The present invention is generally related to a device and method for disinfecting a medical instrument with ozone, in particular the invention relates to a device and method for disinfecting a continuous positive airway pressure (CPAP) device.
Sleep apnea is a common sleep disorder characterized by abnormal breathing during sleep. Pauses in breathing for people with sleep apnea can last from a few seconds to minutes during sleep, often resulting in significant levels of sleep disturbance, which may result in daytime fatigue, impaired reaction time, vision problems, and impaired daytime cognition.
Sleep apnea is often treated with a continuous positive airway pressure (CPAP) device. CPAP devices prevent reduction of oxygen levels in the blood and sleep loss by delivering a stream of pressured air through a hose to a nasal pillow or full facemask surrounding a patient's nose. The CPAP devices work by blowing air at a prescribed pressure for each patient, and keeping the air passage open to maintain unobstructed breathing throughout a sleep period.
While CPAP treatment can be a highly effective treatment for sleep apnea, a major downside with CPAP treatment is non-compliance by users. Users are often reluctant to continuously use CPAP devices because the nose and face masks may be uncomfortable. In addition, maintenance of many CPAP devices has proved to be tiring and difficult for users, as water vapor running through the hoses and masks of a device may cause bacterial build-up and require continuous cleaning and prevention as necessary steps to safely use a device, which may result in further non-compliance by users. Most manufacturers of CPAP devices recommend that users perform daily and weekly maintenance on their machines to prevent bacteria and mold buildup. In this instance, each part of the CPAP device needs to be cleaned individually, including the mask, the hoses and the humidification portion, which is difficult and time consuming for users on a daily or weekly basis. Other CPAP device cleaning methods include soaking the component parts of a CPAP device in a mixture of vinegar and water to disinfect the component parts. Because of the inherent nature for CPAP devices to collect bacteria and mold, a number of other products are available to consumers to make CPAP machines safer, including but not limited to:
Further, several patents and patent applications have been filed on CPAP devices, improvements and the like. The patents in the field of CPAP devices include U.S. Pat. Nos. 8,146,946, 8,051,853, 7,794,522, 7,845,350, 7,676,276, 6,276,304, 7,527,603, 7,767,168, 6,752,151, 6,280,633, 7,022,225, 4,787,980 and U.S. application numbers: 20100111792, 20060130834, 20040251125, 20050186108.
While some of the existing products, patents and applications described above refer to CPAP systems, methods and devices, there is no system, method or device shown that describes an automated disinfecting system or method for a CPAP device, for ease of use of users and to improve user compliance. In addition, the use of ozone to sanitize, disinfect and clean CPAP devices is a long felt need in the art as a safe and easy disinfectant system for improved compliance of a user, as described in accordance with the present invention.
Other systems, methods, device features, and advantages of the present invention will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, device features, and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.
Many aspects of the invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
In accordance with this embodiment, the ozone operating system 115 pulls in ambient air into an air pump to create ozone. The air pump may transfer the ambient air to a corona discharge ozone generator, which may create about 400 mg/hr of ozone gas, which may be used to disinfect a CPAP device 105. In accordance with this embodiment, the ozone may be pumped directly into the CPAP device 105 and/or a water reservoir tank 122 from the ozone compartment 110 through an ozone distribution line 118 that connects to the CPAP connector unit 130, for providing ozone to disinfect the CPAP device 105. In accordance with the device shown in
The ozone compartment 110, in accordance with the present embodiment of the present invention may be any available ozonator or a like device for creating ozone gas. Ozonators create ozone from oxygen molecules, often by applying ultraviolet light to the oxygen. Ozone gas is made of oxygen molecules that have been ionized by radiation to form groups of three oxygen atoms, O3. The ozone gas is powerful and effective for removal of odors, impurities and dangerous pathogens, working by exchanging electron charge with particles that ozone comes into contact with to form oxygen, O2, from the unstable ozone O3, a process particularly useful for purifying air and water and for killing bacteria and microorganisms. Typically, ozone, O3, will convert back to oxygen, O2, within two hours of the start of a cycle.
