution that maintains and/or retains the native function of a heart valve, thus supplementation of the valve is preferred rather than full replacement. Obviously, there will be cases when native valve has either lost virtually complete functionality before the interventional implantation procedure, or the native valve continues to lose functionality after the implantation procedure. The preferred solution is delivery and implantation of a valve device that will function both as a supplementary functional valve as well as be fully capable of replacing the native function of a valve that has lost most or all of its functionality. However, the inventive solutions described infra will apply generally to all types and forms of heart valve devices, unless otherwise specified.


Finally, known solutions for, e.g., the mitral valve replacement systems, devices and methods require 2-chamber solutions, i.e., there is involvement and engagement of the implanted replacement valve device in the left atrium and the left ventricle. Generally, these solutions include a radially expanding stent in the left atrium, with anchoring or tethering (disposed downward through the annular through) connected from the stent device down through the annular throat, with the sub-annular surface within the left ventricle, the left ventricular chordae tendineae and even into the left ventricle wall surface(s).


Such 2-chamber solutions are unnecessary bulky and therefore more difficult to deliver and to position/recapture/reposition from a strictly structural perspective. Further, the 2-chamber solutions present difficulties in terms of making the ventricular anchoring and/or tethering connections required to hold position. Moreover, these solutions interfere with the native valve functionality as described above because the device portions that are disposed within the left ventricle must be routed through the annulus, annular throat and native mitral valve, thereby disrupting any remaining coaptation capability of the native leaflets. In addition, the 2-chamber solutions generally require an invasive anchoring of some of the native tissue, resulting in unnecessary trauma and potential complication.


It will be further recognized that the 2-chamber mitral valve solutions require sub-annular and/or ventricular engagement with anchors, tethers and the like precisely because the atrial portion of the device fails to adequately anchor itself to the atrial chamber and/or upper portion of the annulus. Again, the inventive solutions described herein are readily applicable to single or 2-chamber solutions, unless otherwise indicated.


Various embodiments of the several inventions disclosed herein address these, inter alia, issues.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 illustrates a side cutaway view of one embodiment of the present invention.



FIG. 2A illustrates a side view of one embodiment of the present invention.



FIG. 2B illustrates a side cutaway view of one embodiment of the present invention.



FIG. 3A illustrates a side cutaway view of one embodiment of the present invention.



FIG. 3B illustrates a side cutaway view of one embodiment of the present invention.



FIG. 4 illustrates a side cutaway view of one embodiment of the present invention.



FIG. 5A illustrates a side cutaway view of one embodiment of the present invention.



FIG. 5B illustrates a side cutaway view of one embodiment of the present invention.



FIG. 6A illustrates a side cutaway view of one embodiment of the present invention.



FIG. 6B illustrates a side cutaway view of one embodiment of the present invention.



FIG. 6C illustrates a side cutaway view of one embodiment of the present invention.



FIG. 7A illustrates a side cutaway view of one embodiment of the present invention.



FIG. 7B illustrates a side cutaway view of one embodiment of the present invention.



FIG. 8A illustrates a top view of one embodiment of the present invention.



FIG. 8B illustrates a side and partially exploded view of one embodiment of the present invention.



FIG. 9A illustrates a side cutaway view of one embodiment of the present invention.



FIG. 9B illustrates a side cutaway view of one embodiment of the present invention.



FIG. 9C illustrates a side cutaway view of one embodiment of the present invention.



FIG. 9D illustrates a side cutaway view of one embodiment of the present invention.



FIG. 10A illustrates a side cutaway view of one embodiment of the present invention.



FIG. 10B illustrates a side cutaway view of one embodiment of the present invention.



FIG. 10C illustrates a side cutaway view of one embodiment of the present invention.



FIG. 11 illustrates a side cutaway view of one embodiment of the present invention.



FIG. 12 illustrates a side view of one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Various embodiments of the present invention are disclosed in the Figures for providing percutaneous access to the valve of interest via one of at least the following known access routes: transapical; transfemoral; transatrial; and transseptal delivery techniques. Each of these access routes may be used for the embodiments disclosed herein.


Thus, FIG. 1 illustrates one embodiment of a prosthetic valve device 100 with a 2-part frame in collapsed configuration. The distal portion 102 of the collapsed device comprises the valve with prosthetic leaflets with a portion of the supporting frame, and is longitudinally translatably and rotatably confined within the lumen of an outer sheath 104 having a first outer diameter D. The proximal portion 106 of the collapsed device 100 comprises the remaining supporting frame which is in operative connection with the distal portion 102 of collapsed device 100 and in longitudinally translatably and rotatably confined within the lumen of an inner sheath 108 that is at least longitudinally translatable relative to the outer sheath 104 and wherein the outer sheath 104 is at least longitudinally translatable relative to the inner sheath 108. The inner and/or outer sheath 108, 104 may also be rotationally translatable relative to the other sheath. The inner sheath 108 is disposed within the lumen of the outer sheath 104 and, therefore, the inner sheath 108 comprises a second outer diameter D′ that is smaller than the outer sheath's outer diameter D.


The preferred configuration of the device of FIG. 1 comprises the collapsed device 100 consisting of one unit with a proximal and distal portion 106,102 as shown. The outer sheath 104 may be retracted to release expose firstly the distal portion 102 from the distal end 110 of the outer sheath 104 for initial expansion and positioning in the subject chamber of the heart. Alternatively, the distal portion 102 of the device 100 may be pushed distally to be released from the distal end 110 of the outer sheath 104 in response to distal translation of the inner sheath 108, e.g., or to a push rod pushing against the proximal portion 106 of the device 100. In the case of a push rod, the proximal portion 106 will eventually be pushed distally out of the smaller lumen of the inner sheath 106 and into the larger lumen of the outer sheath 104 where an interim secondary expansion of the proximal portion 106 occurs, followed by the secondary positioning expansion when the proximal portion 106 is eventually released from the distal end 110 of the outer sheath 104.


If expanded within the left atrium in connection with a prosthetic mitral valve, the lower portion of the distal portion 102 may be positioned against the upper surface of the annulus within the left atrium.


In this configuration, if the distal portion 102 is properly positioned and released/expanded, then the secondary release and expansion of the proximal portion 106 of the device 100 may be initiated and achieved according to the alternative methods described above in connection with the initial release and expansion of the distal portion 102. The skilled artisan will recognize that once the initial positioning expansion of the distal portion 102 is accomplished, then the secondary positioning expansion of the proximal portion 106 will also be properly located and positioned.


The configuration of FIG. 1, in its various embodiments, enables delivery of a device 100 comprising a frame that may be slightly oversized for the chamber, e.g., atrial, dimensions through the two-step frame positioning expansion method. Some frames in collapsed form may be as much as 2x in longitudinal length than any chamber, e.g., atrial, dimension. Thus, the staged positioning expansion method is necessary for delivery.


Turning now to FIGS. 2A and 2B a prosthetic valve device 200 comprising a supporting stent frame, with prosthetic valve attached and/or supported therein, is provided wherein the design comprises two portions (distal 202 and proximal 206, wherein the prosthetic valve with leaflets 205 is held/supported within the distal portion 202) with expanded diameters that are connected by a central portion 203 that has a smaller diameter than the expanded diameters of the two portions 202, 206. As illustrated, the two portions 202, 206 comprise an undeformed and fully expanded spherical shape, though other shapes may be used as the skilled artisan will readily understand. Certain embodiments may comprise at least one of the proximal and distal portions 206, 202 having an expanded sizing that is slightly larger than the subject chamber's dimensions, e.g., the left atrial dimensions to allow expansion anchoring. Moreover, the aspect ratio of each of the two portions 206, 202 may vary.


As shown, the collapsed stent with valve is held within the lumen of a delivery sheath 204, with a distal portion that holds or supports the device 200 therein being released from the end 210 of the delivery sheath 204 with subsequent positioning expansion of same within the subject chamber, e.g., the left atrium. When proper positioning is confirmed, the remaining central portion 203 (if not previously released along with the distal portion 202) and/or the proximal portion 206 may then be released and positionally expanded by methods described in connection with FIG. 1, including use of an inner sheath as described above and/or a push rod to translate the device 200 out of the distal end 210 of the outer delivery sheath 204. As with FIG. 1, this embodiment comprises a two-step or staged delivery mechanism. Both FIG. 1 and FIG. 2A/2B sets of embodiments may comprise a coating or covering on the distal portion 202 while the proximal portion 206 may comprise an open frame formed from, e.g., stent cells. In the case of FIG. 2A/2B, the central portion 202 may also comprise and open cell construction and uncovered. The dashed lines of FIG. 2B show an alternate embodiment wherein the expanded delivered portion 202 comprises a hinge point 212 to assist in orienting the prosthetic valve and leaflets within distal portion 202 downward toward the native valve.



