Systems, methods and devices for processing batches of coins utilizing coin imaging sensor assemblies

Information

  • Patent Grant
  • 10685523
  • Patent Number
    10,685,523
  • Date Filed
    Thursday, March 16, 2017
    7 years ago
  • Date Issued
    Tuesday, June 16, 2020
    4 years ago
Abstract
Currency processing systems, coin processing machines, coin imaging sensor assemblies and methods of making and methods of using the same are presented herein. A currency processing system is disclosed which includes a housing with a coin input area for receiving coins and coin receptacles for stowing processed coins. A disk-type coin processing unit, which is coupled to the coin input area and coin receptacles, includes a rotatable disk for imparting motion to coins, and a sorting head for separating and discharging coins to the coin receptacles. A sensor assembly is mounted to, adjacent or within the sorting head adjacent the rotatable disk. The sensor assembly includes a sensor circuit board with photodetector elements and light emitting devices. An illumination control device is communicatively coupled to and operable for controlling the light emitting device(s). A photodetector control device is communicatively coupled to and operable for controlling the sensor circuit board.
Description
TECHNICAL FIELD

The present disclosure relates generally to systems, methods, and devices for processing currency. More particularly, aspects of this disclosure relate to coin processing units for imaging and evaluating batches of coins.


BACKGROUND

Some businesses, particularly banks and casinos, are regularly faced with large amounts of currency which must be organized, counted, authenticated and recorded. To hand count and record large amounts of currency of mixed denominations requires diligent care and effort, and demands significant manpower and time that might otherwise be available for more profitable and less tedious activity. To make counting of bills and coins less laborious, machines have been developed which automatically sort, by denomination, mixed assortments of currency, and transfer the processed currency into receptacles specific to the corresponding denominations. For example, coin processing machines for processing large quantities of coins from either the public at large or private institutions, such as banks, casinos, supermarkets, and cash-in-transit (CIT) companies, have the ability to receive bulk coins from customers and other users of the machine, count and sort the coins, and store the received coins in one or more coin receptacles, such as coin bins or coin bags. One type of currency processing machine is a redemption-type processing machine wherein, after the deposited coins and/or bank notes are counted, funds are returned to the user in a pre-selected manner, such as a payment ticket or voucher, a smartcard, a cash card, a gift card, and the like. Another variation is the deposit-type processing machine where funds which have been deposited by the user are credited to a personal account. Hybrid variations of these machines are also known and available.


A well-known device for processing coins is the disk-type coin sorter. In one exemplary configuration, the coin sorter, which is designed to process a batch of mixed coins by denomination, includes a rotatable disk that is driven by an electric motor. The lower surface of a stationary, annular sorting head (or “sort disk”) is parallel to and spaced slightly from the upper surface of the rotatable disk. The mixed batch of coins is progressively deposited onto the top surface of the rotatable disk. As the disk is rotated, the coins deposited on the top surface thereof tend to slide outwardly due to centrifugal force. As the coins move outwardly, those coins which are lying flat on the top surface of the rotatable disk enter a gap between the disk and the sorting head. The lower surface of the sorting head is formed with an array of exit channels which guide coins of different denominations to different exit locations around the periphery of the disk. The exiting coins, having been sorted by denomination for separate storage, are counted by sensors located along the exit channel. A representative disk-type coin sorting mechanism is disclosed in U.S. Pat. No. 5,009,627, to James M. Rasmussen, which is incorporated herein by reference in its entirety and for all purposes.


It is oftentimes desirable in the sorting of coins to discriminate between valid coins and invalid coins. Use of the term “valid coin” can refer to genuine coins of the type to be sorted. Conversely, use of the term “invalid coin” can refer to items in the coin processing unit that are not one of the coins to be sorted. For example, it is common that foreign (or “stranger”) coins and counterfeit coins enter a coin processing system for sorting domestic coin currency. So that such items are not sorted and counted as valid coins, it is helpful to detect and discard these “invalid coins” from the coin processing system. In another application wherein it is desired to process only U.S. quarters, nickels and dimes, all other U.S. coins, including dollar coins, half-dollar coins, pennies, etc., can be considered “invalid.” Additionally, coins from all other coins sets including Canadian coins and European coins, for example, would be considered “invalid” when processing U.S. coins. In another application it may be desirable to separate coins of one country (e.g., Canadian coins) from coins of another country (e.g., U.S. coins). Finally, any truly counterfeit coins (also referred to in the art as “slugs”) are always considered “invalid” regardless of application.


Historically, coins have been sorted and validated or otherwise processed based on physical assessment of their structural characteristics, such as coin diameter, coin thickness, metal content, shape, serrations and engravings on obverse and reverse sides or faces of the coin. To improve discriminating accuracy, coin processing units have been designed for sorting and authenticating coins by optically detecting coin surface patterns. For example, one known coin discriminating apparatus is provided with an assortment of light emitting elements, such as light emitting diodes (LEDs), for projecting light onto a passing coin, and a photodetector, a charge-coupled device (CCD) detector, CMOS detector, or other optical sensor for optically detecting light emitted from the light emitting elements and reflected by the surface of the coin. From the reflected light pattern, the apparatus is able to authenticate and denominate coins based on coin image pattern data that was optically detected and digitized.


One drawback with many prior art optical coin discriminating devices is an undesirably large proportion of discrimination errors caused by variations in coin surface reflectance due to aging and wear. In addition, the processing and remediation time for identifying and removing invalid or unfit coins using many conventional optical coin discriminating devices is undesirably long for bulk coin processing systems that must process thousands of coins within a few minutes. In addition to being slow and unreliable, many prior art optical coin discriminating devices are costly and require a great deal of packaging space with a large window for imaging. Moreover, most optical coin processing systems that are available today utilize single/broad wavelength lighting schemes (e.g., white light) that can only capture limited spectral characteristics of the coins being processed.


SUMMARY

One drawback with many prior art optical coin discriminating devices is an undesirably large proportion of discrimination errors caused by variations in coin surface reflectance due to aging and wear. Another drawback with prior art discrimination and authentication methods is the use of single point sensors, each of which is employed to detect a single coin parameter. With this approach, it is particularly difficult to detect, for example, all of the defects in a coin unless every defect passes directly under the sole sensor. Use of a single, wider sensor to detect information from the entire coin typically lacks spatial resolution. In addition, the processing and remediation time for identifying and removing invalid or unfit coins using many conventional optical coin discriminating devices is undesirably long for bulk coin processing systems that must process thousands of coins within a few minutes. In addition to being slow and unreliable, many conventional optical coin discriminating devices are costly and require a great deal of packaging space with a large window for imaging. Moreover, most optical coin processing systems that are available today utilize single wavelength lighting schemes that can only capture limited spectral characteristics of the coins being processed.


Currency processing systems, coin processing machines, coin processing units, coin imaging sensor assemblies, and methods of making and methods of using the same are presented herein. Some aspects of the present disclosure are directed to currency processing systems, such as coin processing machines with disk-type coin processing units, which utilize one or more coin-imaging sensor assemblies for processing batches of coins. In an example, an imaging-capable coin processing machine may include a coin transport system, a coin imaging sensor system, an electronics and image processing system, and a processing system to decide if each processed coin is fit for circulation, is of a particular denomination, belongs to a specific coin set, is authentic, and/or meets other criteria as required by the system. For some embodiments, the coin transport system can transport coins at a linear speed of at least approximately 50 inches per second (ips) and, for some embodiments, at a linear speed of at least approximately 300 ips. The sensor assembly may include means to excite a certain property or properties of a coin using, for example, electric energy, magnetic energy, or electromagnetic energy, and means to capture the response from the coin by capturing imaging information by means of using the plurality of sensing elements. The resolution of the image may range from at least approximately 2 dots per inch (dpi) to upwards of at least approximately 50 dpi, 100 dpi, 200 dpi or more, for some embodiments.


Aspects of the present disclosure are directed to a currency processing system with a housing, one or more coin receptacles, and a disk-type coin processing unit. The housing has a coin input area for receiving a batch of coins. The one or more coin receptacles are stowed inside or adjacent the housing or are otherwise operatively coupled to the housing. The disk-type coin processing unit is operatively coupled to the coin input area and the coin receptacle(s) to transfer coins therebetween. The coin processing unit includes a rotatable disk for imparting motion to a plurality of coins, and a sorting head with a lower surface that is generally parallel to and at least partially spaced from the rotatable disk. The lower surface forms numerous shaped regions, such as exit channels, for guiding the coins, under the motion imparted by the rotatable disk, to exit station(s) through which the coins are discharged from the coin processing unit to the coin receptacle(s). A sensor assembly is mounted to, adjacent or within the sorting head adjacent the rotatable disk. The sensor assembly is configured to analyze coins on the rotatable disk and generate signals indicative of coin image information for processing the coins. The sensor assembly includes one or more light emitting devices, such as rows of light emitting diodes, for illuminating passing coins, and a sensor circuit board with one or more photodetector elements for sensing light reflected off said coins. An illumination control device, which may be in the nature of a microcontroller or other integrated circuit, is communicatively coupled to and operable for controlling the one or more light emitting devices. Additionally, a photodetector control device, which may also be in the nature of a microcontroller or other integrated circuit, is communicatively coupled to and operable for controlling the sensor circuit board.


In accord with other aspects of the present disclosure, a coin-imaging sensor assembly for a coin processing apparatus is disclosed. The coin processing apparatus includes a housing with an input area for receiving a batch of coins, and one or more coin receptacles for stowing processed coins. Also included in the coin processing apparatus is a coin sorting device for separating coins by denomination, and a coin transport mechanism for transferring coins from the input area, through the coin sorting device, to the coin receptacle(s). The coin imaging sensor assembly comprises a sensor assembly housing that is mounted to, adjacent or within the coin sorting device. One or more light emitting devices, which are mounted inside the sensor assembly housing, are operable to emit light onto passing coins. A sensor circuit board is also mounted inside the sensor assembly housing. The sensor circuit board includes one or more photodetector elements operable to sense light reflected off of surfaces of passing coins. An illumination control device is communicatively coupled to and operable for controlling the one or more light emitting devices. In addition, a photodetector control device is communicatively coupled to and operable for controlling the sensor circuit board.


