High intensity focused ultrasound (HIFU) has been used in medical applications for a number of years, where HIFU transducers are arranged outside of a patient's body and focus ultrasound waves to a target location inside of the body. The primary effect of high acoustic intensities in tissue is heat generation due to the acoustic energy absorption. In most HIFU applications, the heat generated rapidly raises the temperature in the target tissue to 60 degrees Celcius or higher causing coagulation necrosis within a few seconds.
Other effects of applying high acoustic intensities include a cavitation effect as the acoustic field causes the movement of gas-filled bubbles in a liquid medium. This cavitation occurs due to the expansion and compression of tissue as the ultrasound field propagates through it. If inertial cavitation occurs there is the possibility of a violent collapse and destruction of the bubble. If this collapse occurs near a cell membrane, mechanical damage to the cell membrane is possible due to high velocity liquid jets impacting the cell wall as the bubble collapses. Microstreaming may also occur, in which high shear forces close to the oscillating bubble cause cell membrane disruption. Further, radiation forces may also occur when a wave is either absorbed or reflected, producing radiation pressure, and cell death may be caused by apoptosis following HIFU treatment.
Numerous problems arise with current HIFU delivery methods. Some problems include acoustic shadowing, reverberation, and refraction. Such problems result in extreme difficulty in treating areas that are deep in the tissue and/or are impacted by bone structures (such as treating liver tissue close to a rib). Another problem is that gas in the body (e.g., the bowel) cannot be penetrated by HIFU and the sound waves are reflected back toward the transducer, possibly resulting in non-target tissue being damaged via burns to the tissue that lies between the transducer and the target. Yet another problem is that current systems estimate the amount of energy absorbed by making the assumption that the attenuation of the sound waves in the soft tissues between the transducer and the target location is linear. However, this is rarely the case as fibrotic, fatty, and vascularized tissues attenuate the sound energy differently, and since there is a heat sink effect associated with vascularity. Further, one potential complication that has not yet been substantiated is the possibility of the dissemination of malignant cells from the shear forces generated by the procedure.
Embodiments of the present invention overcome one or more of the problems associated with prior art HIFU systems. According to some embodiments, a method of delivering acoustic waves to a target tissue volume inside of a patient for medically treating the target tissue volume is disclosed. The method includes inserting a treatment probe into the patient through an exposed skin of the patient, the treatment probe including an acoustic wave dispensing element. The method also includes applying acoustic waves to the target tissue volume via the acoustic wave dispensing element, the acoustic waves being applied so as to medically treat the target tissue volume. The method further includes monitoring an amount of energy absorbed by the target tissue as a result of applying the acoustic waves, and adjusting the acoustic waves being applied to the target tissue based on the amount of energy absorbed by the target tissue.
According to other embodiments, a system for delivering acoustic waves to a target tissue volume inside of a patient for medically treating the target tissue volume is disclosed. The system includes a treatment probe for treating the target tissue volume, the probe being insertable through an exposed skin of the patient and including an acoustic wave dispensing element operable to output acoustic waves for medically treating the target tissue volume. The system further includes a monitor operable to monitor an amount of energy absorbed by the target tissue as a result of applying the acoustic waves. The system also includes a controller coupled to the wave dispensing element and the monitor, the controller operable to control the acoustic waves output by the wave dispensing element based on the amount of energy absorbed by the target tissue.
According to yet other embodiments, a treatment probe for delivering acoustic waves to a target tissue volume inside of a patient for medically treating the target tissue volume is disclosed. The treatment probe includes a housing having one end configured to pierce through exposed skin of the patient, an acoustic wave dispensing element coupled to the housing and operable to output acoustic waves, and a communication element coupled to the acoustic wave dispensing element operable to communicate signals for controlling the acoustic waves.