FIGS. 3A, 3B, 3C, 5A and 5B provide further disclosure of exemplary prosthetic valve devices with support means, e.g., stented and associated exemplary delivery methods. Thus FIG. 3A shows the collapsed device 300 in the lumen of a delivery sheath 304 in operative communication with a push/pull rod 308 actuated by the device operator that is capable of distally translating the collapsed device 300 as in FIG. 3A out of the distal end 310 of the delivery sheath 304 for positioning expansion and, conversely, pulling the expanded device 300 as shown in FIG. 3B back into the distal end 310 of the delivery sheath 304 if necessary. The push/pull rod 308 may also allow in certain embodiments the rotation of the collapsed device 300 within the lumen of the delivery sheath 310 to aid in positioning prior to release and expansion. Further, the operative communication of the push/pull rod 308 with the collapsed device 300 may comprise a screw or clip release mechanism 311 connected with the most proximal portion of the collapsed device 300. The base or lower portion of the device 300 may be covered with tissue or other biocompatible material while the upper portion of the device may comprise an open cell construction.


Generally, the collapsed device 300 is loaded and positioned within the delivery sheath 304 with the valve portion 305 oriented in a downward position as shown. This allows the collapsed valve device 305 to be pushed out of the delivery sheath 304 in a sideways orientation as illustrated and enables the expanding valve device 300 upon release from the delivery sheath to be properly oriented to the native valve and subject chamber, e.g., mitral valve and left atrium.


In certain cases, an alignment wire 315 may be translated from the delivery sheath 304 into a pulmonary vein, e.g., the left upper pulmonary vein PV to assist in positioning and delivery of the device 300.



FIG. 4 illustrates a sideways delivery of device 300 during expansion and just after delivery from the outer end 310 of the delivery sheath 304, wherein the delivered device is oriented substantially vertically and aligned for positioning over the native valve.


Thus, as shown best in FIGS. 5A and 5B, the prosthetic valve device 500 may be delivered sideways (with the valve portion 505 oriented on the bottom as shown), asymmetrically and may comprise a locating element 515 in operative connection with the prosthetic valve device 500 and that extends from the delivery sheath 503 with at least a distal end of the locating element 515 or push tube disposed within a pulmonary vein PV, e.g., the left upper pulmonary vein as shown. This system provides a self-centering system that may expand upon releasing/translating the collapsed prosthetic valve device 500 from the distal end 510 of the delivery sheath 504. As shown a push tube 508 and associated connector 511 may be used to assist in manipulating the orientation of the prosthetic valve device 500 once it is delivered from the distal end 510 of the delivery sheath 504.


Turning now to FIGS. 6A-6C, a the prosthetic valve device 600 is delivered using a delivery catheter or sheath 604 comprises either a pre-curved distal portion 620 or a distal portion adapted to be able to be curved 620 to present a substantially straight distal section within the atrium. FIG. 6A provides a pre-curved embodiment, curved to enable loading of a prosthetic valve device 600 in a configuration that places the valved bottom portion 605 in the proper location on release from the distal end 610 of the pre-curved distal portion 620 of the delivery catheter or sheath, more specifically from the straightened distal section distal to the pre-curved distal portion 620. Thus, as shown, the valve supported portion 605 of the collapsed and expandable frame/stent is distal-most within the lumen of the delivery catheter/sheath 604. The pre-curved portion 620 enables easy orienting of the valved portion 605 with an exemplary mitral valve and/or upper surface of the annulus thereof.


Thus, the delivery system with a curved distal portion as in FIG. 6A enables the prosthetic valve device 600 to be positioned over the annulus and native valve leaflets. When positioned over the annulus and native valve leaflets, the curved delivery catheter or sheath 604 may be withdrawn proximally, alone or in combination with a push rod 608 or similar device on the proximal side of the prosthetic valve device 600, to release and deliver the prosthetic valve device 600 into the left atrium and expand the delivered device 600. It is noteworthy that the curved delivery catheter or sheath 604 comprises in some embodiments a straight distal end within the left atrium and located distal to the curved section 620 wherein the compressed prosthetic valve device 600 is translated and manipulated around the curved portion 620 of the curved delivery catheter or sheath 604. The compressed prosthetic valve device 600 may be assisted in translating around the curved portion 620 of the curved delivery catheter or sheath by including a suture attachment to the distal end of the implant, a pull wire attached to the distal end of the implant extending to the proximal end of the delivery catheter or sheath, or by taking advantage of the natural flexion point in the arrangement of FIG. 1 between the proximal and the distal portions of the prosthetic valve device and/or by a hinging point as in FIG. 2.



FIGS. 6B and 6C comprise an alternative approach to creating the curved portion 620 by enabling curving of the distal portion of the delivery sheath or catheter 604 by providing a series of cuts or serrations 609 along a bottom portion surface of the sheath or catheter, resulting in a weak region susceptible to bending. As shown a pull wire 625 is attached to the distal end 610 of the catheter 604 along this bottom weak cut or serrated region and is disposed through the catheter/sheath lumen to an operator who may pull the wire with force F proximally to achieve the desired curvature prior to release of the collapsed prosthetic valve structure 600 which is oriented in collapsed form as in FIG. 6A and released for positioning expansion virtually directly on the subject valve or upper annular surface. The cuts 609 may extend through the catheter/sheath wall completely or may only be sections that have a catheter/sheath wall that is thinner than the rest of the catheter/sheath walls. The cuts 609 shown are uniform and generally square, though any depth, shape and uniform or non-uniform spacing of same may be used to achieve the weakened region.



FIGS. 7A and 7B illustrate delivery systems for an exemplary prosthetic valve, e.g., mitral valve replacement or supplement, to a heart chamber, e.g., the left atrium using a delivery catheter or sheath 704 as shown in FIG. 7A with transseptal access and in combination with an additional guidance tool 728 used to help guide the expanding valved device (not shown) as it is released from the distal end 710 of the catheter or sheath 704 using methods or devices described herein. The additional guidance tool 728 may be disposed within the upper pulmonary vein PV, for example. The guidance tool 728 may be hingedly or rotatingly attached to the catheter or sheath 704 enabling the tool 728 to rotate into position. A pull wire similar to that shown in FIGS. 6B and 6C may be used to connect to and manipulate the tool 728 into position.



FIG. 7B illustrates two delivery systems, a first delivery system 800 for alignment and deployment and a second delivery system 850 for recapture and repositioning if needed. One of the delivery systems, either the first 800 or the second 850, may access the subject heart chamber via a transfemoral access method while the other delivery system may access the subject heart chamber via another transvenous access method. The first delivery system 800 may thus comprise a delivery catheter or sheath 804 as described elsewhere herein while the second delivery system may comprise a recapture and repositioning catheter or sheath 854, similar in structure to the delivery catheter/sheath 804.



FIGS. 8A and 8B illustrate embodiments designed to facilitate accurate positioning of a prosthetic heart valve within a chamber, e.g., the left atrium, including but not limited to self-centering and fluoroscopy techniques. In this embodiment of a prosthetic stented valve device 900, with the prosthetic valve and leaflets 905 supported proximate the bottom portion of the valve device, the upper portion 909 of the device 900 may be divided into subsections as shown from the top in FIG. 8A. The illustrated case provides 4 subsections, though other numbers of subsections may certainly be useful and are within the scope of the present invention. As shown, opposing subsections are either open cell or open wire construction 907 or are comprised of a fabric in the form of a type of sail 908. Upon delivery of this device 900 to a subject heart chamber, the fabric sails 908 will catch and use the natural force of blood flow to maneuver the device frame 900 into proper positioning with subsequent release and expansion when positioning is confirmed.



FIG. 8B is a related concept, but also includes an annulus spacer 919 that may be delivered first via a delivery catheter/sheath as described previously herein and in certain embodiments, the spacer may be directed into position with a guidewire positioned within the lumen of the delivery catheter/sheath and further moved out of the distal end of the delivery catheter/sheath and either proximate to (on the proximal side) of the chamber upper annular surface or may be disposed at least partway within the annular throat. Once released from the lumen and distal end of the delivery catheter/sheath, the annular spacer 919 may expand from a delivered collapsed form and positioned on the upper annular surface which may space the prosthetic valve and leaflets 905 from the upper annular surface. Subsequently, the prosthetic valve device, as described herein and which may, or may not, comprise sails 908 as in FIG. 7A, is delivered from the delivery catheter/sheath and positionally expanded to connect with the previously positioned spacer 919.


We next describe positional orienting delivery structures in FIGS. 9A-9D. Generally, each of these prosthetic valved devices are designed for use in the left atrium and make use of the left atrial appendage (LAA) as an orienting mechanism. FIG. 9A therefore comprises an LAA plug 1006 disposed on a side surface of the collapsed device 100 within the delivery sheath 1004 lumen and, in FIG. 9B, the LAA plug 1006 is positioned at least partially within the LAA. Once the LAA is engaged by the LAA plug 1006, the operator has confirmation that the valved prosthetic device 1000 is in correct position. This device may be used in combination with any of the previously described devices and methods, including but not limited to the staged 2-step delivery devices and methods, whereby an initial positioning expansion would result in orienting the LAA plug into the LAA, then the secondary positioning expansion of the rest of the device initiated by release from the distal end of a delivery sheath.