According to yet other aspects of the present disclosure, a coin processing machine is presented for sorting batches of coins comprising coins of mixed diameters. The currency processing machine includes a coin input area for receiving coins from a user, and at least one coin receptacle for receiving and stowing processed coins. The currency processing device also includes a coin processing unit that receives coins from the coin input area, processes the received coins, and outputs the processed coins to the coin receptacle(s). A sensor assembly is mounted to, adjacent or within the coin processing unit. The sensor assembly analyzes coins and generates signals indicative of coin image information for processing the coins. The sensor assembly includes one or more light emitting devices and a sensor circuit board with one or more photodetector elements. An illumination control device is communicatively coupled to and operable for controlling the one or more light emitting devices. In addition, a photodetector control device is communicatively coupled to and operable for controlling the sensor circuit board. An image processing circuit is communicatively coupled to the sensor assembly and configured to process the coin image information signals output therefrom. A processor is communicatively coupled to the image processing circuit and configured to analyze the processed signals and generate therefrom an image for each of the coins.


Methods of making and methods of using any of the foregoing processing systems, processing machines, processing units, etc., are also within the scope and spirit of this disclosure.


The above summary is not intended to represent each embodiment or every aspect of the present disclosure. Rather, the foregoing summary merely provides an exemplification of some of the novel aspects and features set forth herein. The above features and advantages, and other features and advantages of the present disclosure, will be readily apparent from the following detailed description of the exemplary embodiments and modes for carrying out the present invention when taken in connection with the accompanying drawings and appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front perspective-view illustration of an example of a currency processing system in accordance with aspects of the present disclosure.



FIG. 2 is a schematic side-view illustration of the representative currency processing machine of FIG. 1.



FIG. 3 is a front perspective-view illustration of an example of a coin processing machine in accordance with aspects of the present disclosure.



FIG. 4 is a partially broken away perspective-view illustration of an example of a disk-type coin processing unit in accordance with aspects of the present disclosure.



FIG. 5 is an enlarged bottom-view illustration of the sorting head of the exemplary disk-type coin processing unit of FIG. 4.



FIG. 6 is an underside perspective-view illustration of the annular sorting head of a disk-type coin processing unit with a representative linear array of optical coin-imaging sensors in accordance with aspects of the present disclosure.



FIG. 7 is a schematic illustration of an example of a linear optical sensor arrangement in accordance with aspects of the present disclosure.



FIG. 8 is a schematic illustration of another example of a linear optical sensor arrangement in accordance with aspects of the present disclosure.



FIG. 9 is a schematic illustration of yet another example of a linear optical sensor arrangement in accordance with aspects of the present disclosure.



FIG. 10 is a schematic illustration of an example of a linear optical sensor arrangement used to image the side of a coin in accordance with aspects of the present disclosure.



FIGS. 11A and 11B are schematic illustrations of yet other examples of a linear optical sensor arrangement in accordance with aspects of the present disclosure.



FIG. 12 is a schematic illustration of yet other examples of a linear optical sensor arrangement in accordance with aspects of the present disclosure.



FIG. 13 is a schematic illustration of yet other examples of a linear optical sensor arrangement in accordance with aspects of the present disclosure.



FIG. 14 is a side perspective-view illustration of the annular sorting head assembly of an example of a disk-type coin processing unit with a representative coin-imaging sensor arrangement in accordance with aspects of the present disclosure.



FIG. 15 is an enlarged perspective-view illustration of the coin-imaging sensor arrangement of FIG. 14.



FIG. 16 is a schematic illustration of an example of a coin-imaging sensor assembly in accordance with aspects of the present disclosure.



FIG. 17 is a diagrammatic illustration of an example of an electronic sensor control circuit for controlling operation of the coin-imaging sensor assembly of FIG. 16.





The present disclosure is susceptible to various modifications and alternative forms, and some representative embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the inventive aspects of the disclosure are not limited to the particular forms illustrated in the drawings. Rather, the disclosure is to cover all modifications, equivalents, combinations and subcombinations, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

This disclosure is susceptible of embodiment in many different forms. There are shown in the drawings, and will herein be described in detail, representative embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspects of the invention to the illustrated embodiments. To that extent, elements and limitations that are disclosed, for example, in the Abstract, Summary, and Detailed Description sections, but not explicitly set forth in the claims, should not be incorporated into the claims, singly or collectively, by implication, inference or otherwise. For purposes of the present detailed description, unless specifically disclaimed: the singular includes the plural and vice versa; the word “all” means “any and all”; the word “any” means “any and all”; and the words “including” or “comprising” or “having” mean “including without limitation.” Moreover, words of approximation, such as “about,” “almost,” “substantially,” “approximately,” and the like, can be used herein in the sense of “at, near, or nearly at,” or “within 3-5% of,” or “within acceptable manufacturing tolerances,” or any logical combination thereof, for example.


Currency processing systems, coin processing machines, disk-type coin processing units, and methods of imaging and processing batches of coins are presented herein. For example, aspects of the present disclosure are directed to disk-type coin processing units and currency processing machines with disk-type coin processing units which utilize one-dimensional, two-dimensional and/or multi-wavelength sensor assemblies to process batches of coins. In accord with some embodiments, a currency processing system utilizes a one-dimensional or a two-dimensional optical sensor to capture a visual image of a coin travelling through a high-speed coin counting and sorting machine to determine the fitness, country of origin, and/or denomination of the coin. The one-dimensional (1D) sensor may be a 1D line scan sensor, whereas the two-dimensional (2D) sensor may be a 2D digital camera. The 1D and 2D optical sensors can identify visible fitness issues with genuine coins, such as holes, edge chips, roundness, surface corrosion and diameter, which traditional eddy current coin sensors cannot detect. Using visible pattern recognition, the disclosed optical sensor arrangements can also detect “strangers” and flag counterfeit coins that traditional eddy current coin sensors fail to call as counterfeit or stranger. Disclosed 1D and 2D optical sensor arrangements can also be operable to detect and report coin diameter and/or coin roundness measurements.


In an example, 2D optical sensor arrangements can generate an instantaneous picture of the entire upper and/or lower surface of a coin. By comparison, 1D optical sensor arrangements collect data line-by-line and then utilize a proprietary algorithm to reconstruct an image of coin surface(s) in the systems' software. While the final result from both can look similar or the same, generally one can get a higher resolution image using a 1D sensor arrangement. In instances where the system utilizes 2D optical sensor arrangements to analyze a coin moving along the arc, a software procedure may be introduced to correct for radial distortion(s). In systems where the coin is moving along a straight line, there is typically no need to make such corrections. In systems utilizing 1D optical sensor arrangements, a large opening need not be provided along the transport bath since the sensors take image data line by line. This makes the mechanical design and coin control much easier as compared to 2D configurations.


In accord with at least some embodiments, a coin processing unit utilizes multi-wavelength sensors to assess non-metallic coin characteristics that cannot be identified by existing coin discrimination and authentication technologies. Traditionally, coins are made of metals, alloys, or other types of electrically conductive metal-type materials. The principal metal-content and composition sensors in use today are predominantly based on eddy current, magnetic and electromagnetic type technologies. However, new types of coins, including circulation coins, numismatic coins and casino tokens, are being fabricated with non-metallic materials like ceramics, plastics, paints, coatings, ink markings, and other non-electrically-conductive materials. For instance, special pigments are being mixed with non-metallic components of the coin, such as for example a plastic ring or ceramic center. In some new coins, non-metallic, optically active particles are added to the plated layer of the coin. There are also coins or parts of coins that are painted with different types of inks. These new coins or additions to the coin have complex optical characteristics (e.g., Stokes or anti-Stokes features, spectral features, fluorescent or phosphorescent properties, IR properties, etc.) that cannot be detected using simple white or single wavelength optical systems. The multi-wavelength sensor systems disclosed herein can properly denominate and authenticate such coins by sensing the characteristics of the non-metallic materials for proper classification.


Multi-wavelength sensors are equally applicable to 1D and 2D solutions. Traditionally, coin imaging systems are limited to using “white light” (light that contains the wavelength components of the visible spectrum) to illuminate and analyze a coin. This allows for fitness, grayscale pattern based denomination and grayscale pattern based authentication. However, each coin has a color. In general, color (or the “visible spectrum”) covers only the electromagnetic spectrum from ˜400 to ˜750 nm. Detecting color is for example detecting R, G and B signals (3 wavelengths). However, current and future coins have additional optical information outside of the visible spectrum (i.e., that which is perceptible by the human eye). Multi-wavelength sensors can collect spectral information of the coin image.


In an example, an imaging-capable coin processing machine may include a coin transport system, a coin imaging sensor system, an electronics and image processing system, and a processing system to decide if each processed coin is fit for circulation, is of a particular denomination, belongs to a specific coin set, is authentic, and/or meets other criteria as required by the system. The resolution of the image may range from at least approximately 2 dots per inch (dpi) while, for some embodiments, at least approximately 50 dpi. 100 dpi, 200 dpi or more, and, for some embodiments, at least approximately 400 dpi. For some embodiments, the coin processing unit can transport coins at a linear speed of at least approximately 50 inches per second (ips) and, for some embodiments, at a linear speed of at least approximately 300 ips. For some embodiments, the coin processing unit is rated at 10,000 coins per minute (cpm) (e.g., approximately 200 ips), whereas some systems are rated at 15,000-20,000 cpm (e.g., approximately 300-400 ips).