For a fuller understanding of the nature and advantages of the present invention, reference should be made to the ensuing detailed description and accompanying drawings. Other aspects, objects and advantages of the invention will be apparent from the drawings and detailed description that follows.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Many of the problems associated with current HIFU treatments are due to the inability to control the amount of energy delivered and absorbed uniformly within a target treatment area. This results in an undesirable variability in tissue temperature. Some areas are over-treated, some under-treated, and some non-target areas are treated, all resulting in unacceptable outcomes. Embodiments of the present invention provide systems, devices, and methods for precisely controlling energy deposition throughout a target treatment area. Such energy application may be used for a variety of treatment purposes, including tissue ablation, precision hyperthermia, imaging, etc.
Embodiments described herein include individual needle probes, e.g., treatment probes that are embedded with one or more heating energy dispensing elements, such as small acoustic wave dispensing elements. The dispensing elements may be, e.g., acoustic transducers that convert electrical or mechanical energy into acoustic waves, or may be a lens (or lens assembly) that focuses acoustic waves generated from a separate wave generator. The needle probes may include a sharpened end so that they may penetrate the outer surface of an object, such as a patient's skin.
In some embodiments, a number of treatment probes may be positioned in an array to create a target treatment area all within the array volume. The spacing between treatment probes is not infinite in distance. Rather, spacing between treatment probes may be selected to ensure that uniform temperatures can be obtained at a target volume despite variable tissue types and conditions.
The amount of energy absorbed by the target volume may be precisely determined using a variety of techniques. In one embodiment, one or more temperature monitoring devices (e.g., thermistors, thermocouples, etc.) may be arranged proximate to or within the treatment volume. For example, one or more treatment probes may include a temperature monitoring device together with an acoustic wave dispensing element. For another example, one or more treatment probes may include a temperature monitoring device without any acoustic wave dispensing elements. For yet another example, the acoustic wave dispensing element may operate to measure the temperature of the treatment volume. In other embodiments, one or more temperature monitoring devices may be arranged external of the patient. For example, magnetic resonance imagers, infrared temperatures, externally applied ultrasound temperature sensors, and the like may be used. In some embodiments, instead of performing temperature monitoring, calculations may be performed to accurately estimate the temperature of the target volume. Such calculations may use factors such as target tissue type, characteristics of the acoustic wave dispensing element, distance of the acoustic wave dispensing element from the target tissue, orientation of the acoustic wave dispensing element with respect to the target tissue, and characteristics of the applied acoustic waves.
In at least one embodiment, real-time adjustments may be made to the amount of energy delivered based on either the temperature monitoring or calculated energy delivered. Accordingly, the temperature of the target volume may be used as feedback in controlling the amount of energy delivered.
By utilizing one or more of precision delivery of acoustic waves, precise high-resolution temperature monitoring, real-time control of and adjustment to the amount of energy delivered based on the temperature monitoring, and spacing of the individual treatment probes such that the energy may be uniformly delivered to a target volume resulting in achieving the temperature and/or energy absorption goal regardless of tissue composition and/or variability, one or more of the problems facing current HIFU delivery systems may be overcome.
System for Applying Heating Energy to a Target Volume
Turning to the figures,
System control unit 110 may control treatment probes 150 to deliver heating energy (e.g., acoustic waves) to a target volume. In an acoustic waves embodiment, treatment probes 150 may be controlled to deliver acoustic waves at a variety of different intensities (e.g., 0.1-100 mW/cm2 for diagnosis such as imaging and 100-10,000 W/cm2 for therapy such as tissue ablation) and at a variety of different compression pressures (e.g., compression and rarefaction pressures of 0.001-0.003 MPa for diagnosis and peak compression pressures up to 30 MPa and peak rarefaction pressures up to 10 MPa for therapy).