An additional benefit of certain embodiments of FIGS. 9A and 9B may be to employ the LAA plug 1006 as a device to prevent clotting within the LAA, wherein the LAA plug 1006 fills the LAA entirely and/or an outer flange 1008 covers the LAA opening entirely to prevent any blood clots from forming and/or moving out of the heart to potentially cause a stroke.



FIG. 9D shows a slightly different mechanism whereby a guidewire 1020 is disposed through a delivery sheath 1004 and into the LAA to provide orienting guidance for the positioning expansion (1 step or staged) of the collapsed prosthetic valved device (not shown) within the lumen of delivery sheath 1004. The sheath 1004 may be pulled back to deploy/release the valved device (not shown) from the distal end of the sheath 1004 for positioning expansion or a push rod may be used to push the valved device out of the sheath's distal end as previously described. In these cases, the guidewire 1020 positioned within the LAA provides a key orienting guidance parameter so that the operator knows positioning will be proper on expansion. The guidewire 1020 may comprise an atraumatic tip to prevent damaging the tissue of the LAA.



FIG. 9C illustrates another alignment/orienting system wherein the delivery catheter/sheath 1004 is introduced via a pulmonary vein PV, e.g., the upper pulmonary vein, into the left atrium and a guidewire 1020 disposed through the lumen of the delivery catheter/sheath 1004 and into, or proximate, the annulus, i.e., the annular throat, as a guide for the to-be-delivered valved device (not shown but compressed and self-expanding as previously described). When the sheath 1004 is pulled back, or a push rod is used to push the collapsed valved device out of the distal end of the delivery catheter or sheath 1004, the expanding valved device may slide down over the pre-positioned guidewire 1020 to a proper position when fully expanded.



FIG. 10A illustrates a partially expanded stented valved device 1100 released from the delivery catheter sheath. At least one capture wire 1030 (shown radially wrapped around the device 1100, but may take other wrapping positions) is shown and which restrains the expandable device 1100 from fully expanding until properly positioned within the subject heart chamber, e.g., the left atrium. When proper position is confirmed, the capture wire 1030 may be removed by cutting and withdrawal distally through the delivery sheath 1004 lumen or by disconnecting a connector pin or latch 1032 or equivalent to enable full expansion of the device 1100 at the proper positional location. FIG. 10B is similar with an alignment wire 1130 that assists in positional orientation as it feeds out of the distal end of the delivery catheter/sheath 1104 while in connection with the partially expanding sheath at 2 or 3 or more stabilization points 1034 until proper position is confirmed. The stabilization point 1134 connections may hold the partially expanded device in that state until proper position is confirmed, then the connections may be removed, either by cutting (as in the case of a releasable suture) or by disconnecting a connector pin or latch, to enable the full expansion at the proper positional location or by provision of a secondary over the wire cutter introduced via the delivery catheter/sheath 1104 to clip alignment wire 1130.



FIG. 10C provides an alternative prosthetic heart valve device shown in a positionally expanded position after release from the distal end of the delivery catheter/sheath 1104 and comprising at least one attachment point 1032 located within the stented heart valve device as well as two or more pull/push wires 1130 with a first end connected to the at least one attachment point 1032 and a second end attached to points 1033 around the stent frame. This arrangement may function in several different ways to facilitate recapture, repositioning and/or redeployment.


First, one embodiment may comprise the two or more pull/push wires 1130 of a length that is slightly smaller than the chamber, e.g., left atriam, dimensions to ensure proper positioning. Once position is confirmed as proper, the pull/push wires 1130 may be released by, e.g., a secondary over the wire cutter or other means to disengage the pull/push wire connection between the at least one attachment point 1032 and the two or more pull/push wires 1130, thereby enabling the full expansion of the properly positioned frame within the chamber. As with other embodiments described herein, the fully expanded frame may be slightly larger than at least one dimension to facilitate anchoring.


Another embodiment may further comprise a push rod disposed translationally within the delivery catheter/sheath 1104 lumen and that also provides a distally extending releasable connector attached to the at least one attachment point 1032 within the stented heart valve frame for disengaging the attachment between the at least one attachment point 1032 and the two or more push/pull wires 1130 once proper positioning is confirmed. This embodiment provides the further benefit of using a distally extending releasable connector tool to pull proximally on the at least one attachment point wherein the attachment point and the push/pull wires are connected to points on the stent frame that, when proximal force is applied to the attachment point, cause the stent frame to collapse slightly or fully, to enable repositioning. Once repositioned, distal force is applied to the releasable connector tool to fully expand the prosthetic valve frame.


Yet another embodiment may comprise the attachment point 1132, push/pull wires 1130, and/or the connection of the push/pull wires to the stent frame to be formed of a material that dissolves over a short time period.



FIG. 11 illustrates a prosthetic valve device 1200 comprising a ball and socket relationship between the support frame (socket or partial socket), with the prosthetic valve and leaflets 1253 disposed therein (ball or partial ball). In this embodiment, the outer frame 1250 is, as illustrated, a partial sphere having a radiusing and a central point 1252, with the central point 1252 disposed generally around the native valve and annulus. The outer frame 1250 may comprise a radially extending flange 1254 to connect and seal with the upper annular surface and may further comprise wall elements 1256 extending upward from at least portions of the radially extending flange 1252 to connect with and seal against the chamber, e.g., left atrial, walls. The radially extending flange 1252 may comprise an expandable stent-like construction to provide radial expansive force to assist in anchoring the device 1200. Alternative constructions may comprise any of the prosthetic stented valve frames described herein, e.g. and without limitation, an upper open expandable frame with a lower expandable frame covered with tissue.


The prosthetic valve further comprises an inner partial sphere 1253 with a radiusing that matches, or is complementary with, the radiusing of the outer frame's partial sphere 1250, but with a smaller radius that the outer frame 1250 as the inner partial sphere 1253 resides within the outer frame's partial sphere 1250. The prosthetic leaflets are supported within the inner partial sphere 1253. The inner partial sphere 1253 may comprise a friction fit with the outer frame's partial sphere 1250 so that some movement is possible in all dimensions, including rotational, without losing the proper valve position relative to the native valve and/or annulus. Alternatives may allow a looser friction fit so that the inner partial sphere essentially floats within the outer frame's partial sphere, thereby allowing a fuller range of motion than a tighter friction fit.



FIG. 12 illustrates an implant frame with prosthetic valve device 1300 attached thereto connected via a connector element 1302 to a lasso structure 1304 that is, in turn, operatively connected with a manipulation wire 1306, that may comprise a single wire or two wires, that extends proximally to the operator who is then able to manipulate the lasso 1304 and connector element 1302. The lasso structure 1304 may comprise two distal wires, W1, W2, or more than two distal wires, in operative connection with the connector element 1302. If the manipulation wire 1306 comprises two wires W1, W2, then a first of the two wires may be connected with wire 1 and the second of the two wires may be connected with wire 1. Wires W1, W2 may be disconnected from the connector element 1302 by the operator's pulling of one, or both, of the manipulation wire(s) W1, W2. The lasso structure 1304 may, as shown, be expandable to a diameter that is larger than the inner diameter of the catheter's 1305 lumen and is disposed through the implant frame structure with the connector element 1302 in operative connection with the lasso 1304 and the device frame 1300 generally in the middle of the implant structure. This configuration allows the operator to steer the device 1300 with the lasso structure 1304 during deployment and also allows retrieval back into the catheter's 1305 lumen if necessary. The connector element 1302 may be configured together with the device's 1300 frame structure to enable collapsing of the device's 1300 frame structure to allow pullback of the device's 1300 structure into the catheter's 1305 lumen. The connector element 1302 may also be disconnected by the operator from the device's 1300 frame, whereby one, or both, of the wires W1, W2 are disconnected and the lasso structure 1304 retracted proximally through the catheter 1305. In other embodiments, the connector element 1302 may remain attached to the device's 1300 frame structure when the operator disconnects wires W1, W2 from the connector element 1302 and pulls the lasso structure 1304 proximally through the catheter sheath 1305.


The description of the various inventions, embodiments thereof and applications as set forth herein is illustrative and is not intended to limit the scope of the invention. Features of various embodiments may be combined with other embodiments within the contemplation of these inventions. Variations and modifications of the embodiments disclosed herein are possible, and practical alternatives to and equivalents of the various elements of the embodiments would be understood to those of ordinary skill in the art upon study of this patent document. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the inventions.