Also featured herein are one-dimensional (1D) CIS imaging sensors with an improved lighting configuration to offer improved performance over conventional CIS sensors, including reduced radial distortion and an increased number of detectable coin attributes. Some embodiments offer pattern recognition of stranger coins. Additional features include a two-dimensional (2D) “snapshot” configuration operable to accurately analyze the outer diameter of the coin to generate images that do not suffer from radius distortion. Other options include orienting each coin image for improved fitness detection. Disclosed embodiments also offer a much higher probability of stranger pattern recognition since the image will not suffer from radius distortion. Also disclosed are exploratory fitness algorithms that have been developed to detect the characteristics mentioned above for the 1D sensor and lighting configuration and the 2D camera images.


Both 1D and 2D imaging systems can utilize an opening in the sort head to view passing coins. 1D imaging systems will typically require a smaller opening since each scan line is individually exposed. Conversely, 2D imaging system typically require an opening at least as large as the largest coin if a single snapshot is to be taken. To reduce the requisite size of the viewing opening, the 2D imaging system can take two or three or more reduced-size “slice” images and stitch them together to form a complete image. In many disk-type coin sorter configurations, processed coins are kept under pad pressure between the sort head and rotating support disk. The 1D and 2D sensor assemblies can be provided with a viewing glass or polymeric window that can withstand the coin's passage pressure. An alternative solution may include temporarily removing the pad pressure during the short time the system needs to capture a single image.


Referring now to the drawings, wherein like reference numerals refer to like components throughout the several views, FIG. 1 illustrates an example of a currency processing system, designated generally as 10, in accordance with aspects of the present disclosure. Many of the disclosed concepts are discussed with reference to the representative currency processing systems depicted in the drawings. However, the novel aspects and features of the present disclosure are not per se limited to the particular arrangements and components presented in the drawings. For example, many of the features and aspects presented herein can be applied to other currency processing systems without departing from the intended scope and spirit of the present disclosure. Examples of currency processing systems into which the disclosed concepts can be incorporated are the JetSort™ family or LX™ family of coin sorting machines available from Cummins-Allison Corp. The inventive aspects of the present disclosure, however, are not limited to coins processing systems utilizing sorting disks and could be utilized in other currency processing systems (e.g., powered rail coin sorters) regardless of speed as long as the coin position is controlled. In addition, although differing in appearance, the coin processing systems and devices and functional componentry depicted and discussed herein can each take on any of the various forms, optional configurations, and functional alternatives described above and below with respect to the other disclosed embodiments, and thus can include any of the corresponding options and features, unless explicitly disclaimed or otherwise logically prohibited. It should also be understood that the drawings are not necessarily to scale and are provided purely for descriptive purposes; thus, the individual and relative dimensions and orientations presented in the drawings are not to be considered limiting.


The currency processing system 10 is a hybrid redemption-type and deposit-type currency processing machine with which funds may be deposited into and returned from the machine, in similar or different forms, in whole or in part, and/or funds may be credited to and withdrawn from a personal account. The currency processing machine 10 illustrated in FIG. 1 includes a housing 11 that may house various input devices, output devices, and input/output devices. By way of non-limiting example, the currency processing machine 10 includes a display device 12 that may provide various input and output functions, such as displaying information and instructions to a user and receiving selections, requests, and other forms of inputs from a user. The display device 12 is, in various embodiments, a cathode ray tube (CRT), a high-resolution liquid crystal display (LCD), a plasma display, a light emitting diode (LED) display, a DLP projection display, an electroluminescent (EL) panel, or any other type of display suitable for use in the currency processing machine 10. A touch screen, which has one or more user-selectable soft touch keys, may be mounted over the display device 12. While a display device 12 with a touchscreen may be a preferred means for a user to enter data, the currency processing machine 10 may include other known input devices, such as a keyboard, mouse, joystick, microphone, etc.


The currency processing machine 10 includes a coin input area 14, such as a bin or tray, which receives batches of coins from a user. Each coin batch may be of a single denomination, a mixed denomination, a local currency, or a foreign currency, or any combination thereof. Additionally, a bank note input area 16, which may be in the nature of a retractable pocket or basket, is also offered by the currency processing machine 10. The bank note input area 16, which is illustrated in its open position in FIG. 1, can be retracted by the currency processing machine 10 once the bulk currency has been placed therein by the user. In addition to banknotes, or as a possible alternative, the bank note receptacle 16 of the currency processing machine 10 can also be operable to accommodate casino scrip, paper tokens, bar coded tickets, or other known forms of value. These input devices—i.e., the currency input areas 14 and 16, allow the user of the currency processing machine 10 to input his or her funds, which can ultimately be converted to some other sort of fund source that is available to the user. Optionally or alternatively, the currency processing machine 10 can operate to count, authenticate, valuate, and/or package funds deposited by a user.


In addition to the above-noted output devices, the currency processing machine 10 may include various output devices, such as a bank note dispensing receptacle 20 and a coin dispensing receptacle 22 for dispensing to the user a desired amount of funds in bank notes, coins, or a combination thereof. An optional bank note return slot 18 may also be included with the currency processing machine 10 to return notes to the user, such as those which are deemed to be counterfeit or otherwise cannot be authenticated or processed. Coins which cannot be authenticated or otherwise processed may be returned to the user via the coin dispensing receptacle 22. The currency processing machine 10 further includes a paper dispensing slot 26, which can be operable for providing a user with a receipt of the transaction that was performed.


In one representative transaction, the currency processing machine 10 receives funds from a user via the coin input area 14 and/or the bank note input area 16 and, after these deposited funds have been authenticated and counted, the currency processing machine 10 returns to the user an amount equal to the deposited funds but in a different variation of bank notes and coins. Optionally, the user may be assessed one or more fees for the transaction (e.g., service fees, transaction fees, etc.). For example, the user of the currency processing machine 10 may input $102.99 in various small bank notes and pennies and in turn receive a $100 bank note, two $1 bank notes, three quarters, two dimes, and four pennies. As another option or alternative, the currency processing machine 10 may simply output a voucher or a receipt of the transaction through the paper dispensing slot 26 which the user can then redeem for funds by an attendant of the currency processing machine 10. Yet another option or alternative would be for the currency processing machine 10 to credit some or all of the funds to a personal account, such as a bank account or store account. As yet another option, the currency processing machine 10 may credit some or all of the funds to a smartcard, gift card, cash card, virtual currency, etc.


The currency processing machine 10 may also include a media reader slot 24 into which the user inserts a portable medium or form of identification, such as a driver's license, credit card, or bank card, so that the currency processing machine 10 can, for example, identify the user and/or an account associated with the user. The media reader 24 may take on various forms, such as a ticket reader, card reader, bar code scanner, wireless transceiver (e.g., RFID, Bluetooth, etc.), or computer-readable-storage-medium interface. The display device 12 with a touchscreen typically provides the user with a menu of options which prompts the user to carry out a series of actions for identifying the user by displaying certain commands and requesting that the user press touch keys on the touch screen (e.g. a user PIN). The media reader device 24 of the illustrated example is configured to read from and write to one or more types of media. This media may include various types of memory storage technology such as magnetic storage, solid state memory devices, and optical devices. It should be understood that numerous other peripheral devices and other elements exist and are readily utilizable in any number of combinations to create various forms of a currency processing machine in accord with the present concepts.



FIG. 2 is a schematic illustration of the currency processing machine 10 showing various modules which may be provided in accord with the disclosed concepts. A bank note processing module 30, for example, receives bank notes from the bank note input area 16 for processing. In accord with a representative configuration, the inward movement of a retractable bank note input area 16 positions a stack of bills at a feed station of the bank note scanning and counting device which automatically feeds, counts, scans, authenticates, and/or sorts the bank notes, one at a time, at a high rate of speed (e.g., at least approximately 350 bills per minute). In place of, or in addition to the bank note input area 16, the currency processing machine 10 may include a single bank note receptacle for receiving and processing one bank note at a time. The bank notes that are recognized and/or deemed authentic by the bank note processing module 30 are delivered to a currency canister, cassette or other known storage container. When a bank note cannot be recognized by the bank note processing module 30, it can be returned to the customer through the bank note return slot 18. Exemplary machines which scan, sort, count, and authenticate bills as may be required by the bank note processing module 30 are described in U.S. Pat. Nos. 5,295,196, 5,970,497, 5,875,259, which are incorporated herein by reference in their respective entireties and for all purposes.


The representative currency processing machine 10 shown in FIG. 2 also includes a coin processing module 32. The coin processing module 32 may be operable to sort, count, valuate and/or authenticate coins which are deposited in the coin input receptacle 14, which is operatively connected to the coin processing module 32. The coins can be sorted by the coin processing module 32 in a variety of ways, but one known method is sorting based on the diameters of the coins. When a coin cannot be authenticated or counted by the coin processing module 32, it can be directed back to the user through a coin reject tube 33 which leads to the coin dispensing receptacle 22. Thus, a user who has entered such a non-authenticated coin can retrieve the coin by accessing the coin dispensing receptacle 22. Examples of coin sorting and authenticating devices which can perform the function of the coin processing module 32 are disclosed in U.S. Pat. Nos. 5,299,977, 5,453,047, 5,507,379, 5,542,880, 5,865,673, 5,997,395, which are incorporated herein by reference in their respective entireties and for all purposes.


The currency processing machine 10 further includes a bank note dispensing module 34 which is connected via a transport mechanism 35 to the user-accessible bank note dispensing receptacle 20. The bank note dispensing module 34 typically dispenses loose bills in response to a request of the user for such bank notes. Also, the bank note dispensing module 34 may be configured to dispense strapped notes into the bank note dispensing receptacle 20 if that is desired. In one embodiment of the present disclosure, the user may select the denominations of the loose/strapped bills dispensed into the bank note dispensing receptacle 20.