System control unit 110 may be coupled to (or may include) temperature monitor 160, and use temperature monitor 160 to monitor the temperature of a target volume or calculate an estimated amount of energy absorbed by the target volume. In one embodiment, one or more monitors 160 (e.g., thermistors, thermocouples, etc.) may be arranged proximate to or within the treatment volume. For example, one or more of treatment probes 150 may include a temperature monitor 160 together with an acoustic wave dispensing element (not shown) arranged within treatment probes 150. For another example, one or more treatment probes 150 may include a temperature monitor 160 without any acoustic wave dispensing elements. For yet another example, the temperature monitor 160 may be an acoustic wave dispensing element. In other embodiments, one or more temperature monitors 160 may be arranged external of the patient. For example, temperature monitors 160 may include magnetic resonance imagers, infrared temperature sensors, externally applied ultrasound temperature sensors, and the like. In some embodiments, instead of performing temperature measurements, temperature monitor 160 may perform calculations to accurately estimate the temperature of the target volume. Such calculations may use factors such as target tissue type, characteristics of the acoustic wave dispensing element, distance of the acoustic wave dispensing element from the target tissue, orientation of the acoustic wave dispensing element with respect to the target tissue, and characteristics of the applied acoustic waves.
The elements of system control unit 110 may cooperatively configure the control unit to perform one or more of the operations discussed herein. Input/output element 120 may be any suitable device or devices for receiving inputs from an operator and providing outputs to the operator. For example, input/output element 120 may include a keyboard, a mouse, a keypad, a trackball, a light pen, a touch screen display, a non-touch screen display (e.g., a cathode ray tube display, a liquid crystal display, a light emitting diode display, a plasma display, etc.), a speaker, etc. Input/output element 120 may be operable to perform input/output functions as described herein, such as receiving a desired temperature input from the operator, receiving a selection of one or more desired treatment probes to activate, displaying a current temperature of a treatment volume to the operator, etc.
Computing device 130 may include, e.g., a computer or a wide variety of proprietary or commercially available computers or systems having one or more processing structures, a personal computer, and the like, with such systems often comprising data processing hardware and/or software configured to implement any one (or combination of) the processing operations described herein. Any software will typically include machine readable code of programming instructions embodied in a non-transitory tangible media such as an electronic memory, a digital or optical recovering media, or the like, and one or more of these structures may also be used to transmit data and information between components of the system in any wide variety of distributed or centralized signal processing architectures.
According to one embodiment, computing device 130 includes a controller 132 such as a single core or multi-core processor and a storage element 134 such as a tangible non-transitory computer-readable storage medium, where processor 132 may execute computer-readable code stored in storage element 134.
Computing device 130 may also include a data acquisition card 136. Data acquisition card 136 may be electrically or wirelessly coupled to treatment probes 150 and/or temperature monitor 160 so as to receive various measurement data from treatment probes 150 and/or temperature monitor 160. For example, data acquisition card 136 may receive temperature measurements from temperature sensors included in treatment probes 150, or temperature measurements from temperature monitor 160.
In some embodiments, computing device 130 may also include a wave generator 138. Wave generator 138 may be operable to generate acoustic waves. The acoustic waves may be in the ultrasound frequency band (e.g., 20 kHz to 200 MHz or greater than 200 MHz), the audible frequency band (e.g., 20 Hz to 20 kHz), or the infrasound frequency band (e.g., less than 20 Hz). The acoustic waves may have a variety of different intensities (e.g., 0.1-100 mW/cm2 for diagnosis such as imaging and 100-10,000 W/cm2 for therapy such as tissue ablation) and at a variety of different compression pressures (e.g., compression and rarefaction pressures of 0.001-0.003 MPa for diagnosis and peak compression pressures up to 30 MPa and peak rarefaction pressures up to 10 MPa for therapy).
System control unit 110 may also include power supply 140, which may be any suitable power supply for supplying power to input/output element 120 and/or computing device 130. In one embodiment, power supply 140 may include a power converter for converting AC power received from an AC power source (located external to system control unit 110) to DC power. In other embodiments, power supply 140 may include a battery.
System 100 also may include a communication element 145 coupled to treatment probes 150 and operable to communicate signals for controlling the acoustic waves output by treatment probes 150. In one embodiment, treatment probes 150 may include an acoustic transducer configured to convert electrical or mechanical signals to acoustic waves. In such cases, communication element 145 may be a wire or other electrical conductor that communicates electrical signals from computing device 130 to treatment probes 150. In another embodiment, treatment probes 150 may include an acoustic lens configured to focus or otherwise redirect acoustic waves to a treatment volume. In such cases, communication element 145 may be a waveguide or other element operable to communicate acoustic waves from wave generator 138 to the acoustic lens located in treatment probes 150. In yet other embodiments, communication element 145 may be a wireless communication channel (e.g., using RF communication, IR communication, or other wireless communication technique) operable to communicate control signals from computing device 130 to a wireless receiver located in treatment probes 150.