Claims
  • 1. A method of delivering a self-expanding prosthetic mitral valve device comprising prosthetic mitral valve leaflets to an implantation site within a left atrium of a patient's heart, comprising: accessing the left atrium with a delivery catheter having a proximal end, a distal end and a lumen therethrough;loading the self-expanding prosthetic mitral valve device in a collapsed configuration into the lumen of the delivery catheter at the proximal end thereof, wherein the collapsed configuration of the prosthetic mitral valve device comprises a prosthetic mitral valve attached thereto;delivering the collapsed prosthetic mitral valve device out of the distal end of the delivery catheter and into the left atrium at a location proximate the implantation site;allowing the delivered self-expanding prosthetic mitral valve device to expand within the left atrium at the implantation site, wherein at least a portion of the expanded prosthetic mitral valve device engages at least a portion of an upper annular surface within the left atrium without engaging a left ventricle of the patient's heart;wherein the collapsed self-expanding prosthetic mitral valve device further comprises a proximal portion and a distal portion, wherein the prosthetic mitral valve leaflets are disposed within the distal portion;loading an inner sheath into the delivery catheter lumen, the inner sheath having a distal end that engages the collapsed self-expanding prosthetic mitral valve device, wherein translation of the inner sheath through the delivery catheter lumen results in translation of the collapsed self-expanding prosthetic mitral valve device, which includes a one-chamber stented valve, through the delivery catheter lumen; andwherein the inner sheath comprises a lumen therethrough sized to receive the proximal portion of the collapsed self-expanding prosthetic mitral valve device.
  • 2. The method of claim 1, wherein the distal end of the inner sheath engages the distal portion of the collapsed self-expanding prosthetic mitral valve device, wherein the distal portion is not received within the lumen of the inner sheath.
  • 3. The method of claim 1, wherein the distal portion is delivered, positioned proximate the implantation site and expanded before the proximal portion of the collapsed self-expanding prosthetic mitral valve device is delivered and expanded.
  • 4. The method of claim 1, further comprising: providing a plug attached to a side of the distal portion of the collapsed self-expanding prosthetic mitral valve device; aligning the plug with a left atrial appendage of the patient's heart; andengaging the left atrial appendage with the plug when the self-expanding mitral valve device is expanded.
  • 5. The method of claim 4, wherein the plug further comprises a flange that engages and seals the atrial wall around the left atrial appendage.
  • 6. The method of claim 1, further comprising: providing a push rod that is connected to the collapsed prosthetic mitral valve device; andpushing the collapsed prosthetic mitral valve device with the push rod through the lumen of the delivery catheter for delivery and expansion within the left atrium.
  • 7. The method of claim 6, further comprising at least partially collapsing the expanded prosthetic mitral valve device within the lumen of the delivery catheter by pulling proximally on the push rod.
  • 8. The method of claim 6, further comprising: translating a locating element through the lumen of the delivery catheter; engaging an open frame portion of the prosthetic mitral valve device with the locating element; and engaging the lumen of a left upper pulmonary vein of the patient's heart with a distal end of the locating element before delivering the prosthetic mitral valve device into the left atrium.
  • 9. The method of claim 8, wherein the locating element extends through an open frame section of the prosthetic mitral valve device.
  • 10. The method of claim 1, further comprising providing a central portion disposed between the proximal portion and the distal portion, the central portion having a maximum diameter that is smaller than a maximum diameter of the proximal portion and a maximum diameter of the distal portion.
  • 11. The method of claim 10, further comprising: providing a hinge on the central portion;delivering the central portion out of the distal end of the delivery catheter lumen to expose the hinge to the left atrium; androtating the distal portion toward the upper annular surface of the left atrium; and delivering the proximal portion out of the distal end of the delivery catheter lumen and into the left atrium.
  • 12. The method of claim 1, further comprising: translating an alignment wire disposed through the lumen of the delivery catheter;engaging an open frame portion of the prosthetic mitral valve device with the alignment wire; andengaging a left upper pulmonary vein of the patient's heart with the alignment wire before delivering the prosthetic mitral valve device into the left atrium along the alignment wire.
  • 13. The method of claim 1, further comprising at least one capture wire extending through the delivery catheter lumen and engaging the self-expanding prosthetic mitral valve device adapted to restrain the expansion of the prosthetic mitral valve device to a partially expanded configuration.
  • 14. The method of claim 13, further comprising the at least one capture wire further adapted to positionally orient the partially expanded prosthetic mitral valve device by manipulating the at least one capture wire at the proximal end of the delivery catheter.
  • 15. The method of claim 14, further comprising: positionally orienting the partially expanded prosthetic mitral valve device within the left atrium;confirming proper orientation of the partially expanded prosthetic mitral valve device;removing the at least one capture wire; andallowing the partially expanded prosthetic mitral valve device to fully expand.
  • 16. The method of claim 15, further comprising providing a push/pull rod through the lumen of the delivery catheter adapted to assist in positionally orienting the partially expanded prosthetic mitral valve device.
  • 17. The method of claim 1, further comprising a lasso element attached to the prosthetic mitral valve device adapted to be manipulated at the proximal end of the delivery catheter; manipulating the lasso element to positionally orient, prevent full expansion of the prosthetic mitral valve device and/or allow full expansion of the prosthetic mitral valve device within the left atrium.
  • 18. The method of claim 1, wherein the self-expanding prosthetic mitral valve device further comprises an upper portion formed from a stent comprising at least two sets of opposing subsections, at least one set of the opposing subsections comprising a fabric covering.
  • 19. The method of claim 18, further comprising using the fabric covering to capture blood flow to position the self-expanding prosthetic mitral valve device and expanding the positioned self-expanding prosthetic mitral valve device.
  • 20. The method of claim 1, further comprising ensuring that the left ventricle is not touched at any point by the expanded prosthetic mitral valve device.
  • 21. The method of claim 1, wherein the left atrium is accessed through a septum between the right atrium and left atrium of the patient's heart.
  • 22. The method of claim 1, further comprising: translating an alignment wire through the lumen of the delivery catheter and engaging an open frame portion of the prosthetic mitral valve device; and engaging the lumen of a left upper pulmonary vein of the patient's heart with a distal end of the alignment wire before delivering the prosthetic mitral valve device into the left atrium along the alignment wire.
  • 23. The method of claim 1, further comprising an alignment guide wire disposed through the lumen of the delivery catheter and engaging a left atrial appendage of the patient's heart.
  • 24. The method of claim 1, wherein the delivery catheter comprises a pre-curved distal portion adapted to facilitate positioning of the self-expanding prosthetic mitral valve device within the left atrium.
  • 25. The method of claim 1, further comprising: providing a pull wire that is attached to the distal end of the delivery catheter and extends proximally out of the proximal end of the delivery catheter;providing a weakened section around at least a portion of a distal portion of the delivery catheter and proximate to the attachment of the pull wire to the distal end of the delivery catheter; andcurving the distal end of the delivery catheter by pulling the pull wire proximally during at least the delivery of the prosthetic mitral valve device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/874,376, filed Jan. 18, 2018 and entitled SYSTEMS, METHODS AND DEVICES FOR DELIVERY SYSTEMS, METHODS AND DEVICES FOR IMPLANTING PROSTHETIC HEART VALVES and also claims the benefit of U.S. Provisional Ser. No. 62/448,036, filed Jan. 19, 2017 and entitled SYSTEMS, METHODS AND DEVICES FOR DELIVERY SYSTEMS, METHODS AND DEVICES FOR IMPLANTING PROSTHETIC HEART VALVES, the entirety of which are hereby incorporated by reference.