The currency processing machine 10 also includes a coin dispensing module 36 which dispenses loose coins to the user via the coin dispensing receptacle 22. The coin dispensing module 36 is connected to the coin dispensing receptacle 22, for example, via a coin tube 37. With this configuration, a user of the currency processing machine 10 has the ability to select the desired coin denominations that he or she will receive during a transaction, for example, in response to user inputs received by one or more of the available input devices. Also, the coin dispensing module 36 may be configured to dispense packaged (e.g., sachet or rolled) coins into the coin dispensing receptacle 22 if that is desired. The coins which have been sorted into their respective denominations by the coin processing module 32 are discharged into one or more coin chutes or tubes 39 which direct coins to a coin receptacle station(s) 40. In at least some aspects, a plurality of tubes 39 are provided and advantageously are positioned to direct coins of specified denominations to designated coin receptacles. The currency processing machine 10 may include more or fewer than the modules illustrated in FIG. 2, such as a coin packaging module or a note packaging module.


The currency processing machine 10 includes a controller 38 which is coupled to each module within the currency processing machine 10, and optionally to an external system, and controls the interaction between each module. For example, the controller 38 may review the input totals from the funds processing modules 30 and 32 and direct an appropriate funds output via the funds dispensing modules 34 and 36. The controller 38 also directs the operation of the coin receptacle station 40 as described below. While not shown, the controller 38 is also coupled to the other peripheral components of the currency processing machine 10, such as a media reader associated with the media reader slot 24 (See FIG. 1) and also to a printer at the receipt dispenser 26, if these devices are present on the coin processing mechanism 10. The controller 38 may be in the nature of a central processing unit (CPU) connected to a memory device. The controller 38 may include any suitable processor, processors and/or microprocessors, including master processors, slave processors, and secondary or parallel processors. The controller 38 may comprise any suitable combination of hardware, software, or firmware disposed inside and/or outside of the housing 11.


Another example of a currency processing system is illustrated in accordance with aspects of this disclosure in FIG. 3, this time represented by a coin processing machine 100. The coin processing machine 100 has a coin tray 112 that holds coins prior to and/or during inputting some or all of the coins in the coin tray 112 into the coin processing machine 100. The coin tray 112 may be configured to transfer coins deposited thereon, e.g., by pivoting upwards and/or by downwardly sloping coin surfaces, to a coin sorting mechanism (not visible in FIG. 3; may correspond to coin processing unit 200 of FIG. 4) disposed within a cabinet or housing 104. The coins are transferred from the coin tray 112 to the sorting mechanism, under the force of gravity, via a funnel arrangement 114 formed in a coin input area 116 of the cabinet 104. Once processed, the coin sorting mechanism discharges sorted coins to a plurality of coin bags or other coin receptacles that are housed within the cabinet (or “housing”) 104.


A user interface 118 interacts with a controller (e.g., controller 38 of FIG. 2) of the coin processing machine 100. The controller is operable, in at least some embodiments, to control the initiation and termination of coin processing, to determine the coin totals during sorting, to validate the coins, and to calculate or otherwise determine pertinent data regarding the sorted coins. The user interface 118 of FIG. 3 includes a display device 120 for displaying information to an operator of the coin processing machine 100. Like the display device 12 illustrated in FIG. 1, the display device 120 of FIG. 3 may also be capable of receiving inputs from an operator of the coin processing machine 100, e.g., via a touchscreen interface. Inputs from an operator of the coin processing machine 100 can include selection of predefined modes of operation, instructions for defining modes of operation, requests for certain outputs to be displayed on the display device 120 and/or a printer (not shown), identification information, such as an identification code for identifying particular transactions or batches of coins, etc.


During an exemplary batch sorting operation, an operator dumps a batch of mixed coins into the coin tray 112 and inputs an identification number along with any requisite information via the interface 118. The operator (or the machine 100) then transfers some or all of the coins within the coin tray 112 to the sorting mechanism through the coin input area 116 of the cabinet 104. Coin processing may be initiated automatically by the machine 100 or in response to a user input. While the coins are being sorted, the operator can deposit the next batch of coins into the coin tray 112 and enter data corresponding to the next batch. The total value of each processed (e.g., sorted, denominated and authenticated) batch of coins can be redeemed, for example, via a printed receipt or any of the other means disclosed herein.


The coin processing machine 100 has a coin receptacle station 102 disposed within the housing 104. When the coin processing machine 100 is disposed in a retail setting or other publicly accessible environment, e.g., for use as a retail coin redemption machine, the coin receptacle station 102 can be secured inside housing 104, e.g., via a locking mechanism, to prevent unauthorized access to the processed coins. The coin receptacle station 102 includes a plurality of moveable coin-receptacle platforms 106A-H (“moveable platforms”), each of which has one or more respective coin receptacles 108A-H disposed thereon. Each moveable platform 106A-H is slidably attached to a base 110, which may be disposed on the ground beneath the coin processing machine 100, may be mounted to the coin processing machine 100 inside the housing 104, or a combination thereof. In the illustrated embodiment, the coin receptacle station 102 includes eight moveable coin-receptacle platforms 106A-H, each of which supports two coin receptacles 108A-H, such that the coin processing machine 100 accommodates as many as sixteen individual receptacles. Recognizably, the coin processing machine 100 may accommodate greater or fewer than sixteen receptacles that are supported on greater or fewer than eight coin-receptacle platforms.


The coin receptacles 108A-H of the illustrated coin receptacle station 102 are designed to accommodate coin bags. Alternative variations may be designed to accommodate coin cassettes, cashboxes, coin bins, etc. Alternatively still, the moveable platforms 106A-H may have more than one type of receptacle disposed thereon. In normal operation, each of the coin receptacles 108A-H acts as a sleeve that is placed inside of a coin bag to keep coins within a designated volume during filling of the coin bag. In effect, each coin receptacle 108A-H acts as an internal armature, providing an otherwise non-rigid coin bag with a generally rigid internal geometry. Each of the platforms 106A-H includes a coin bag partition 122 that separates adjacent coin bags from one another for preventing coin bags from contacting adjacent coin bags and disrupting the flow of coins into the coin bags. For other embodiments, each moveable platform 106A-H may include multiple partitions 122 to accommodate three or more coin receptacles 108A-H. The moveable platforms 106A-H also include bag clamping mechanisms 124 for each of the coin receptacles 108A-H. Each bag clamping mechanism 124 operatively positions the coin bag for receiving processed coins, and provides structural support to the coin receptacle 108A-H when the moveable platform 106A-H is moved in and out of the machine.


The number of moveable platforms 106A-H incorporated into the coin processing machine 100 can correspond to the number of coin denominations to be processed. For example, in the U.S. coin set: pennies can be directed to the first coin receptacles 108A disposed on the first moveable platform 106A, nickels can be directed to the second coin receptacles 108B disposed on the second moveable platform 106B, dimes can be directed to the third coin receptacles 108C disposed on the third moveable platform 106C, quarters can be directed to the fourth coin receptacles 108D disposed on the fourth moveable platform 106D, half-dollar coins can be directed to the fifth coin receptacles 108E disposed on the fifth moveable platform 106E, dollar coins can be directed to the sixth coin receptacles 108F disposed on the sixth moveable platform 106F. The seventh and/or eighth moveable platforms 106G, 106H can be configured to receive coin overflow, invalid coins, or other rejected coins. Optionally, coins can be routed to the coin receptacles 108A-H in any of a variety of different manners. For example, in the illustrated configuration, if the operator of the coin processing machine 100 is anticipating a larger number of quarters than the other coin denominations, three or more of the coin receptacles 108A-H on the moveable platforms 106A-H may be dedicated to receiving quarters. Alternatively, half-dollar coins and dollar coins, of which there are fewer in circulation and regular use than the other coin denominations, can each be routed to a single dedicated coin receptacle.


In operation, an operator of the coin processing machine 100 who desires to access one or more of the coin receptacles 108A-H unlocks and opens a front door 130 of the housing 104 to access the coin receptacle station 102. Depending on which coin receptacle(s) the operator needs to empty, for example, the operator slides or otherwise moves one of the moveable coin-receptacle platforms 106A-H from a first “stowed” position inside the housing 104 (e.g., moveable platform 106A in FIG. 3) to a second “extracted” position outside of the housing 104 (e.g., moveable platform 106G in FIG. 3). If any of the coin bags are filled and need to be replaced, the operator may remove filled coin bags from the extracted movable platform, replace the filled coin bags with empty coin bags, return the movable platform to the stowed position, and subsequently shut and lock the front door 130.



FIG. 4 shows a non-limiting example of a coin sorting device, represented herein by a disk-type coin processing unit 200 that can be used in any of the currency processing systems, methods and devices disclosed herein. The coin processing unit 200 includes a hopper channel, a portion of which is shown at 210, for receiving coins of mixed denominations from a coin input area (e.g., coin input areas 14 or 116 of FIGS. 1 and 3). The hopper channel 210 feeds the coins through a central opening 230 in an annular, stationary sorting head 212 (oftentimes referred to as a “sorting disk” or “sort disk”). As the coins pass through this opening, the coins are deposited onto the top surface of a resilient pad 218 disposed on a rotatable disk 214. According to some embodiments, coins are initially deposited by a user onto a coin tray (e.g., coin tray 112 of FIG. 3) disposed above the coin processing unit 200; coins flow from the coin tray into the hopper channel 210 under the force of gravity.


This rotatable disk 214 is mounted for rotation on a shaft (not visible) and driven by an electric motor 216. The rotation of the rotatable disk 214 of FIG. 4 is slowed and stopped by a braking mechanism 220. The disk 214 typically comprises a resilient pad 218, preferably made of a resilient rubber or polymeric material, that is bonded to, fastened on, or integrally formed with the top surface of a solid disk 222. The resilient pad 218 may be compressible such that coins laying on the top surface thereof are biased or otherwise pressed upwardly against the bottom surface of the sorting head 212 as the rotatable disk 214 rotates. The solid disk 222 is typically fabricated from metal, but it can also be made of other materials, such as a rigid polymeric material.