In accordance with the embodiment shown in
In another embodiment of the present invention, shown in
In accordance with the embodiments shown, the ozone device will have a built-in timer so that a user can set the time to start the ozone disinfecting process at fixed time intervals. Typically, an ozone cycle is recommended at the end of each CPAP device use for best results for a consumer. The ozone device in accordance with one or more embodiments of the present invention will have a delayed start button, so that the CPAP device will not start until a fixed time has passed since the last ozone disinfecting process. In accordance with one or more embodiments, a one hour time period is implemented to prevent start of a CPAP device until one hour has passed from an ozone disinfecting process in accordance with one or more of the embodiments shown. In accordance with other embodiments a two-hour time period is implemented before the CPAP device can be used after an ozone disinfecting process in accordance with one or more embodiments of the present invention.
With reference to one or more embodiments shown, an ozone device is described including an ozone compartment, an ozone operating system, and one or more ozone distribution lines to distribute ozone through a CPAP device. A CPAP ozone air pump distributes ozone to the ozone distribution lines in one or more embodiments of the present invention. The ozone will migrate from the ozone distribution lines into the water reservoir of the CPAP device. The ozone will oxidize organic material in the water, thereby disinfecting water in the water reservoir. Remaining ozone will release as free ozone from the water reservoir and migrate as a gas into the attached hose, mask and mask compartment. An exhaust port in the mask compartment helps migrate free ozone into the hose, mask and mask compartment, and releases remaining ozone into the atmosphere as O2 oxygen from the mask compartment. The ozone O3 will disinfect the water reservoir, the hose, the mask and the mask compartment while the ozone migrates through the CPAP device in accordance with the embodiments of the present invention.
In addition to the device described and shown in the embodiments of the present invention, methods of disinfecting a CPAP device are further disclosed. In accordance with one embodiment, a method for disinfecting a continuous positive airway pressure may include the steps of producing ozone in an ozone device with an ozone operating system, releasing ozone into a continuous positive airway pressure device; and, migrating ozone through a continuous positive airway pressure device. In yet another embodiment, a method of disinfecting a CPAP device with an ozone device by releasing ozone into a CPAP connector unit, distributing ozone into a water reservoir, migrating free ozone from the water reservoir to a hose, migrating the free ozone into a mask in a mask compartment; and, removing the ozone from the CPAP device through an exhaust port, is described. The method disclosed further includes a step of delaying the start of a CPAP treatment for a fixed period of time from the last ozone disinfecting process for the safety of the consumers. The step of delaying the start time may range from about 30 minutes to 5 hours, depending on the embodiment implemented. In yet other embodiments the step of delaying the start time may range from about 5 hours to 10 hours. In addition the step of sensing remaining ozone in a CPAP device is an added step in one or more embodiments of the present invention for a consumer's safety prior to use. In addition, in one or more embodiments of the present invention, adding a safety switch in the mask compartment prevents starts of an ozone sanitizing process until the mask is returned by a user to the mask compartment. The safety switch is an additional precaution to prevent use of a CPAP device during an ozone disinfecting process.
In yet another embodiment of the present invention, as shown in
It should be emphasized that the above-described embodiments of the present invention, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiments of the invention without departing substantially from the spirit and principles of the invention. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present invention and protected by the following claims.