US Referenced Citations (772)
Number Name Date Kind
4424833 Spector Jan 1984 A
4503569 Dotter Mar 1985 A
4733665 Palmaz Mar 1988 A
4878906 Lindemann Nov 1989 A
5190528 Fonger Mar 1993 A
5415667 Frater May 1995 A
5441483 Avitall Aug 1995 A
5693083 Baker Dec 1997 A
5693089 Inoue Dec 1997 A
5776188 Shepherd Jul 1998 A
5843090 Schuetz Dec 1998 A
5928258 Khan Jul 1999 A
5957949 Leonhardt Sep 1999 A
5968070 Bley Oct 1999 A
6123723 Konya Sep 2000 A
6152144 Lesh Nov 2000 A
6231602 Carpentier May 2001 B1
6287334 Moll Sep 2001 B1
6319280 Schoon Nov 2001 B1
6319281 Patel Nov 2001 B1
6332893 Mortier Dec 2001 B1
6371983 Lane Apr 2002 B1
6409758 Stobie Jun 2002 B2
6425916 Garrison Jul 2002 B1
6471718 Staehle Oct 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig Jan 2003 B2
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6589275 Ivancev Jul 2003 B1
6702826 Liddicoat Mar 2004 B2
6738655 Sen May 2004 B1
6790231 Liddicoat Sep 2004 B2
6790237 Stinson Sep 2004 B2
6821297 Snyders Nov 2004 B2
6830585 Artof Dec 2004 B1
6840957 Dimatteo Jan 2005 B2
6875231 Anduiza Apr 2005 B2
7011671 Welch Mar 2006 B2
7041132 Quijano May 2006 B2
7044966 Svanidze May 2006 B2
7125420 Rourke Oct 2006 B2
7153324 Case Dec 2006 B2
7252682 Seguin Aug 2007 B2
7276077 Zadno-Azizi Oct 2007 B2
7276078 Spenser Oct 2007 B2
7291168 Macoviak Nov 2007 B2
7364588 Mathis Apr 2008 B2
7381220 Macoviak Jun 2008 B2
7442204 Schwammenthal Oct 2008 B2
7445631 Salahieh Nov 2008 B2
7455689 Johnson Nov 2008 B2
7510572 Gabbay Mar 2009 B2
7524331 Birdsall Apr 2009 B2
7704277 Zakay Apr 2010 B2
7749266 Forster Jul 2010 B2
7758491 Buckner Jul 2010 B2
7780723 Taylor Aug 2010 B2
7789909 Andersen Sep 2010 B2
7935144 Robin May 2011 B2
7959672 Salahieh Jun 2011 B2
7967853 Eidenschink Jun 2011 B2
7998196 Mathison Aug 2011 B2
8012201 Lashinski Sep 2011 B2
8016877 Seguin Sep 2011 B2
8021420 Dolan Sep 2011 B2
8029556 Rowe Oct 2011 B2
D648854 Braido Nov 2011 S
8052592 Goldfarb Nov 2011 B2
8057493 Goldfarb Nov 2011 B2
8070802 Lamphere Dec 2011 B2
8083793 Lane Dec 2011 B2
D653341 Braido Jan 2012 S
D653342 Braido Jan 2012 S
8092524 Nugent Jan 2012 B2
8142492 Forster Mar 2012 B2
8147541 Forster Apr 2012 B2
D660433 Braido May 2012 S
D660967 Braido May 2012 S
8167932 Bourang May 2012 B2
8236049 Rowe Aug 2012 B2
8246677 Ryan Aug 2012 B2
8287538 Brenzel et al. Oct 2012 B2
8308798 Pintor Nov 2012 B2
8348998 Pintor Jan 2013 B2
8348999 Kheradvar Jan 2013 B2
8366768 Zhang Feb 2013 B2
8398708 Meiri Mar 2013 B2
8409275 Matheny Apr 2013 B2
8414644 Quadri Apr 2013 B2
8414645 Dwork Apr 2013 B2
8439970 Jimenez May 2013 B2
8454686 Alkhatib Jun 2013 B2
8465541 Dwork Jun 2013 B2
8491650 Wiemeyer Jul 2013 B2
8512400 Tran Aug 2013 B2
8518106 Duffy Aug 2013 B2
8535373 Stacchino Sep 2013 B2
8562673 Yeung Oct 2013 B2
8568472 Marchand Oct 2013 B2
8579963 Tabor Nov 2013 B2
8579964 Lane Nov 2013 B2
8603159 Seguin Dec 2013 B2
8623075 Murray, III Jan 2014 B2
8636764 Miles Jan 2014 B2
8641757 Pintor Feb 2014 B2
8657870 Turovskiy Feb 2014 B2
8663318 Ho Mar 2014 B2
8679176 Matheny Mar 2014 B2
8721715 Wang May 2014 B2
8740976 Tran Jun 2014 B2
8747459 Nguyen Jun 2014 B2
8747461 Centola Jun 2014 B2
8764793 Lee Jul 2014 B2
8764820 Dehdashtian Jul 2014 B2
8778020 Gregg Jul 2014 B2
8790396 Bergheim Jul 2014 B2
8795354 Benichou Aug 2014 B2
8795357 Yohanan Aug 2014 B2
8805466 Salahieh Aug 2014 B2
8814931 Wang Aug 2014 B2
8828043 Chambers Sep 2014 B2
8828051 Javois Sep 2014 B2
8845711 Miles Sep 2014 B2
8845722 Gabbay Sep 2014 B2
8852271 Murray, III Oct 2014 B2
8852272 Gross Oct 2014 B2
8870949 Rowe Oct 2014 B2
8876897 Kheradvar Nov 2014 B2
8906022 Krinke et al. Dec 2014 B2
8926692 Dwork Jan 2015 B2
8956402 Cohn Feb 2015 B2
8956405 Wang Feb 2015 B2
8961518 Kyle et al. Feb 2015 B2
8986372 Murry, III Mar 2015 B2
8986374 Cao Mar 2015 B2
8986375 Garde Mar 2015 B2
8998980 Shipley Apr 2015 B2
8998982 Richter Apr 2015 B2
9005273 Salahieh Apr 2015 B2
9011527 Li Apr 2015 B2
D730520 Braido May 2015 S
D730521 Braido May 2015 S
9023101 Krahbichler May 2015 B2
9050188 Schweich, Jr. Jun 2015 B2
9060855 Tuval Jun 2015 B2
9060857 Nguyen Jun 2015 B2
9060858 Thornton Jun 2015 B2
9061119 Le Jun 2015 B2
9066800 Clague Jun 2015 B2
9072603 Tuval Jul 2015 B2
9101471 Kleinschrodt Aug 2015 B2
9119717 Wang Sep 2015 B2
9132008 Dwork Sep 2015 B2
9132009 Hacohen Sep 2015 B2
9138313 McGuckin, Jr. Sep 2015 B2
9144493 Carr Sep 2015 B2
9144494 Murray Sep 2015 B2
9155619 Liu Oct 2015 B2
9161835 Rankin Oct 2015 B2
9173737 Hill Nov 2015 B2
9192466 Kovalsky Nov 2015 B2
9226820 Braido Jan 2016 B2
9232942 Seguin Jan 2016 B2
9232996 Sun Jan 2016 B2
9248016 Oba Feb 2016 B2
9259315 Zhou Feb 2016 B2
9271856 Duffy Mar 2016 B2
9277993 Gamarra Mar 2016 B2
9289289 Rolando Mar 2016 B2
9289292 Anderl Mar 2016 B2
9295547 Costello Mar 2016 B2
9295549 Braido Mar 2016 B2
9301836 Buchbinder Apr 2016 B2
9301839 Stante Apr 2016 B2
9320597 Savage Apr 2016 B2
9320599 Salahieh Apr 2016 B2
9326853 Olson May 2016 B2
9326854 Casley May 2016 B2
9333075 Biadillah May 2016 B2
9345572 Cerf May 2016 B2
9351831 Braido May 2016 B2
9358108 Bortlein Jun 2016 B2
9364325 Alon Jun 2016 B2
9364637 Rothstein Jun 2016 B2
9370422 Wang Jun 2016 B2
9387106 Stante Jul 2016 B2
9402720 Richter Aug 2016 B2
9414910 Lim Aug 2016 B2
9414917 Young Aug 2016 B2
9427316 Schweich, Jr Aug 2016 B2
9439763 Geist Sep 2016 B2
9439795 Wang Sep 2016 B2
9480560 Quadri Nov 2016 B2
9498370 Kyle et al. Nov 2016 B2
9504569 Malewicz Nov 2016 B2
9522062 Tuval Dec 2016 B2
9566152 Schweich, Jr Feb 2017 B2
9579194 Elizondo Feb 2017 B2
9579197 Duffy Feb 2017 B2
9622863 Karapetian Apr 2017 B2
9717592 Thapliyal Aug 2017 B2
9730791 Ratz Aug 2017 B2
9737400 Fish Aug 2017 B2
9737401 Conklin Aug 2017 B2
9750604 Naor Sep 2017 B2
9763780 Morriss Sep 2017 B2
9795477 Tran Oct 2017 B2
9801711 Gainor Oct 2017 B2
9827093 Cartledge Nov 2017 B2
9839517 Centola et al. Dec 2017 B2
9839765 Morris Dec 2017 B2
9861477 Backus Jan 2018 B2
9872765 Zeng Jan 2018 B2
9877830 Lim Jan 2018 B2
9968443 Bruchman May 2018 B2
10004601 Tuval Jun 2018 B2
10016274 Tabor Jul 2018 B2
10016275 Nyuli Jul 2018 B2
10022132 Wlodarski et al. Jul 2018 B2
10034750 Morriss Jul 2018 B2
10039637 Maimon Aug 2018 B2
10039642 Hillukka Aug 2018 B2
10098735 Lei Oct 2018 B2
10098763 Lei Oct 2018 B2
10117742 Braido Nov 2018 B2
10143551 Braido Dec 2018 B2
10182907 Lapeyre Jan 2019 B2
10195023 Wrobel Feb 2019 B2
10226340 Keren Mar 2019 B2
10231834 Keidar Mar 2019 B2
10238490 Gifford, III Mar 2019 B2
10245145 Mantanus Apr 2019 B2
10258464 Delaloye Apr 2019 B2