The underside of the inner periphery of the sorting head 212 is spaced above the pad 218 by a distance which is approximately the same as or, in some embodiments, just slightly less than the thickness of the thinnest coin. While the disk 214 rotates, coins deposited on the resilient pad 218 tend to slide outwardly over the top surface of the pad 218 due to centrifugal force. As the coins continue to move outwardly, those coins that are lying flat on the pad 218 enter a gap between the upper surface of the pad 218 and the lower surface of the sorting head 212. As is described in further detail below, the sorting head 212 includes a plurality of coin directing channels (also referred to herein as “exit channels”) for manipulating the movement of the coins from an entry area to a plurality of exit stations (or “exit slot”) where the coins are discharged from the coin processing unit 200. The coin directing channels may sort the coins into their respective denominations and discharge the coins from exit stations in the sorting head 212 corresponding to their denominations.


Referring now to FIG. 5, the underside of the sorting head 212 is shown. The coin set for a given country can be sorted by the sorting head 212 due to variations in the diameter and/or thickness of the individual coin denominations. For example, according to the United States Mint, the U.S. coin set has the following diameters:

    • Penny=0.750 in. (19.05 mm)
    • Nickel=0.835 in. (21.21 mm)
    • Dime=0.705 in. (17.91 mm)
    • Quarter=0.955 in. (24.26 mm)
    • Half Dollar=1.205 in. (30.61 mm)
    • Presidential One Dollar=1.043 in. (26.49 mm)


      The coins circulate between the stationary sorting head 212 and the rotating pad 218 on the rotatable disk 214, as shown in FIG. 4. Coins that are deposited on the pad 218 via the central opening 230 initially enter an entry channel 232 formed in the underside of the sorting head 212. It should be kept in mind that the circulation of the coins in FIG. 5 appears counterclockwise as FIG. 5 is a view of the underside of the sorting head 212.


An outer wall 236 of the entry channel 232 divides the entry channel 232 from the lowermost surface 240 of the sorting head 212. The lowermost surface 240 is preferably spaced from the pad 218 by a distance that is slightly less than the thickness of the thinnest coins. Consequently, the initial outward radial movement of all the coins is terminated when the coins engage the outer wall 236, although the coins continue to move more circumferentially along the wall 236 (e.g., in a counterclockwise direction in FIG. 5) by the rotational movement imparted to the coins by the pad 218 of the rotatable disk 214.


While the pad 218 continues to rotate, those coins that were initially aligned along the wall 236 move across the ramp 262 leading to a queuing channel 266 for aligning the innermost edge of each coin along an inner queuing wall 270. The coins are gripped between the queuing channel 266 and the pad 218 as the coins are rotated through the queuing channel 266. The coins, which were initially aligned with the outer wall 236 of the entry channel 232 as the coins move across the ramp 262 and into the queuing channel 266, are rotated into engagement with inner queuing wall 270. As the pad 218 continues to rotate, the coins which are being positively driven by the pad move through the queuing channel 266 along the queuing wall 270 past a trigger sensor 234 and a discrimination sensor 238, which may be operable for discriminating between valid and invalid coins. In some embodiments, the discrimination sensor 238 may also be operable to determine the denomination of passing coins. The trigger sensor 234 sends a signal to the discrimination sensor 238 that a coin is approaching.


In the illustrated example, coins determined to be invalid are rejected by a diverting pin 242 that is lowered into the coin path such that the pin 242 impacts the invalid coin and thereby redirects the invalid coin to a reject channel 244. In some embodiments, the reject channel 244 guides the rejected coins to a reject chute that returns the coin to the user (e.g., rejected coins ejected into the coin reject tube 33 to the coin dispensing receptacle 22 of FIG. 2). The diverting pin 242 depicted in FIG. 5 remains in a retracted “non-diverting” position until an invalid coin is detected. Those coins not diverted into the reject channel 244 continue along inner queuing wall 270 to a gauging region 250. The inner queuing wall 270 terminates just downstream of the reject channel 244; thus, the coins no longer abut the inner queuing wall 270 at this point and the queuing channel 266 terminates. The radial position of the coins is maintained, because the coins remain under pad pressure, until the coins contact an outer wall 252 of the gauging region 250.


The gauging wall 252 aligns the coins along a common outer radius as the coins approach a series of coin exit channels 261-268 which discharge coins of different denominations through corresponding exit stations 281-288. The first exit channel 261 is dedicated to the smallest coin to be sorted (e.g., the dime in the U.S. coin set). Beyond the first exit channel 261, the sorting head 212 shown in FIGS. 4 and 5 forms seven more exit channels 262-268 which discharge coins of different denominations at different circumferential locations around the periphery of the sorting head 212. Thus, the exit channels 261-268 are spaced circumferentially around the outer periphery of the sorting head 212 with the innermost edges of successive channels located progressively closer to the center of the sorting head 212 so that coins are discharged in the order of increasing diameter. The number of exit channels can vary according to alternative embodiments of the present disclosure.


The innermost edges of the exit channels 261-268 are positioned so that the inner edge of a coin of only one particular denomination can enter each channel 261-268. The coins of all other denominations reaching a given exit channel extend inwardly beyond the innermost edge of that particular exit channel so that those coins cannot enter the channel and, therefore, continue on to the next exit channel under the circumferential movement imparted on them by the pad 218. To maintain a constant radial position of the coins, the pad 218 continues to exert pressure on the coins as they move between successive exit channels 261-268.


Further details of the operation of the sorting head 212 shown in FIGS. 4 and 5 are disclosed in U.S. Patent Application Publication No. US 2003/0168309 A1, which is incorporated herein by reference in its entirety. Other disk-type coin processing devices and related features that may be suitable for use with the coin processing devices disclosed herein are shown in U.S. Pat. Nos. 6,755,730; 6,637,576; 6,612,921; 6,039,644; 5,997,395; 5,865,673; 5,782,686; 5,743,373; 5,630,494; 5,538,468; 5,507,379; 5,489,237; 5,474,495; 5,429,550; 5,382,191; and 5,209,696, each of which is incorporated herein by reference in its entirety and for all purposes. In addition, U.S. Pat. Nos. 7,188,720 B2, 6,996,263 B2, 6,896,118 B2, 6,892,871 B2, 6,810,137 B2, 6,748,101 B1, 6,731,786 B2, 6,724,926 B2, 6,678,401 B2, 6,637,576 B1, 6,609,604, 6,603,872 B2, 6,579,165 B2, 6,318,537 B1, 6,171,182 B1, 6,068,194, 6,042,470, 6,039,645, 6,021,883, 5,982,918, 5,943,655, 5,905,810, 5,564,974, and 4,543,969, and U.S. Patent Application Publication Nos. 2007/0119681 A1 and 2004/0256197 A1, are incorporated herein by reference in their respective entireties and for all purposes.


The above referenced U.S. patents and published application described in more detail various operating speeds of the disk-type coin processing devices such as shown in FIG. 4. For example, according to some embodiments, sorting head 212 has an eleven inch diameter and the pad 218 rotates at a speed of approximately three hundred revolutions per minute (300 rpm). According to some embodiments, the sorting head 212 has an eleven inch diameter and the pad 218 rotates at a speed of about 350 rpm. According to some embodiments, the sorting disc 214 has an eleven inch diameter and is capable of sorting a retail mix of coins at a rate of about 3000 coins per minute when operating at a speed for about 250 rpm. A common retail mix of coins is about 30% dimes, 28% pennies, 16% nickels, 15% quarters, 7% half-dollar coins, and 4% dollar coins. According to some embodiments of the coin processing system 200 of FIG. 4, the system 200 is cable of sorting a retail mix of coins at a rate of about 3300 coins per minute when the sorting head 212 has a diameter of eleven inches and the disc is rotated at about 300 rpm. According to some embodiments, the coin processing system 200 is capable of sorting a “Euro financial mix” of coins at rate of about 3400 coins per minute, wherein the sorting head 212 has a diameter of eleven inches and the disc is rotated at about 350 rpm. A common Euro financial mix of coins made up of about 41.1% 2 Euro coins, about 16.7% 1 Euro coins, about 14.3% 50¢ Euro coins, about 13.0% 20¢ Euro coins, about 11.0% 10¢ Euro coins, about 12.1% 5¢ coins and about 8.5% 1¢ Euro coins. According to some embodiments, a coin processing system counts and discriminates at least about 2350 mixed coins per minute or at least about 4280 U.S. nickels per minute, when operating at a speed of about 250 rpm. According to some embodiments, a coin processing system sorts at least about 3300 mixed coins per minute or at least about 6000 U.S. nickels per minute, when operated at a speed of at about 350 rpm.


According to some embodiments, when an eight (8) inch sort head is used to process dimes only and the rotatable disc is operated at 300 rpm, the dimes are counted at a rate of at least about 2200 coins per minute. When only U.S. quarters (diameter=0.955 inch) are counted, the quarters are counted at a rate of at least about 1000 coins per minute. A common retail mix of coins is about 30% dimes, 28% pennies, 16% nickels, 15% quarters, 7% half-dollars, and 4% dollars. When this retail mix of coins is placed in the coin sorter system having an eight (8) inch sort head, the coins are sorted and counted at a rate of at least about 1200 coins per minute. When this same eight (8) inch sort head is used to process dimes only and the rotatable disc is operated at 500 rpm, the dimes are counted at a rate of at least about 3600 coins per minute. When only U.S. quarters are counted, the quarters are counted at a rate of at least about 1600 coins per minute when the disc is rotated at 500 rpm. When the above retail mix of coins is placed in the coin sorter system having an eight (8) inch sort head and the disc is rotated at 500 rpm, the coins are sorted and counted at a rate of at least about 2000 coins per minute.


According to some embodiments, a 13-inch diameter sorting head 212 is operated at various speeds such as 115 rpm, 120 rpm (low-speed mode), 125 rpm, 360 rpm, and 500 rpm (nominal sorting speed).