Treatment probes 150 includes one or more probes configured to pierce the outer surface of an object to reach a treatment volume. At least one of the probes includes an acoustic wave dispensing element operable to output acoustic waves. In some embodiments, an array of elongated probes may be provided. The probes may output acoustic waves based on signals (electrical, acoustic, etc.) communicated from computing device 130. In some embodiments, one or more probes may include or be replaced by a temperature monitor (e.g., a thermistor, a thermocouple, etc.) for measuring a temperature of the probe or within a vicinity of the probe (e.g., at a target volume). In at least one embodiment, one or more treatment probes 150 may also or alternatively acquire images of the treatment volume. For example, a treatment probe may acquire images using the acoustic waves output by the treatment probe.
According to one embodiment, the treatment probes may be individually advanced and positioned within a target tissue (e.g., a prostate). Once the probes are positioned, one or more ultrasonic waves may be applied to the target tissue via the probes, thereby causing the target tissue to absorb energy and increase in temperature. Such waves may be used, for example, for tissue ablation, hyperthermia, imaging, etc.
System 100 in certain embodiments is a system for selectively applying acoustic waves to target volumes, and includes various components such as an input/output element 120, a computing device 130, and a power supply 140. However, it will be appreciated by those of ordinary skill in the art that system 100 could operate equally well by having fewer or a greater number of components than are illustrated in
Arrangement of Treatment Probes Proximate a Target Volume
As described herein, a number of treatment probes may be positioned in a target treatment area all, and may include an array of treatment probes. The spacing between treatment probes may be selected to ensure that a more even or uniform distribution of temperatures can be obtained at a target volume despite variable tissue types and conditions, and/or to more precisely control heating energy and selected heating to the target tissue within a desired temperature range. Embodiments are described with reference to acoustic wave heating energy delivery, though the described structures and methods shall not be limited solely to one heating energy embodiment.
Turning to
In accordance with the embodiment depicted in
In accordance with the embodiment depicted in
The embodiment illustrated in
One or more treatment probes 200 may be disposed within an object 250 to apply acoustic waves to a target volume 260 located in the object 250. The one or more treatment probes 200 can include an array of treatment probes, e.g., as conceptually illustrated with reference to
While various embodiments are depicted, illustrating various wave types, wave angles, wave focal lengths, distance between probes, and the like, it will be appreciated by those of ordinary skill in the art that the arrangements disclosed herein are not limited to those explicitly illustrated in
Characteristics of Treatment Probes
Turning to
Acoustic wave dispensing element 330 is coupled to housing 310 and is operable to output acoustic waves. Acoustic wave dispensing element 330 according to this embodiment is arranged on an outer surface of housing 310, and may output acoustic waves at an angle perpendicular to the longitudinal direction of housing 310.
In the embodiments depicted in
Probes 300 and 400 in certain embodiments may include various components such as a housing, a piercing end, an acoustic wave dispensing element, and a communication element. However, it will be appreciated by those of ordinary skill in the art that the probes could operate equally well by having fewer or a greater number of components than are illustrates in
Acoustic wave dispensing element 530 according to this embodiment is arranged on a surface of probe 500 other than piercing end 520, and is configured to output acoustic waves in a direction perpendicular to the longitudinal axis of probe 500. In other embodiments, acoustic wave dispensing element 530 may be arranged on different surfaces of probe 500, and/or may be configured to output acoustic waves in directions other than a direction perpendicular to the longitudinal axis of probe 500. Further, in this embodiment acoustic wave dispensing element 530 is configured to be embedded within probe 500 such that it is retained within an outer surface 550 of probe 500. Such an arrangement may advantageously reduce damage to the object in which probe 500 is disposed for treatment.