10299917 Morriss May 2019 B2
10321990 Braido Jun 2019 B2
10327892 O'Connor Jun 2019 B2
10327893 Maiorano Jun 2019 B2
10350065 Quadri Jul 2019 B2
10357360 Hariton Jul 2019 B2
10368982 Weber Aug 2019 B2
10376363 Quadri Aug 2019 B2
10383725 Chambers Aug 2019 B2
10390943 Hernandez Aug 2019 B2
10405974 Hayes Sep 2019 B2
10433961 Mclean Oct 2019 B2
10470880 Braido Nov 2019 B2
10492907 Duffy Dec 2019 B2
10500041 Valdez Dec 2019 B2
10507107 Nathe Dec 2019 B2
10512537 Corbett Dec 2019 B2
10512538 Alkhatib Dec 2019 B2
10517726 Chau Dec 2019 B2
10524902 Gründeman Jan 2020 B2
10524910 Hammer Jan 2020 B2
10531951 Spargias Jan 2020 B2
10537427 Zeng Jan 2020 B2
10555809 Hastings Feb 2020 B2
10555812 Duffy Feb 2020 B2
10561495 Chambers Feb 2020 B2
10595992 Chambers Mar 2020 B2
10610362 Quadri Apr 2020 B2
10667905 Ekvall Jun 2020 B2
10667909 Richter Jun 2020 B2
10702379 Garde Jul 2020 B2
10702380 Morriss Jul 2020 B2
10709560 Kofidis Jul 2020 B2
10751169 Chambers Aug 2020 B2
10751170 Richter Aug 2020 B2
10751172 Para Aug 2020 B2
10758265 Siegel Sep 2020 B2
10779935 Scorsin Sep 2020 B2
10779936 Pollak Sep 2020 B2
10779968 Giasolli Sep 2020 B2
10786351 Christianson Sep 2020 B2
10828152 Chambers Nov 2020 B2
10856983 Keränen Dec 2020 B2
10869756 Al-Jilaihawi Dec 2020 B2
10874513 Chambers Dec 2020 B2
10945835 Morriss Mar 2021 B2
10973630 Torrianni Apr 2021 B2
10980636 Delaloye Apr 2021 B2
11000000 Diedering May 2021 B2
11007053 Braido May 2021 B2
11007054 Braido May 2021 B2
11013599 Subramanian May 2021 B2
11026782 Chambers Jun 2021 B2
11033275 Franano et al. Jun 2021 B2
11045202 Amplatz Jun 2021 B2
11065113 Backus Jul 2021 B2
11065116 Tegels Jul 2021 B2
11065138 Schreck Jul 2021 B2
11096781 Gurovich Aug 2021 B2
11147666 Braido Oct 2021 B2
11154239 Toth Oct 2021 B2
11154396 Dibie Oct 2021 B2
11154398 Straubinger Oct 2021 B2
11197754 Saffari Dec 2021 B2
11207176 Delaloye Dec 2021 B2
11278399 Liu Mar 2022 B2
11278406 Straubinger Mar 2022 B2
11351028 Peterson Jun 2022 B2
11389293 Torrianni Jul 2022 B2
11395734 Lee Jul 2022 B2
11413141 Morin Aug 2022 B2
11419716 Braido Aug 2022 B2
11452628 Diedering Sep 2022 B2
11458013 Righini Oct 2022 B2
20010005787 Oz Jun 2001 A1
20020161377 Rabkin Oct 2002 A1
20020072710 Stewart et al. Dec 2002 A1
20030057156 Peterson Mar 2003 A1
20030083730 Stinson May 2003 A1
20030199971 Tower Oct 2003 A1
20030225445 Derus Dec 2003 A1
20030233141 Israel Dec 2003 A1
20040073286 Armstrong Apr 2004 A1
20040088041 Stanford May 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040243107 Macoviak Dec 2004 A1
20050004641 Pappu Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050096739 Cao May 2005 A1
20050113861 Corcoran May 2005 A1
20050137622 Griffin Jun 2005 A1
20050197694 Pai Sep 2005 A1
20050273160 Lashinski Dec 2005 A1
20060142847 Shaknovich Jun 2006 A1
20060184226 Austin Aug 2006 A1
20060224183 Freudenthal Oct 2006 A1
20060229708 Powell Oct 2006 A1
20060271173 Delgado, III Nov 2006 A1
20060276874 Wilson Dec 2006 A1
20070016288 Gurskis Jan 2007 A1
20070156233 Kapadia et al. Jul 2007 A1
20070173930 Sogard Jul 2007 A1
20070233223 Styrc Oct 2007 A1
20070238979 Huynh Oct 2007 A1
20070239254 Chia Oct 2007 A1
20070239271 Nguyen Oct 2007 A1
20070270931 Leanna Nov 2007 A1
20070275027 Wen et al. Nov 2007 A1
20070293942 Mirzaee Dec 2007 A1
20080039928 Peacock Feb 2008 A1
20080082166 Styrc Apr 2008 A1
20080234814 Salahieh et al. Sep 2008 A1
20080262592 Jordan Oct 2008 A1
20080269877 Jenson Oct 2008 A1
20080275540 Wen Nov 2008 A1
20080281398 Koss Nov 2008 A1
20080288042 Purdy Nov 2008 A1
20080288055 Paul, Jr. Nov 2008 A1
20090076585 Hendriksen Mar 2009 A1
20090082840 Rusk Mar 2009 A1
20090099640 Weng Apr 2009 A1
20090099647 Glimsdale Apr 2009 A1
20090125096 Chu May 2009 A1
20090143852 Chambers Jun 2009 A1
20090171447 Von Segesser Jul 2009 A1
20090171456 Kveen Jul 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090248134 Dierking Oct 2009 A1
20090248143 Laham Oct 2009 A1
20090270967 Fleming, III Oct 2009 A1
20090276039 Meretei Nov 2009 A1
20090281609 Benichou Nov 2009 A1
20100021726 Jo Jan 2010 A1
20100057192 Celermajer Mar 2010 A1
20100069948 Veznedaroglu Mar 2010 A1
20100168839 Braido Jul 2010 A1
20100174355 Boyle Jul 2010 A1
20100217260 Aramayo Aug 2010 A1
20100217261 Watson Aug 2010 A1
20100217262 Stevenson Aug 2010 A1
20100217263 Tukulj-Popovic Aug 2010 A1
20100217264 Odom Aug 2010 A1
20100217265 Chen Aug 2010 A1
20100217266 Helevirta Aug 2010 A1
20100217267 Bergin Aug 2010 A1
20100217268 Bloebaum Aug 2010 A1
20100217269 Landes Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100256749 Tran Oct 2010 A1
20100262157 Silver Oct 2010 A1
20110022151 Shin Jan 2011 A1
20110046712 Melsheimer Feb 2011 A1
20110082539 Suri Apr 2011 A1
20110082540 Forster Apr 2011 A1
20110137397 Chau Jun 2011 A1
20110208293 Tabor Aug 2011 A1
20110218585 Krinke et al. Sep 2011 A1
20110251676 Sweeney Oct 2011 A1
20110269051 Wijenberg Nov 2011 A1
20110301702 Rust Dec 2011 A1
20110319988 Schankereli Dec 2011 A1
20110319991 Hariton Dec 2011 A1
20120016468 Robin Jan 2012 A1
20120035719 Forster Feb 2012 A1
20120078356 Fish Mar 2012 A1
20120083875 Johnson Apr 2012 A1
20120095551 Navia Apr 2012 A1
20120101567 Jansen Apr 2012 A1
20120101571 Thambar Apr 2012 A1
20120109079 Asleson May 2012 A1
20120197193 Krolik et al. Aug 2012 A1
20120197390 Alkhatib Aug 2012 A1
20120209375 Madrid Aug 2012 A1
20120226130 De Graff Sep 2012 A1
20120303048 Manasse Nov 2012 A1
20120323313 Seguin Dec 2012 A1
20130023852 Drasler Jan 2013 A1
20130060329 Agnew Mar 2013 A1
20130066419 Gregg Mar 2013 A1
20130079872 Gallagher Mar 2013 A1
20130090728 Solem Apr 2013 A1
20130096671 Iobbi Apr 2013 A1
20130123911 Chalekian May 2013 A1
20130138138 Clark May 2013 A1
20130150956 Yohanan Jun 2013 A1
20130184811 Rowe Jul 2013 A1
20130190861 Chau Jul 2013 A1
20130204311 Kunis Aug 2013 A1
20130204360 Gainor Aug 2013 A1
20130226286 Hargreaves Aug 2013 A1
20130231736 Essinger Sep 2013 A1
20130238089 Lichtenstein et al. Sep 2013 A1
20130297010 Bishop Nov 2013 A1
20130297012 Willard Nov 2013 A1
20130304197 Buchbinder Nov 2013 A1
20130310917 Richter Nov 2013 A1
20130310923 Kheradvar Nov 2013 A1
20130317598 Rowe Nov 2013 A1
20130331933 Alkhatib Dec 2013 A1
20140005768 Thomas Jan 2014 A1
20140005773 Wheatley Jan 2014 A1
20140005778 Buchbinder Jan 2014 A1
20140012371 Li Jan 2014 A1
20140018841 Peiffer Jan 2014 A1
20140018906 Rafiee Jan 2014 A1
20140031928 Murphy Jan 2014 A1
20140031951 Costello Jan 2014 A1
20140039613 Navia Feb 2014 A1
20140046433 Kovalsky Feb 2014 A1