This application is a continuation of U.S. patent application Ser. No. 15/142,111, which is a continuation of U.S. patent application Ser. No. 14/232,773, which claims priority to U.S. provisional application No. 61/508,341, filed Jul. 15, 2011, Apparatus, Systems and Methods for Ozone Sanitization of Medical Instruments, and incorporates the entire contents thereof herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4019986 | Burris et al. | Apr 1977 | A |
4035657 | Carlson | Jul 1977 | A |
4110419 | Miller | Aug 1978 | A |
4207291 | Byrd et al. | Jun 1980 | A |
4465522 | Taldo et al. | Aug 1984 | A |
4517159 | Karlson | May 1985 | A |
D295074 | Jerge et al. | Apr 1988 | S |
4743275 | Flanagan | May 1988 | A |
4787980 | Ackermann et al. | Nov 1988 | A |
5029879 | Strang, Sr. et al. | Jul 1991 | A |
5207237 | Langford | May 1993 | A |
5344622 | Faddis et al. | Sep 1994 | A |
5508006 | Gabele et al. | Apr 1996 | A |
5520893 | Kasting, Jr. et al. | May 1996 | A |
D371203 | Deeds | Jun 1996 | S |
D390645 | Hanrahan et al. | Feb 1998 | S |
5761069 | Weber et al. | Jun 1998 | A |
5920075 | Whitehead | Jul 1999 | A |
6024066 | Nakayama et al. | Feb 2000 | A |
6158784 | Lavender | Dec 2000 | A |
6276304 | Tai | Aug 2001 | B1 |
6280633 | Conrad et al. | Aug 2001 | B1 |
6379617 | Spickermann | Apr 2002 | B1 |
6379632 | Kinoshita et al. | Apr 2002 | B1 |
D476423 | Picot et al. | Jun 2003 | S |
6576190 | Park | Jun 2003 | B1 |
6605260 | Busted | Aug 2003 | B1 |
D487315 | Picot et al. | Mar 2004 | S |
6752151 | Hill | Jun 2004 | B2 |
7022225 | Clawson et al. | Apr 2006 | B1 |
7520910 | Tilley | Apr 2009 | B2 |
7527603 | An | May 2009 | B2 |
7676276 | Karell | Mar 2010 | B2 |
7767168 | Namespetra et al. | Aug 2010 | B2 |
7794522 | Bliss et al. | Sep 2010 | B2 |
7845350 | Kayyali et al. | Dec 2010 | B1 |
8051853 | Berthon-Jones | Nov 2011 | B2 |
8146946 | Emond | Apr 2012 | B1 |
8176771 | Onishi et al. | May 2012 | B2 |
8431076 | Fraundorfer | Apr 2013 | B2 |
D692155 | Matoba et al. | Oct 2013 | S |
8815164 | Al Azemi | Aug 2014 | B1 |
D719673 | Leyva et al. | Dec 2014 | S |
D719674 | Leyva et al. | Dec 2014 | S |
8915380 | Sowerby et al. | Dec 2014 | B2 |
9022247 | Enigmann | May 2015 | B2 |
D733315 | Lui | Jun 2015 | S |
D733316 | Lui | Jun 2015 | S |
D748280 | Lui | Jan 2016 | S |
9358316 | Leyva | Jun 2016 | B2 |
D761142 | Golta et al. | Jul 2016 | S |
D776290 | Wan et al. | Jan 2017 | S |
9616147 | Leyva | Apr 2017 | B2 |
9669124 | Leyva et al. | Jun 2017 | B2 |
D802788 | Cormier et al. | Nov 2017 | S |
9895461 | Leyva et al. | Feb 2018 | B2 |
9907872 | Schmidt et al. | Mar 2018 | B2 |
D819190 | Cormier et al. | May 2018 | S |
10232072 | Leyva et al. | Mar 2019 | B2 |
10264913 | Leyva | Apr 2019 | B2 |
20030000966 | Shelton | Jan 2003 | A1 |
20030063997 | Fryer et al. | Apr 2003 | A1 |
20030065292 | Darouiche et al. | Apr 2003 | A1 |
20030065297 | Davis et al. | Apr 2003 | A1 |
20030071069 | Shelton | Apr 2003 | A1 |
20040251125 | Yu | Dec 2004 | A1 |
20050017380 | Namespetra et al. | Jan 2005 | A1 |
20050019237 | Riley | Jan 2005 | A1 |