Probe 500 may also include a communication element 535 coupled to acoustic wave dispensing element 530 and extending within housing 510 and along a length of probe 500. In this embodiment, communication element 535 is a conductive wire (for electrically or magnetically actuating acoustic transducer 530), a resilient member (for mechanically actuating acoustic transducer 530), or other suitable component for actuating acoustic transducer 530. In some embodiments, communication element 535 may be operable to communicate signals resulting from actuation of acoustic transducer 530. For example, when acoustic transducer 530 is used for imaging or measuring temperature, acoustic transducer 530 may be actuated from acoustic signals reflected from a target volume, and signals indicative of such actuation may be communicated from transducer 530 via communication element 535.
Temperature monitor 540 may be any suitable component for measuring temperature, such as a thermistor, a thermocouple, etc. Temperature monitor 540 according to this embodiment is arranged on a surface of probe 500 other than piercing end 520, and is configured to monitor temperature at a location proximate to the longitudinal axis of probe 500. In other embodiments, temperature monitor 540 may be arranged on different surfaces and/or different locations of probe 500, such as at piercing end 520, and may be arranged on different probes such as any of those described with reference to
Probe 500 may also include a communication element 545 coupled to temperature monitor 540 and extending within housing 510 and along a length of probe 500. In this embodiment, communication element 545 is a conductive wire (for electrically or magnetically communicating signals indicative of temperature from temperature monitor 540).
In some embodiments, probe 500 may also include wireless communication circuitry (not shown). Such circuitry may be operable to communicate temperature signals from temperature monitor 540, control signals to acoustic transducer 530, and/or signals resulting from actuation of acoustic transducer 530, as previously described.
Probes 500 and 600 in certain embodiments may include various components such as acoustic transducers, acoustic lenses, temperature monitors, etc. However, it will be appreciated by those of ordinary skill in the art that the probes could operate equally well by having fewer or a greater number of components than are illustrated in
For example, in some embodiments the focal point of an acoustic wave dispensing element may be variable. A variable focal point may be achieved using any one or more of a number of techniques. For example, where acoustic transducers are used, the transducer may be made of flexible semiconductor material, a number of movable transducers having converging focal points may be used, etc. The semiconductor material may be flexed or the transducers moved in response to pressure applied from a mechanical actuator, or by some other mechanism. For another example, where acoustic lens are used, a variable focus lens assembly may be used (changing a distance between lens, changing a lens shape arranged at an interface between two liquid cavities, changing the electrical voltage applied to a multi-layer liquid crystal lens, changing the shape of a liquid drop in a multi-liquid lens, etc.). The focal point of the acoustic wave dispensing element may be controlled by any suitable entity. For example, computing device 130 (
Application of Energy with Precision Temperature Monitoring
Turning to the figures,
Temperature probe 280 may also take the form of any of the probes described herein, where temperature probe 280 includes at least one temperature sensor. For example, temperature probe 280 may be a probe including temperature sensor 540/640 (
Turning to the figures,
It should be recognized that embodiments are not limited to providing single treatment probes and temperature probes. Rather, in some embodiments, a number of treatment probes may be used, internally and/or externally, to apply energy to one or more treatment volumes. Similarly, one or more temperature probes may be used to monitor the temperature of the treatment volumes. In one particular embodiment, one temperature probe may be provided for each treatment probe, and disposed to monitor the temperature of the target volume of the associated treatment probe.