20140046436 Kheradvar Feb 2014 A1
20140052238 Wang Feb 2014 A1
20140052241 Harks Feb 2014 A1
20140057730 Steinhauser Feb 2014 A1
20140057731 Stephens Feb 2014 A1
20140057732 Gilbert Feb 2014 A1
20140057733 Yamamoto Feb 2014 A1
20140057734 Lu Feb 2014 A1
20140057735 Yu Feb 2014 A1
20140057736 Burnett Feb 2014 A1
20140057737 Solheim Feb 2014 A1
20140057738 Albertsen Feb 2014 A1
20140057739 Stites Feb 2014 A1
20140067050 Costello Mar 2014 A1
20140074151 Tischler Mar 2014 A1
20140081308 Wondka Mar 2014 A1
20140081375 Bardill et al. Mar 2014 A1
20140088696 Figulla Mar 2014 A1
20140114340 Zhou Apr 2014 A1
20140128963 Quill May 2014 A1
20140134322 Larsen May 2014 A1
20140135817 Tischler May 2014 A1
20140135907 Gallagher May 2014 A1
20140142612 Li May 2014 A1
20140142680 Laske May 2014 A1
20140142688 Duffy May 2014 A1
20140142691 Pouletty May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172076 Jonsson Jun 2014 A1
20140172083 Bruchman Jun 2014 A1
20140180397 Gerberding Jun 2014 A1
20140180401 Quill Jun 2014 A1
20140188157 Clark Jul 2014 A1
20140194979 Seguin Jul 2014 A1
20140222140 Schreck Aug 2014 A1
20140228944 Paniagua Aug 2014 A1
20140236288 Lambrecht Aug 2014 A1
20140243954 Shannon Aug 2014 A1
20140243967 Salahieh Aug 2014 A1
20140243969 Venkatasubramani Aug 2014 A1
20140249564 Daly Sep 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140257467 Lane Sep 2014 A1
20140276395 Wilson et al. Sep 2014 A1
20140277074 Kaplan Sep 2014 A1
20140277119 Akpinar Sep 2014 A1
20140277388 Skemp Sep 2014 A1
20140277389 Braido Sep 2014 A1
20140277408 Folan Sep 2014 A1
20140277411 Börtlein Sep 2014 A1
20140277417 Schraut Sep 2014 A1
20140277422 Ratz Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140277425 Dakin Sep 2014 A1
20140277426 Dakin Sep 2014 A1
20140288634 Shalev Sep 2014 A1
20140288639 Gainor Sep 2014 A1
20140296909 Heipl Oct 2014 A1
20140296969 Tegels Oct 2014 A1
20140296970 Ekvall Oct 2014 A1
20140296975 Tegels Oct 2014 A1
20140309727 Lamelas Oct 2014 A1
20140330366 Dehdashtian Nov 2014 A1
20140330368 Gloss Nov 2014 A1
20140330369 Matheny Nov 2014 A1
20140330370 Matheny Nov 2014 A1
20140331475 Duffy Nov 2014 A1
20140343665 Straubinger Nov 2014 A1
20140343669 Lane Nov 2014 A1
20140343670 Bakis Nov 2014 A1
20140358224 Tegels Dec 2014 A1
20140371844 Dale Dec 2014 A1
20140379020 Campbell Dec 2014 A1
20150005857 Kern Jan 2015 A1
20150018933 Yang Jan 2015 A1
20150025621 Costello Jan 2015 A1
20150025625 Rylski Jan 2015 A1
20150039081 Costello Feb 2015 A1
20150039083 Rafiee Feb 2015 A1
20150066138 Alexander Mar 2015 A1
20150066141 Braido Mar 2015 A1
20150073548 Matheny Mar 2015 A1
20150088248 Scorsin Mar 2015 A1
20150088251 May-Newman Mar 2015 A1
20150094802 Buchbinder Apr 2015 A1
20150094804 Bonhoeffer Apr 2015 A1
20150112428 Daly Apr 2015 A1
20150112430 Creaven Apr 2015 A1
20150119974 Rothstein Apr 2015 A1
20150119978 Tegels Apr 2015 A1
20150119980 Beith Apr 2015 A1
20150119982 Quill Apr 2015 A1
20150127032 Lentz May 2015 A1
20150127093 Hosmer May 2015 A1
20150127097 Neumann May 2015 A1
20150127100 Braido May 2015 A1
20150134054 Morrissey May 2015 A1
20150142103 Vidlund May 2015 A1
20150142104 Braido May 2015 A1
20150148731 McNamara May 2015 A1
20150150678 Brecker Jun 2015 A1
20150157455 Hoang Jun 2015 A1
20150157458 Thambar Jun 2015 A1
20150173770 Warner Jun 2015 A1
20150173897 Raanani Jun 2015 A1
20150173898 Drasler Jun 2015 A1
20150173899 Braido Jun 2015 A1
20150196300 Tischler Jul 2015 A1
20150196390 Ma Jul 2015 A1
20150196393 Vidlund Jul 2015 A1
20150209140 Bell Jul 2015 A1
20150209143 Duffy Jul 2015 A1
20150223729 Balachandran Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150223934 Mdlund Aug 2015 A1
20150230921 Chau Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238313 Spence Aug 2015 A1
20150257879 Bortlein Sep 2015 A1
20150257880 Bortlein Sep 2015 A1
20150257881 Bortlein Sep 2015 A1
20150257882 Bortlein Sep 2015 A1
20150265402 Centola Sep 2015 A1
20150265404 Rankin Sep 2015 A1
20150272730 Melnick Oct 2015 A1
20150272731 Racchini Oct 2015 A1
20150272738 Sievers Oct 2015 A1
20150282931 Brunnett Oct 2015 A1
20150282958 Centola Oct 2015 A1
20150289972 Yang Oct 2015 A1
20150289974 Matheny Oct 2015 A1
20150289977 Kovalsky Oct 2015 A1
20150290007 Aggerholm Oct 2015 A1
20150297346 Duffy Oct 2015 A1
20150297381 Essinger Oct 2015 A1
20150305860 Wang Oct 2015 A1
20150305861 Annest Oct 2015 A1
20150313710 Eberhardt Nov 2015 A1
20150313712 Carpentier Nov 2015 A1
20150320552 Letac Nov 2015 A1
20150320556 Levi Nov 2015 A1
20150327995 Morin Nov 2015 A1
20150327996 Fahim Nov 2015 A1
20150327999 Board Nov 2015 A1
20150335422 Straka Nov 2015 A1
20150342718 Weber Dec 2015 A1
20150342734 Braido Dec 2015 A1
20150351735 Keranen Dec 2015 A1
20150351904 Cooper Dec 2015 A1
20150351905 Benson Dec 2015 A1
20150359628 Keranen Dec 2015 A1
20150359629 Ganesan Dec 2015 A1
20150366665 Lombardi Dec 2015 A1
20150366667 Bailey Dec 2015 A1
20150366690 Lumauig Dec 2015 A1
20150374490 Alkhatib Dec 2015 A1
20150374906 Forsell Dec 2015 A1
20160000559 Chen Jan 2016 A1
20160000562 Siegel Jan 2016 A1
20160008128 Squara Jan 2016 A1
20160008131 Christianson Jan 2016 A1
20160015512 Zhang Jan 2016 A1
20160015515 Lashinski Jan 2016 A1
20160022417 Karapetian Jan 2016 A1
20160022418 Salahieh Jan 2016 A1
20160030165 Mitra Feb 2016 A1
20160030168 Spenser Feb 2016 A1
20160030169 Shahriari Feb 2016 A1
20160030170 Alkhatib Feb 2016 A1
20160030171 Quijano Feb 2016 A1
20160030173 Cai Feb 2016 A1
20160030175 Madjarov Feb 2016 A1
20160038283 Divekar Feb 2016 A1
20160045306 Agrawal Feb 2016 A1
20160045308 Macoviak Feb 2016 A1
20160045309 Valdez Feb 2016 A1
20160045310 Alkhatib Feb 2016 A1
20160045311 Mccann Feb 2016 A1
20160051358 Sutton Feb 2016 A1
20160051362 Cooper Feb 2016 A1
20160051364 Cunningham Feb 2016 A1
20160066922 Bridgeman Mar 2016 A1
20160067038 Park Mar 2016 A1
20160067041 Alkhatib Mar 2016 A1
20160074161 Bennett Mar 2016 A1
20160074164 Naor Mar 2016 A1
20160074165 Spence Mar 2016 A1
20160081799 Leo Mar 2016 A1
20160089234 Gifford, III Mar 2016 A1
20160089235 Yellin Mar 2016 A1
20160089236 Kovalsky Mar 2016 A1
20160095700 Righini Apr 2016 A1
20160095701 Dale Apr 2016 A1
20160095702 Gainor Apr 2016 A1
20160095703 Thomas Apr 2016 A1
20160095704 Whitman Apr 2016 A1
20160100844 Li Apr 2016 A1
20160100939 Armstrong Apr 2016 A1
20160100941 Czyscon Apr 2016 A1
20160100942 Morrissey Apr 2016 A1
20160106539 Buchbinder Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160113766 Ganesan Apr 2016 A1