20050186108 | Fields | Aug 2005 | A1 |
20050220665 | Ding | Oct 2005 | A1 |
20060130834 | Chen | Jun 2006 | A1 |
20060272682 | Langford | Dec 2006 | A1 |
20070031778 | Helfenbein et al. | Feb 2007 | A1 |
20070065335 | Bedard et al. | Mar 2007 | A1 |
20080050290 | Yui | Feb 2008 | A1 |
20090267242 | Nichols et al. | Oct 2009 | A1 |
20100111792 | Nelson | May 2010 | A1 |
20100112677 | Onishi et al. | May 2010 | A1 |
20100147302 | Selvarajan et al. | Jun 2010 | A1 |
20120164025 | Stockley et al. | Jun 2012 | A1 |
20120227745 | Arcilla et al. | Sep 2012 | A1 |
20130239994 | Przyjemski | Sep 2013 | A1 |
20140154134 | Leyva | Jun 2014 | A1 |
20150004061 | Kain et al. | Jan 2015 | A1 |
20160235875 | Schmidt et al. | Aug 2016 | A1 |
20170165443 | Leyva | Jun 2017 | A1 |
20170202990 | Leyva | Jul 2017 | A1 |
20170209610 | Leyva et al. | Jul 2017 | A1 |
20170224857 | Leyva et al. | Aug 2017 | A1 |
20170225985 | Leyva et al. | Aug 2017 | A1 |
20180161466 | Schmidt et al. | Jun 2018 | A1 |
20190076561 | Leyva et al. | Mar 2019 | A1 |
20190076562 | Schmidt et al. | Mar 2019 | A1 |
20190083668 | Schmidt et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
1377708 | Nov 2002 | CN |
2710637 | Jul 2005 | CN |
201156965 | Dec 2008 | CN |
105031693 | Nov 2015 | CN |
2731632 | Aug 2017 | EP |
2005270589 | Oct 2005 | JP |
1020040098412 | Nov 2004 | KR |
03068274 | Aug 2003 | WO |
2008116165 | Sep 2008 | WO |
2011058472 | May 2011 | WO |
2013012696 | Jan 2013 | WO |
2015171730 | Nov 2015 | WO |
2017189915 | Nov 2017 | WO |
2017189916 | Nov 2017 | WO |
2018200525 | Nov 2018 | WO |
Entry |
---|
Office Action dated Sep. 21, 2017, issued in U.S. Appl. No. 15/142,085, 9 pages. |
Notice of Allowance dated Oct. 13, 2017, issued in U.S. Appl. No. 15/481,919, 7 pages. |
U.S. Office Action dated Jun. 13, 2017, issued in U.S. Appl. No. 15/481,919, 10 pages. |
International Search Report and Written Opinion dated Aug. 2, 2017, issued in PCT Patent Application No. PCT/US17/29949, 11 pages. |
U.S. Office Action dated Aug. 3, 2017, issued in U.S. Appl. No. 15/141,152, 14 pages. |
International Search Report and Written Opinion dated Aug. 16, 2017, issued in PCT Patent Application No. PCT/US17/29950, 11 pages. |
Ozone MSDS (Material Safety Data Sheets), Ozone Solutions, Jun. 1, 2000, http://www.ozoneapplications.com/info/ozone_msds.htm, 5 pages. |
CPAP Guardian TB-316, America Tyson Industrial Group (Asia Pacific) Limited, http://www.ecvv.com/products/2314441.html, November 91, 2009, downloaded from Internet Jul. 8, 2016, 3 pages. |
International Search Report and Written Opinion dated Sep. 17, 2012, issued in PCT Application No. PCT/US12/46593, 6 pages. |
International Search Report and Written Opinion dated Jul. 24, 2015, issued in PCT Application No. PCT/US15/29418, 9 pages. |
U.S. Office Action dated Jun. 30, 2016, issued in U.S. Appl. No. 15/141,216, 13 pages. |
U.S. Office Action dated Jul. 13, 2016, issued in U.S. Appl. No. 15/142,060, 18 pages. |
U.S. Office Action dated Jul. 14, 2016, issued in U.S. Appl. No. 15/142,111, 10 pages. |