According to some embodiments, a 13-inch diameter sorting head 212 is operated to count and sort mixed coins at rates in excess of 600, 2000, 3000, 3500, and 4000 coins per minute.


Turning next to FIG. 6, there is shown a coin processing unit, designated generally as 300, for sorting coins, counting coins, authenticating coins, denominating coins, validating coins, and/or any other form of processing coins. As indicated above, the coin processing unit 300 can be incorporated into or otherwise take on any of the various forms, optional configurations, and functional alternatives described herein with respect to the examples shown in FIGS. 1-5, and thus can include any of the corresponding options and features. By way of non-limiting example, the coin processing unit 300 of FIG. 6 may be a disk-type coin processing unit for sorting batches of coins, including batches with coins of mixed denomination, country of origin, etc. The coin processing unit 300 is operatively coupled to the coin input area of a currency processing system (e.g., coin input area 116 of coin processing machine 100) to receive therefrom deposited coins, and is also operatively coupled to one or more coin receptacles (e.g., coin receptacles 108A-H) into which processed coins are deposited. In alternative embodiments, the sensor arrangements or coin imaging assemblies disclosed herein can be incorporated into other types of coin processing apparatuses, such as programmable power rail coin processing devices, without departing from the intended scope and spirit of the present disclosure.


Similar to the disk-type coin processing unit 200 of FIGS. 4 and 5, the coin processing unit 300 of FIG. 6 comprises a rotatable disk (not visible in FIG. 6, but structurally and functionally similar to the rotatable disk 214 of FIG. 4) for supporting on an upper surface thereof and imparting motion to coins received from the coin input area of the currency processing system. Like the configuration illustrated in FIG. 4, the rotatable disk of FIG. 6 can be mounted for common rotation with a drive shaft that is driven by an electric motor. A stationary sorting head 312, which is adjacent the rotatable disk, has a lower surface 340 that is located generally parallel to and spaced slight apart from the top surface of the rotatable disk. The lower surface 340 of the sorting head 312 forms a plurality of distinctly shaped regions (or “exit channels”), each of which guides coins of a common diameter, responsive to motion imparted thereto by the rotatable disk, to one of various exit stations through which the coins are discharged from the coin processing unit 300 to the one or more coin receptacles.


A linear array of sensors, designated generally as 350 in FIG. 6, is mounted proximate to, within and/or, as shown, directly on the sorting head 312 adjacent and, in some embodiments, facing the rotatable disk. The linear array of sensors 350 examines or otherwise senses coins seated on the rotatable disk and outputs a signal indicative of coin image information for each of the processed coins. By way of non-limiting example, the linear array of sensors 350 includes a row of rectilinearly aligned optical sensors for detecting topographic variations, surface details, coin wear, and/or other pre-designated characteristics of passing coins. The sensor array 350 has a width W6 parallel to a radius of the rotatable disk and a length L6 perpendicular to its width W6. Coins move past the sensor array 350 in direction A6 which is generally perpendicular to the width W6 of the sensor array 350. The sensor array 350 illuminates passing coins and receives reflected light from passing coins via opening 312a in the sorting head 312. For some embodiments, the coin processing unit 300 may include one or more additional sensor arrays positioned, for example, to image obverse and reverse faces of the coin and/or the side of the coin. The sensor array(s) could also extend beyond the sorting disk, for example, in configurations where the coins extend outside the sorting disk. With reference to FIGS. 6 and 7, the coin image information signals are stored, for example, in memory device 360 or any other type of computer-readable medium. The memory device 360 can be read, for example, by one or more processors 338 whereby the signals can be interpreted, and an image of the topographic variations in the coin can be generated. The imaging information detected by the sensor array 350 can be processed by array electronics (e.g., an analog signal filter in the sensor circuit 358) and interpreted by imaging software (e.g., stored in a physical, non-transient computer readable medium associated with the processor(s) 338). With the coin image information signals received from the coin imaging sensor system 350, the processor(s) 338 can determine, for example, whether each of the coins is valid or invalid, which may include determining the denomination and/or authenticity of each coin, by comparing the sensed coin image to a previously authenticated image that is stored in a library in the memory device 360.



FIG. 7 of the drawings illustrates one of the linear optical sensors (or “sensor arrangement”) 362 from the sensor array 350 of FIG. 6. In the illustrated example, the sensor arrangement 362 includes a bipartite housing 364 within which is nested a photodetector 366 and first and second light emitting devices 368 and 370, respectively. Photodetector 366 comprises a linear array of light-sensitive photosensors 372 that detect the presence of visible light, infrared (IR), and/or ultraviolet (UV) light energy. For example, each photosensor may utilize a photoconductive semiconductor in which the electrical conductance varies depending on the intensity of radiation striking the semiconductor. In this regard, the photosensors 372 may take on any of a variety of available configurations, such as photodiodes, bipolar phototransistors, active-pixel sensors (APS), photosensitive field-effect transistors (photoFET), etc. Enclosed within the housing 364 is a printed circuit board (PCB) 374 with a lower surface onto which the photosensors 372 are mounted and oriented with a normal incidence with the upper surface 13 of a passing coin 11. The angle of incidence is the angle between a ray or line incident on a surface and a line perpendicular to that surface at the point of incidence, called the normal N1. For the embodiment of FIG. 7, the angle between a straight line perpendicular to the photosensors 372 and the normal N1 of the coin's upper surface 13 is zero or substantially zero.


The first light emitting device 368 of the sensor arrangement 362 of FIG. 7 comprises multiple light sources for controllably emitting light onto the surface 13 of the passing coin 11 at multiple distinct incidences. By way of example, and not limitation, the light sources of the first light emitting device 368 comprise a first row of light emitting diodes (LED) 367 configured to emit light onto the coin 11 at a first near-normal angle of incidence NN1, and a second row of LEDs 369 configured to emit light onto the coin 11 at a first high-angle of incidence HAL Likewise, the second light emitting device 370, which is diametrically spaced from the first light emitting device 368 relative to the coin 11, comprises multiple light sources for controllably emitting light onto the surface 13 of the passing coin 11 at multiple distinct incidences. In the illustrated example, the light sources of the second light emitting device 370 comprises a third row of LEDs 371 configured to emit light onto the coin 11 at a second near-normal angle of incidence NN2, and a fourth row of LEDs 373 configured to emit light onto the coin 11 at a second high-angle of incidence HA2. For near-normal incidence, the angle of incidence of illumination is approximately or substantially parallel to, but not completely parallel to the normal of the surface of the coin 11. For example, the first near-normal incidence NN1 may be equal to approximately 5 degrees from the normal N1, while the second near-normal incidence NN2 may be equal to approximately −5 degrees from the normal N1. Comparatively, for high-angle incidence, the angle of incidence of illumination is an oblique angle that is at least approximately 45 degrees from the normal of the coin. In the illustrated embodiment, for example, the first high-angle of incidence HA1 may be equal to approximately 65 degrees from the normal N1 of the coin 11, whereas the second high-angle of incidence HA2 may be equal to approximately −65 degrees from the normal N1.


A transparent quartz cover glass 376 is mounted to the housing 364 under the photodetector 366 to allow light generated by the light emitting devices 368, 370 to pass from the housing 364 to the surface 13 of the coin 11, and to allow light reflected off of the coin 11 to reenter the housing 364 and be captured by the linear array of photosensors 372. Disposed between the photodetector 366 and the passing coin 11 is a lens array 378 for focusing light reflected off of the coin 11 (e.g., via internal refraction) and transmitting the light to the photodetector 366. The lens array 378 may take on a variety of different forms, including a gradient-index (GRIN) lens array or a SELFOC® lens array (SLA), for example.


With continuing reference to FIG. 7, the photodetector 366 senses the time of reflection, intensity and/or incidence angle of the light reflected off of the surface 13 of the coin 11 and outputs a signal indicative of the reflected light as coin image information for optically imaging and processing the coin. One or more processors 338 read or otherwise receive the coin image information signals and determine therefrom whether the passing coin is valid or invalid, which may include determining a denomination, a fitness, a country of origin, or an authenticity, or any combination thereof, of the passing coin by comparing the image data with a library of image data of authentic coins. One or more processors 338 may be operable to selectively simultaneously activate both the first and second light emitting devices 368, 370, and thus all four rows of LEDs 367, 369, 371, 373, to thereby simultaneously provide both high-angle and near-normal illumination (referred to herein as “uniform illumination”) of the surface 13 of the passing coin 11. The one or more processors 338 may be further operable to selectively activate only one of the light emitting devices 368, 370 or only the second and fourth rows of high-angle LEDs 369, 373 to thereby provide only high-angle illumination (otherwise referred to herein as “edge-enhanced illumination”) of the surface 13 of coin 11. When all four rows of LEDs 367, 369, 371, 373 are turned on such that the coin 11 is illuminated uniformly, the features and details of the surface 13 of coin 11 are visible to the detector. Comparatively, when only high-angle incidence illumination is provided, then an optically edge-enhanced image is obtained, which can be used to measure the topography and wear of the coin. The user can electronically choose the type of illumination suitable for the task required. The sensor arrangement 362 of FIG. 7 allows for real-time electronic selection between the aforementioned types of coin illumination to enable enhanced functionality, such as improved authentication and fitness measurement.


Shown in FIGS. 8 and 9 are alternative architectures for the linear optical sensors of the sensor array 350 of FIG. 6. Unless otherwise logically prohibited, the architectures shown in FIGS. 8 and 9 may include any of the features, options and alternatives described above with respect to the architecture in FIG. 7, and vice versa. In the embodiment illustrated in FIG. 8, for example, the sensor arrangement 462 includes a bipartite housing 464 within which is nested a photodetector 466 and first and second light emitting devices 468 and 470, respectively. Like the photodetector 366 of FIG. 7, the photodetector 466 of FIG. 8 comprises a linear array of light-sensitive photosensors 472 that detect the presence of visible light, infrared (IR), and/or ultraviolet (UV) light energy. Enclosed within the housing 464 is a printed circuit board (PCB) 474 with a lower surface onto which the photosensors 472 are mounted and oriented with a normal incidence with the upper surface 13 of a passing coin 11. The PCB 474 supports on an upper surface thereof electronics 475 of the photodetector 466, such as electronics that amplify and process an electronic signal output by a photocell in the photosensor that converts an optical signal into the electronic signal.