20160113767 Miller Apr 2016 A1
20160113768 Ganesan Apr 2016 A1
20160120642 Shaolian May 2016 A1
20160120643 Kupumbati May 2016 A1
20160120646 Dwork May 2016 A1
20160136412 Mckinnon May 2016 A1
20160143730 Kheradvar May 2016 A1
20160143731 Backus May 2016 A1
20160143734 Shaolian May 2016 A1
20160151155 Lutter Jun 2016 A1
20160157998 Bruchman Jun 2016 A1
20160157999 Lane Jun 2016 A1
20160158001 Wallace Jun 2016 A1
20160158004 Kumar Jun 2016 A1
20160158007 Centola Jun 2016 A1
20160158011 De Canniere Jun 2016 A1
20160158013 Carpentier Jun 2016 A1
20160166381 Sugimoto Jun 2016 A1
20160166382 Nguyen Jun 2016 A1
20160166384 Olson Jun 2016 A1
20160175096 Dienno Jun 2016 A1
20160193044 Achiluzzi Jul 2016 A1
20160193045 Pollak Jul 2016 A1
20160193047 Delaloye Jul 2016 A1
20160199177 Spence Jul 2016 A1
20160199178 Venkatasubramani Jul 2016 A1
20160199180 Zeng Jul 2016 A1
20160199182 Gorman, III Jul 2016 A1
20160213470 Ahlberg Jul 2016 A1
20160220363 Peter Aug 2016 A1
20160235525 Rothstein Aug 2016 A1
20160235530 Thomas Aug 2016 A1
20160235531 Ciobanu Aug 2016 A1
20160242905 Chambers Aug 2016 A1
20160250022 Braido Sep 2016 A1
20160250051 Lim Sep 2016 A1
20160256168 Nielsen Sep 2016 A1
20160256270 Folan Sep 2016 A1
20160262884 Lombardi Sep 2016 A1
20160270910 Birmingham Sep 2016 A1
20160270911 Ganesan Sep 2016 A1
20160278922 Braido Sep 2016 A1
20160296323 Wulfman Oct 2016 A1
20160296333 Balachandran Oct 2016 A1
20160302920 Al-Jilaihawi Oct 2016 A1
20160302921 Gosal Oct 2016 A1
20160302922 Keidar Oct 2016 A1
20160310268 Oba Oct 2016 A1
20160324640 Gifford, III Nov 2016 A1
20160331529 Marchand Nov 2016 A1
20160346081 Zeng Dec 2016 A1
20160354203 Tuval et al. Dec 2016 A1
20160361161 Braido Dec 2016 A1
20160374790 Jacinto Dec 2016 A1
20160374801 Jimenez Dec 2016 A1
20160374802 Levi Dec 2016 A1
20160374803 Figulla Dec 2016 A1
20160374842 Havel Dec 2016 A1
20170079781 Lim Mar 2017 A1
20170079785 Li Mar 2017 A1
20170079787 Benson Mar 2017 A1
20170079790 Vidlund Mar 2017 A1
20170086973 Zeng Mar 2017 A1
20170095256 Lindgren Apr 2017 A1
20170100241 Modine Apr 2017 A1
20170105839 Subramanian Apr 2017 A1
20170165066 Rothstein Jun 2017 A1
20170172737 Kuetting Jun 2017 A1
20170202525 Piazza Jul 2017 A1
20170252191 Pacetti Sep 2017 A1
20170281193 Asirvatham Oct 2017 A1
20170348098 Rowe Dec 2017 A1
20170360570 Berndt et al. Dec 2017 A1
20180014830 Neumann Jan 2018 A1
20180055629 Oba et al. Mar 2018 A1
20180092744 Von Oepen Apr 2018 A1
20180116843 Schreck May 2018 A1
20180116848 Mchugo May 2018 A1
20180133012 Nathe May 2018 A1
20180185184 Christakis Jul 2018 A1
20180193153 Brenzel et al. Jul 2018 A1
20180206983 Noe Jul 2018 A1
20180256329 Chambers Sep 2018 A1
20180296335 Miyashiro Oct 2018 A1
20180311039 Cohen Nov 2018 A1
20180325664 Gonda Nov 2018 A1
20180333102 De Haan et al. Nov 2018 A1
20180360602 Kumar Dec 2018 A1
20180369006 Zhang Dec 2018 A1
20190053898 Maimon et al. Feb 2019 A1
20190099265 Braido Apr 2019 A1
20190105088 Peterson et al. Apr 2019 A1
20190151067 Zucker May 2019 A1
20190201192 Kruse Jul 2019 A1
20190247189 Dale Aug 2019 A1
20190365534 Kramer Dec 2019 A1
20190365538 Chambers Dec 2019 A1
20200000592 Lee Jan 2020 A1
20200030088 Vidlund Jan 2020 A1
20200069423 Peterson Mar 2020 A1
20200069449 Diedering Mar 2020 A1
20200100897 Mclean Apr 2020 A1
20200113682 Chang Apr 2020 A1
20200113719 Desrosiers et al. Apr 2020 A1
20200129294 Hariton Apr 2020 A1
20200155306 Bonyuet May 2020 A1
20200163765 Christianson May 2020 A1
20200179111 Vidlund Jun 2020 A1
20200179115 Chambers Jun 2020 A1
20200188101 Chambers Jun 2020 A1
20200222179 Chambers Jul 2020 A1
20200253733 Subramanian Aug 2020 A1
20200261219 Kumar Aug 2020 A1
20200276013 Chambers Sep 2020 A1
20200315678 Mazzio et al. Oct 2020 A1
20200337765 Smith Oct 2020 A1
20200368023 Kheradvar Nov 2020 A1
20200375733 Diedering Dec 2020 A1
20210236274 Benson Aug 2021 A1
20210236276 Diedering Aug 2021 A1
20210275297 Berndt Sep 2021 A1
20210275301 Kumar Sep 2021 A1
20210290383 Chambers Sep 2021 A1
20220031451 Spence Feb 2022 A1
20220338979 Benichou Oct 2022 A1
20230218397 Chambers et al. Jul 2023 A1
Foreign Referenced Citations (53)
Number Date Country
2014203064 Jun 2015 AU
2015230879 Oct 2015 AU
2013201970 Mar 2016 AU
2820130 Sep 2006 CN
100413471 Aug 2008 CN
100444811 Dec 2008 CN
101953723 Jan 2011 CN
101953724 Jan 2011 CN
101953725 Jan 2011 CN
101953728 Jan 2011 CN
101953729 Jan 2011 CN
101961269 Feb 2011 CN
101961273 Feb 2011 CN
102036622 Apr 2011 CN
201870772 Jun 2011 CN
203290964 Nov 2013 CN
103431931 Dec 2013 CN
203379235 Jan 2014 CN
103598939 Feb 2014 CN
103610520 Mar 2014 CN
203619728 Jun 2014 CN
203677318 Jul 2014 CN
104287804 Jan 2015 CN
104352261 Feb 2015 CN
204133530 Feb 2015 CN
204181679 Mar 2015 CN
204246182 Apr 2015 CN
204318826 May 2015 CN
104688292 Jun 2015 CN
102985033 Aug 2015 CN
204581598 Aug 2015 CN
204581599 Aug 2015 CN
204683686 Oct 2015 CN
105596052 May 2016 CN
105615936 Jun 2016 CN
205286438 Jun 2016 CN
108348270 Jul 2018 CN
107252363 Apr 2020 CN
106913909 Sep 2020 CN
107007887 Oct 2020 CN
102010021345 Nov 2011 DE
2596754 May 2013 EP
2967858 Jan 2016 EP
2982336 Feb 2016 EP
2967845 Aug 2018 EP
2950752 Jul 2022 EP
2016531722 Oct 2016 JP
WO1995016476 Jun 1995 WO
WO2009127973 Oct 2009 WO
WO2014210299 Dec 2014 WO
WO2015004173 Jan 2015 WO
WO2016100806 Jun 2016 WO
WO2019006387 Jan 2019 WO
Non-Patent Literature Citations (11)
Entry
International Search Report and Written Opinion, dated May 15, 2018, in PCT Application No. PCT/US18/14400, filed Jan. 19, 2018.
International Preliminary Report on Patentability, dated Aug. 1, 2019 in PCT Application No. PCT/US18/14400, filed Jan. 19, 2018.
Australian Examination Report in Application No. 2019280018, Jan. 14, 2021.
Canadian Office Action in Application No. 3,050,113, Apr. 1, 2020.
Chinese Office Action in Application No. 201880007705.2, Apr. 25, 2021.
European Office Action in Application No. 18741447.9, Apr. 29, 2021.
Indian Office Action in Application No. 201917028147, Dec. 29, 2021.
Japanese Office Action in Application No. 2019-538492, Jun. 29, 2022.
International Search Report and Written Opinion in Application No. PCT/US2018/14400, May 15, 2018.
European Office Action in Application No. 18741447.9, Sep. 20, 2023.
Office Action in Indian Application No. 201917028147, Feb. 14, 2024.
Related Publications (1)
Number Date Country
20200222179 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62448036 Jan 2017 US
Continuations (1)
Number Date Country
Parent 15874376 Jan 2018 US
Child 16835474 US