Methods for Treating a Target Volume Using Acoustic Waves
In operation 810, a treatment probe is inserted into an object through an exposed surface of the object. For example, a treatment probe may be inserted through the exposed skin of a patient such that an acoustic wave dispensing element of the treatment probe is located proximate to a treatment volume. The treatment probe may be inserted at various depths to reach the treatment volume. In some embodiments, a plurality of treatment probes may be inserted into the object, where the treatment probes are spaced apart from one another such that they are all located proximate to a treatment volume. For example, the treatment probes may be spaced apart such that upon being disposed in the object, the acoustic wave dispensing elements of the probes are located equidistant from a treatment volume. In an alternative embodiment, instead of being inserted into the object, the treatment probe(s) may be disposed outside of the object, as depicted in and described with reference to
In operation 820, acoustic waves are applied to a target volume via an acoustic wave dispensing element in the treatment probe. For example, with reference to
In operation 830, an amount of energy absorbed by the target volume is monitored. In one embodiment and with reference to
In another embodiment, temperature monitor 160 may estimate the temperature at the target volume. For example, controller 132 may estimate the temperature using one or more of a variety of factors, such as the type of material of the target volume (e.g., target tissue type), characteristics of the acoustic wave dispensing element (e.g., loss characteristics, focal depth, etc.), distance of the acoustic wave dispensing element from the target volume, orientation of the acoustic wave dispensing element with respect to the target issue, and characteristics of the controlled output acoustic waves (e.g., intensity, compression pressure, rarefaction pressure, etc.).
In operation 840, the acoustic waves being applied to the target tissue volume are adjusted based on the amount of energy absorbed by the target volume. The amount of energy absorbed may be determined using, e.g., a temperature monitor and/or a calculated temperature estimate as previously described. The acoustic waves may be adjusted in one or more of a number of different ways. For example, the intensity, compression pressure, rarefaction pressure, focal depth, and/or direction of the acoustic waves may be adjusted. In some embodiments, the acoustic waves may be adjusted so as to achieve a desired target volume temperature.
In operation 850, the target volume is imaged using the acoustic wave dispensing element. For example, acoustic wave dispensing elements of one or more treatment probes 170 may be controlled to output acoustic waves having characteristics appropriate for imaging the target volume. In one embodiment, the acoustic waves may be controlled to have an intensity in the range of 0.1-100 mW/cm2, and compression and rarefaction pressures in the range of 0.001-0.003 MPa. The same or different acoustic wave dispensing elements may be used to receive acoustic waves reflected from the target volume, and send information indicative of the reflected acoustic waves to data acquisition card 136.
It should be appreciated that the specific operations illustrated in
In operation 910, a treatment probe is inserted into an object. Operation 910 may be identical to operation 810, such that the treatment probe is inserted into an object through an exposed surface of the object or, alternatively, disposed outside of the object.
In operation 920, a desired temperature and duration are received. The desired temperature may be a desired temperature of a treatment volume. For example, computing device 130 may receive the desired temperature and/or duration from an operator via input/output element 120. The duration may be the desired duration at which the treatment volume is placed at the desired temperature, or may be the duration of an entire treatment (e.g., including heating and cooling times). The desired temperature and/or duration may be independently input for each of one or more treatment probes 150, where the desired temperature and/or duration may be the same for all treatment probes 150 or may be different for different probes 150.
In operation 930 acoustic waves are applied to a target volume. Operation 930 may be identical to operation 820. In some embodiments, the initial acoustic wave characteristics (e.g., intensity, pressure, etc.) may be determined based on the received desired temperature.
In operation 940, the temperature of the target volume is determined. Operation 940 may be identical to operation 830.
In operation 950, it is determined whether the temperature of the target volume is equal to the desired temperature. For example, controller 132 may compare the received desired temperature with the temperature of the target volume determined in operation 940. When the temperature of the target volume is equal to the desired temperature, processing may continue to operation 970. Otherwise, processing may continue to operation 960.
In operation 960, the acoustic waves being applied to the target volume are adjusted. Operation 960 may be identical to operation 840. Further, the acoustic waves may be adjusted based on whether the temperature of the target volume is greater than or less than the desired target volume temperature. For example, when the temperature of the target volume is greater than the desired target volume temperature, the acoustic waves may be adjusted to reduce the amount of energy absorbed by the target volume (e.g., by reducing the wave intensity, reducing the wave pressure, moving the wave direction of propagation away from the target volume, moving the wave focal depth away from the target volume, etc.). When the temperature of the target volume is less than the desired target volume temperature, the acoustic waves may be adjusted to increase the amount of energy absorbed by the target volume (e.g., by increasing the wave intensity, increasing the wave pressure, moving the wave direction of propagation toward the target volume, moving the wave focal depth toward the target volume, etc.).