In the sensor arrangement 462 of FIG. 8, the first light emitting device 468 comprises one or more light sources for controllably emitting light onto the surface 13 of the passing coin 11 at near-normal incidence. According to one non-limiting example, the first light emitting device 468 comprises a row of light emitting diodes (LED) 467 configured to emit light onto the coin 11 at a near-normal angle of incidence. The second light emitting device 470, however, comprises one or more light sources for controllably emitting light onto the surface 13 of the passing coin 11 at high-angle incidence. In the illustrated example, the second light emitting device 470 comprises a row of LEDs 471 configured to emit light onto the coin 11 at a high-angle of incidence. In contrast to the light emitting devices 368, 370 illustrated in FIG. 7, each light emitting device 468, 470 in the architecture of FIG. 8 is operable to emit light at either high-angle or near-normal incidence. As another point of demarcation, the light emitting devices 468, 470 are both mounted to the same LED printed circuit board (PCB) 482 that is located on the rear side of the housing 464. The light emitting devices 468, 470 are spaced vertically on the LED PCB 482. The light emitting devices 368, 370 of FIG. 7, in contrast, are each mounted to their own respective LED PCB 382 and 384, each of which is positioned at a distinct location within the housing 364. Optionally, the illumination means may comprise a pair of optical waveguides each with multiple LEDs.


Extending across and mounted inside an opening in the housing 464 of the sensor arrangement 462 is a transparent cover glass 476. The cover glass 476 allows light generated by the light emitting devices 468, 470 to pass from the housing 464 to the surface 13 of the coin 11, and then allows light reflected off of the coin 11 to reenter the housing 464 and be captured by the linear array of photosensors 472. Disposed between the photodetector 466 and the passing coin 11 is a lens array 478, such as an SLA or GRIN lens array, for focusing light reflected off of the coin 11 and transmitting the light to the photodetector 466. The architecture of FIG. 8 also utilizes a light diffusing element 480 that is operable to diffuse high-angle incidence light emitted by the second light emitting device 470. In the illustrated example, one or more sections of the inside walls of the sensor housing 464 are coated by scattering media to provide efficient and uniform illumination.


Similar to the sensor arrangements 362, 462 of FIGS. 7 and 8, the sensor arrangement 562 of FIG. 9 includes a rigid outer housing 564 within which is nested a photodetector 566 and a pair of light emitting devices 568 and 570. Like the photodetectors 366 and 466, the photodetector 566 of FIG. 9 comprises a linear array of light-sensitive photosensors 572 that detect the presence of visible light, infrared (IR), and/or ultraviolet (UV) light energy. Enclosed within the housing 564 is a printed circuit board (PCB) 574 with a lower surface onto which the photosensors 572 are mounted and oriented with a normal incidence with the upper surface 13 of a passing coin 11. The PCB 574 also supports on an upper surface thereof electronics 575 which control operation of the photosensors 572.


For the sensor arrangement 562 of FIG. 9, the first light emitting device 568 comprises one or more light sources for controllably emitting light onto the surface 13 of the passing coin 11 at near-normal incidence. By way of example, the first light emitting device 568 comprises a row of light emitting diodes (LED) 567 configured to emit light onto the coin 11 at a near-normal angle of incidence. The second light emitting device 570, in contrast, comprises one or more light sources for controllably emitting light onto the surface 13 of the passing coin 11 at high-angle incidence. For example, the second light emitting device 570 comprises a row of LEDs 571 configured to emit light onto the coin 11 at a high-angle of incidence. Comparable to the light emitting devices 468, 470 of FIG. 8, each light emitting device 568, 570 in the architecture of FIG. 9 is operable to emit light at only-normal incidence or high-angle incidence. In contrast to the architecture of FIG. 8, but comparable to the architecture of FIG. 7, the light emitting devices 568, 570 are each mounted to their own respective LED PCBs 582 and 584 which are diametrically spaced from one another with respect to the coin 11.


A transparent cover glass 576 extends across and closes an opening in the housing 564 of the sensor arrangement 562. The cover glass 576, which is rigidly mounted to the housing 564, allows light generated by the light emitting devices 568, 570 to pass from the housing 564 to the surface 13 of the coin 11, and also allows light reflected off of the coin 11 to enter the housing 564 and be captured by the linear array of photosensors 572. Disposed between the photodetector 566 and the passing coin 11 is a lens array 578, such as an SLA or GRIN lens array, for focusing light reflected off of the coin 11 (e.g., via internal refraction) and transmitting the light to the photodetector 566. The architecture of FIG. 9 also utilizes a light scattering element 580 that is operable to scatter high-angle incidence light emitted by the second light emitting device 570. In the illustrated example, a cylindrical lens 581 and a light scattering wall 583 cooperatively scatter the light emitted by the second light emitting device 570.



FIG. 10 is a schematic illustration of an example of a linear optical sensor arrangement, designated generally as 650, used to image the side of a coin 11. Unless otherwise logically prohibited, the architecture shown in FIG. 10 may include any of the architectures, features, options and alternatives described above with respect to the sensor arrangements in FIGS. 7-9, and vice versa. The imaging system of FIG. 10 includes one or more light emitting elements 668 and 670 for illuminating the coin 11. Photodetector or photodetector array 666 senses and outputs signals for imaging the side of the coin 11. The coin image information signals are stored, for example, in one or more memory devices (e.g., memory device 360 of FIG. 7) or any other type of computer-readable medium. The memory device(s) can be read, for example, by one or more controllers or processors (e.g., processor(s) 338 of FIG. 7) whereby the signals can be interpreted, and an image of the side of the coin can be generated. The side-imaging sensor arrangement of FIG. 10 can be based on a 1D imaging system or 2D imaging system.


Shown in FIGS. 11A and 11B are alternative architectures for the linear optical sensors of the sensor array 350 of FIG. 6 and/or alternative architectures for the near-normal angle of incidence light sources 367, 371, 467, and/or 567 of FIGS. 7-9. According to some embodiments, the configurations of FIGS. 7-9 may otherwise remain unchanged including the presence of high-angle light sources (e.g., light sources 369, 373, 471, and 571) and their related structures with the light sources 1168 and mirror 1190 being provided in place of or in addition to the near-normal light sources described above in conjunction with FIGS. 7-9 such as light sources, e.g., light emitting diodes 367, 371, 467, 567. According to some embodiments, a Selfoc lens 578 with the proper working distance (Lo) will have to be used to accommodate the change in mechanical dimensions. According to some embodiments, high-angle light sources such as, e.g., light sources 369, 373, 471, and 571, are not included and the sensor arrangements 1162, 1162′ only include the normal or near-normal illumination. Unless otherwise logically prohibited, the architectures shown in FIGS. 11A and 11B may include any of the features, options and alternatives described above with respect to the architectures in FIGS. 6-9, and vice versa.



FIGS. 11A and 11B are schematic illustrations of yet other examples of a linear optical sensor arrangement in accordance with aspects of the present disclosure. In the embodiments illustrated in FIGS. 11A and 11B, for example, the sensor arrangement 1162 includes a bipartite or multipart housing 1164 (shown in FIG. 11B only but present in FIG. 11A as well) within which is nested a photodetector 1166 and at least first light emitting devices 1168. Like the photodetector 366 of FIG. 7, the photodetector 1166 of FIGS. 11A and 11B comprise a linear array of light-sensitive photosensors 1172 that detect the presence of visible light, infrared light (IR), and/or ultraviolet light (UV) energy. Enclosed within the housing 1164 is a printed circuit board (PCB) (not shown) with a lower surface onto which the photosensors 1172 are mounted and oriented with a normal or near-normal incidence with the respect to the expected orientation of the upper surface 13 of a passing coin 11. The PCB may support on an upper surface thereof electronics of the photodetector 1166, such as electronics that amplify and process an electronic signal output by a photocell in the photosensor that converts an optical signal into the electronic signal.


In the sensor arrangements 1162 and 1162′ of FIGS. 11A and 11B, a first light emitting device 1168 comprises one or more light sources for controllably emitting light onto the surface 13 of the passing coin 11 at normal or near-normal incidence. According to one non-limiting example, the first light emitting device 1168 comprises one or more rows of light emitting diodes (LED), employed with or without the use of optical waveguides or light guides, configured to emit light onto the coin 11 at a normal or near-normal angle of incidence. According to some embodiments, one type of light guide that may be used is a PX-8530 W made by Pixon Technologies.


Although not illustrated, as mentioned above, according the some embodiments, the sensor arrangements 1162 and 1162′ of FIGS. 11A and 11B may comprise second light emitting devices comprising one or more light sources for controllably emitting light onto the surface 13 of the passing coin 11 at high-angle incidence (such as light sources 369, 373, 471, and 571). As described above, in embodiments employing both near-normal light sources 1168 and high-angle light sources, a processor such as processor 338 may operate or activate the near-normal light sources 1168 and high-angle light sources either simultaneously or with only the near-normal light source 1168 being illuminated, or only the high-angle light sources being turned on at any given time to vary the type of illumination incident on the surface 13 of a passing coin 11.


The one or more light sources of the first light emitting device 1168 and/or the one or more light sources of the second light emitting device may emit visible spectrum light, infrared spectrum light (IR), and/or ultraviolet (UV) spectrum light. The same is true for the first and second light emitting devices of FIGS. 7-10. According to some embodiments, one or more light filters are disposed in front of the one or more detectors 1172 of the sensor arrangements 1162 and 1162′ (and/or 362, 462, 562, 650) and/or light sources 1168 (e.g., individual LEDs) to allow multiwavelength illumination and selective and/or simultaneous detection of coin images using different parts of the optical spectrum, from UV to visible to IR. Examples of the use of optical filters are illustrated in FIG. 12.