U.S. Office Action dated Jul. 28, 2016, issued in U.S. Appl. No. 15/142,085, 15 pages. |
U.S. Office Action dated Oct. 6, 2016, issued in U.S. Appl. No. 15/141,152, 11 pages. |
U.S. Office Action dated Nov. 23, 2016, issued in U.S. Appl. No. 15/141,216, 9 pages. |
U.S. Office Action dated Nov. 23, 2016, issued in U.S. Appl. No. 15/142,085, 8 pages. |
U.S. Office Action dated Feb. 23, 2017, issued in U.S. Appl. No. 29/562,755, 8 pages. |
U.S. Office Action dated Feb. 27, 2017, issued in U.S. Appl. No. 29/562,756, 7 pages. |
U.S. Office Action dated Mar. 17, 2017, issued in U.S. Appl. No. 15/141,152, 14 pages. |
U.S. Final Office Action dated Feb. 5, 2018, issued in U.S. Appl. No. 15/141,152, 16 pages. |
U.S. Office Action dated Apr. 3, 2018, issued in U.S. Appl. No. 15/873,506, 7 pages. |
U.S. Notice of Allowance dated Apr. 27, 2018, issued in U.S. Appl. No. 15/142,085, 8 pages. |
International Search Report and Written Opinion dated Jul. 13, 2018, issued in PCT International Patent Application No. PCT/US18/29140, 12 pages. |
Office Action dated Aug. 9, 2018, issued in Japanese Patent Application No. 2014-520352, 5 pages. English language translation provided. |
Office Action dated Sep. 5, 2018, issued in Chinese Patent Application No. 2016105175158, 10 pages. English language translation provided. |
Examination Report dated Sep. 26, 2018, issued in Australian Patent Application No. 2017228723, 6 pages. |
Office Action dated Oct. 30, 2018, issued in U.S. Appl. No. 15/499,456, 13 pages. |
Notice of Allowance dated Oct. 31, 2018, issued in U.S. Appl. No. 15/873,506, 8 pages. |
Office Action amendment dated Oct. 31, 2018, issued in U.S. Appl. No. 15/499,456, 13 pages. |
Office Action dated Nov. 6, 2018, issued in U.S. Appl. No. 15/499,378, 18 pages. |
Office Action dated Jan. 22, 2019, issued in U.S. Appl. No. 16/190,996, 10 pages. |
Preliminary Report on Patentability dated Nov. 8, 2018, issued in PCT International Patent Application No. PCT/US2017/029949, 9 pages. |
Preliminary Report on Patentability dated Nov. 8, 2018, issued in PCT International Patent Application No. PCT/US2017/029950, 9 pages. |
Office Action dated Jan. 16, 2019, issued in Korean Patent Application No. 10-2018-7009274, 5 pages. English language translation provided. |
Final Office Action dated Feb. 4, 2019, issued in U.S. Appl. No. 15/141,152, 14 pages. |
Examination Report dated Feb. 15, 2019, issued in Australian Patent Application No. 2018200514, 5 pages. |
Office Action dated Mar. 4, 2019, issued in U.S. Appl. No. 15/444,916, 16 pages. |
Office Action dated Mar. 4, 2019, issued in U.S. Appl. No. 16/257,898, 13 pages. |
Office Action dated Mar. 14, 2019, issued in U.S. Appl. No. 16/270,141, 12 pages. |
Notice of Allowance dated Mar. 19, 2019, issued in U.S. Appl. No. 15/499,456, 12 pages. |
U.S. Appl. No. 16/257,898, filed Jan. 25, 2019. |
Number | Date | Country | |
---|---|---|---|
20170165443 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
61508341 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15142111 | Apr 2016 | US |
Child | 15441929 | US | |
Parent | 14232773 | US | |
Child | 15142111 | US |