In operation 970, it is determine whether the received duration is satisfied. For example, controller 132 may compare a duration over which the temperature of the target volume has been equal to the desired temperature with the desired duration received in operation 920 (in some embodiments, the difference could be within a range, such as between 0 and 0.5 degrees, between 0 and 1 degree, between 0.5 degrees and 2 degrees, or other suitable ranges). When the duration over which the temperature of the target volume has been equal to the desired temperature is less than the desired duration, processing may return to operation 930. Otherwise, the treatment process may end.
It should be appreciated that the specific operations illustrated in
While various embodiments are depicted and described with reference to in
In certain embodiments, systems, methods and devices as described herein have been demonstrated as remarkably effective in delivering energy to a target volume while more precisely controlling the resulting temperature applied to the target volume (e.g., controlled tissue heating). In accordance with various embodiments described herein, acoustic waves applied to target volumes can be specifically controlled, resulting in an unprecedented temperature control of target volumes in which treatment probes are disposed.
Target tissue heating involving systems, methods and devices described herein is not limited to any particular target temperature or temperature range. Delivery of heating energy as described herein, for example, may include heating of tissue from no discernable increase in tissue temperature above baseline (e.g., body temperature, such as normal human body temperature of about 37 degrees C.) to temperatures inducing indiscriminate, heat-mediated tissue destruction (e.g., tissue necrosis, protein cross-linking, etc.). For example, target tissue heating temperatures may include increases of target tissue from about 0 to about 5, 10, 20, 30 degrees C. (or higher) above baseline, as well as any temperature increment therebetween.
In some embodiments, heating energy application may be selected to elicit mild tissue heating, such that target tissue is heated a few degrees above baseline or body temperature, such as 0.1 to about 10 (or more) degrees Celsius above baseline or body temperature (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc. degrees Celsius above baseline). Such mild heating and/or accurate temperature control through a target volume can be particularly advantageous in applications where it is desired to destroy cancerous cells while minimizing damage to nearby healthy cells. For example, mild tissue heating may be selected such that wave delivery elicits preferential disruption or destruction to cancerous cells in a target tissue (e.g., target tissue volume) compared to non-cancerous cells in the target tissue.
As described above, systems, methods and devices described herein further allow for more precise control of the temperatures or temperature ranges of the target tissue or heating elicited in the target tissue with delivery of heating energy. Thus, target temperatures can include a target range or selected/expected deviation from the target temperatures. For example, tissue heating temperatures or ranges can include a modest deviation from a target, and will typically be less than a few degrees Celsius, and in some instances less than about 1 degree Celsius (e.g., 0.001 to about 1 degree Celsius). For example, actual heating may be from +/− about 0.001 to about 10 degrees Celsius, or any increment therebetween.
Throughout this description, reference may be made to various temperatures. Temperatures can be actual temperatures, predicted or calculated temperatures, or measured temperatures (e.g., directly or indirectly measured tissue temperatures). In some embodiments, such temperatures may correspond to the temperature of a treatment probe, subset of treatment probes, or all treatment probes disposed in a target volume. For example, treatment probe temperature may be acquired via a temperature sensor disposed in a treatment probe, such as temperature sensor 540 (
While embodiments of the present invention are described with particular reference to targeting tissue, systems, methods and devices described herein are not intended for limitation to any particular tissue or bodily location. For example, systems, methods and devices of the present invention can be utilized for targeting various different tissues including cancerous cells of various tissue types and locations in the body, including without limitation prostate, breast, liver, lung, colon, kidney, brain, uterine, ovarian, testicular, stomach, pancreas, etc.
Accordingly, the scope of the invention should be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application claims the benefit of U.S. Provisional Application No. 61/674,668, filed Jul. 23, 2012, which application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61674668 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14416552 | Jan 2015 | US |
Child | 15451185 | US |