The sensor arrangements 1162 and 1162′ of FIGS. 11A and 11B employ one or more half mirrors 1190. According some embodiments, the one or more half mirrors 1190 are employed to re-direct light traveling from lights sources 1168 at an angle near parallel to the surface 13 of a passing coin 11 and direct the light approximately 90° so as to strike the surface 13 of a passing coin 11 at a normal or near-normal angle. Light striking the surface 13 of a passing coin 11 is reflected back into the housing 1164, through the one or more half-mirrors 1190 toward the photodetector 1166. According to some embodiments, the one or more half mirrors 1190 are 50/50 mirrors for reflection and transmission. Optical waveguides or light guides may also be optionally employed to direct light from light sources onto the surface 13 of the coin 11 and/or onto half mirror 1190. According to some embodiments employing waveguides, the light source(s) 1168 may be LEDs or fluorescent tubes.


According to some embodiments, use of the one or more half mirrors 1190, could affect the working distance (Lo) of the lens 1178. The choice of a lens with a specific working distance (Lo) is determined by the sensor geometry. For example, there are different SELFOC lens with differing working distances. According to some embodiments, the working distance (Lo) of lens 1178 is over 11 mm such as when lens 1178 is a SLA 09A made by NSG (Nippon Specialty Glass) which has some embodiments with a working distance of 13.80 mm. Depending on the working distance (Lo) desired for particular applications, an appropriate SELFOC lens can be selected. Other optical lens arraignments performing in a similar way as SELFOC lens could also be used.


According to some embodiments, the sensor arrangements 1162 and 1162′ have a scan width which corresponds to distance W6 shown in FIG. 6 of 36-48 mm. According to some embodiments, three (3) or four (4) chips, each chip having a linear array of light-sensitive photosensors 1172 and each chip having a scan width of 12 mm, are employed to achieve an overall scan width of 36-48 mm. In some embodiments, the scan width is chosen to be larger than the diameter of the largest coin to be imaged by the sensor arrangement 1162, 1162′.


According to some embodiments, the one or more light sources of the first light emitting device 1168 and/or the one or more light sources of the second light emitting device may comprise one or more LED arrays and/or one or more optical waveguides for directing light from the light sources to the one or more half mirrors 1190. Optionally, the illumination means may comprise a pair of optical waveguides or light guides each with multiple LEDs.


Extending across and mounted inside an opening in the housing 1164 of the sensor arrangement 1162, 1162′ is a transparent cover glass 1176 (shown only in FIG. 11B, but also present in FIG. 11A). The cover glass 1176 allows light generated by the light emitting devices 1168 (and the high-angle light source in embodiments where high-angle light sources are present) to pass from the housing 1164 to the surface 13 of the coin 11, and then allows light reflected off of the coin 11 to reenter the housing 1164 and be captured by the linear array of photosensors 1172. Disposed between the photodetector 1166 and the passing coin 11 is a lens array 1178, such as an SLA or GRIN lens array, for focusing light reflected off of the coin 11 and transmitting the light to the photodetector 1166. The architecture of FIGS. 11A and 11B may also utilize a light diffusing element 1180 that is operable to diffuse light emitted by the light source 1168. Referring to FIG. 11A, the diffuser 1180 may be used to spread out the intensity of illumination coming from the light source 1168 to provide a more uniform distribution of light intensity striking half-mirror 1190. For example, according to some embodiments, the light source 1168 comprises one or more rows of LEDs which may generate generally point sources light such that the light intensity directly in front of each LED is large and in between two adjacent LEDs the light intensity is low. According to some embodiments, the diffuser 1180 spreads out the illumination so a more uniform intensity distribution is achieved. According to some embodiments, light traveling in a generally horizontal direction from the light source 1168 emerges from the diffuser 1180 still traveling in a generally horizontal direction. In some embodiments, the diffuser 1180 is a very thin piece of frosted glass. According to some embodiments, one or more sections of the inside walls 1164a of the sensor housing 1164 (such as near cover glass 1176) are coated by scattering media to provide efficient and uniform illumination.


According to some embodiments, multiple rows of LEDs and/or waveguides may be employed to provide a wider or sider area of illumination. While some of the above embodiments are described as employing LED arrays, desired illumination may be obtained without employing linear arrays of LEDs. For example, waveguides and/or light guides may direct light to the desired locations with the desired distribution over a scan area (e.g., the surface of a passing coin) with or without employing linear arrays of LEDs. For example, waveguide may be employed to achieve required uniformity of illumination and to appropriately diffuse light over a desired scan area. Some exemplary materials that may be employed in waveguides include glass, quartz, and plastic.


According to some embodiments, the sensor arrangements 1162 and 1162′ have a scan width of 36-48 mm which corresponds to distance W6 shown in FIG. 6. According to some embodiments, the window opening for cover glass 1176 has a length L11 in the general direction of the arcuate movement of passing coins (corresponding to length L6 of FIG. 6) of about 7.5 mm. According to some embodiments, the width of the window opening 312a for the cover glass is slightly longer than the corresponding scan width, e.g., 38-50 mm in the above example.


According to some non-limiting embodiments, the housing 1164 of the sensor arrangement 1162′ has a lower portion having a reduced cross-section and the sensor arrangement 1162′ has a shoulder distance SH11 of about 11-14 mm. The reduced cross-section of the sensor arrangement 1162′ facilitates the bottom portion of the housing 1164 of the sensor arrangement fitting within the opening 312a in the sorting head 312 shown in FIG. 6. According to some embodiments, the cover glass 1176 is a 1.0 mm thick Sapphire. According to some embodiments, the cover glass 1176 may be quartz. According to some embodiments, the bottom of the cover glass 1176 should be slightly recessed from, slightly protruding from, or flush with the the lower surface 340 of the sorting head 312 so that the passing coin 11 does not contact the cover glass 1176. The vertical position of the sensor arrangement 1162, 1162′ can be adjusted up or down to position the cover glass 1176 at the appropriate level. The shoulder distance SH11 influences how far a reduced cross-section of the sensor arrangement 1162, 1162′ may project through a sensor arrangement opening in the sorting head 312 (see FIG. 6). If a given shoulder distance SH11 is less than the thickness of the sorting head 312 and the sensor arrangement 1162′ needs to be positioned closer to the rotatable disk positioned below the lower surface 340 of the sorting head 312, the top surface of the sorting head 312 may be lowered (e.g., machined away), if necessary to arrange the sensor arrangement 1162′ at the appropriate vertical position. Note a housing such as housing 1164 having a lower portion having a reduced cross-section and one or more shoulders and a shoulder distance SH11 of about 11-14 mm may employed according to some embodiments in connection with sensor arrangements 1262 and/or 1362 including where the sensor arrangement has light sources 1168, 1368 on opposing sides of the area where coins 11 are to be scanned as in FIG. 13.


Shown in FIGS. 12 and 13 are alternative architectures for the linear optical sensors of the sensor array 350 of FIG. 6 and/or alternative architectures for the near-normal angle of incidence light sources 367, 371, 467, and/or 567 of FIGS. 7-9. According to some embodiments, except for potentially selecting a different SELFOC lens having the appropriate working distance (Lo), the configurations of FIGS. 7-9 may otherwise remain unchanged including the presence of high-angle light sources (e.g., light sources 369, 373, 471, and 571) and their related structures with the light sources 1168, 1368 and mirror(s) 1190,1390 being provided in place of or in addition to the near-normal light sources described above in conjunction with FIGS. 7-9 such as light sources, e.g., light emitting diodes 367, 371, 467, 567. According to some embodiments, high-angle light sources such as, e.g., light sources 369, 373, 471, and 571, are not included and the sensor arrangements 1262, 1362 only include the normal or near-normal illumination. Unless otherwise logically prohibited, the architectures shown in FIGS. 12 and 13 may include any of the features, options and alternatives described above with respect to the architectures in FIGS. 6-9 and 11A-11B, and vice versa.



FIGS. 12 and 13 are schematic illustrations of yet other examples of linear optical sensor arrangements in accordance with aspects of the present disclosure. The embodiment of the sensor arrangement 1262 of FIG. 12 illustrates the use of multiple photodetectors 1166, 1266 but otherwise may be the same as described above in connection with FIGS. 11A and 11B. Like the photodetector 366 of FIG. 7, the photodetectors 1166, 1266 of FIG. 12 comprise linear arrays of light-sensitive photosensors 1172, 1272 that detect the presence of visible light, infrared light (IR), and/or ultraviolet light (UV) energy. According some embodiments, one or more half mirrors 1290 are employed to re-direct some of the light reflected from the surface 13 of a passing coin 11 and through the lens 1178 to the photodetector 1266. In some embodiments, the photodetectors 1166, 1266 are employed to sense light of different wavelengths. According to some embodiments, filters 1250a, 1250b may be placed in front of one or both of the photodetectors 1166, 1266 and/or in front of select ones of the photosensors 1172, 1272 so that photodetectors 1166, 1266 and/or select ones of the photosensors 1172, 1272 are responsive to select wavelengths of light. For example, photodetectors 1166 (with or without the use of filter 1250b) may be responsive to only visible light while photodetectors 1266 (with or without the use of filter 1250a) may be responsive to only infrared light. As another example, select ones of the photosensors 1272 (with or without the use of filter 1250a) may be responsive to only ultraviolet light while other ones of the photosensors 1272 (with or without the use of filter 1250a) may be responsive to only infrared light. Additionally or alternatively, filters 1250a, 1250b may be placed in front of single or multiple ones of the light sources 1168. According to some embodiments, different photodetectors/sensors may be employed with the different photodetectors/sensors being responsive to detection of different wavelengths of light, e.g., some photodetectors/sensors may be responsive to UV light but not be responsive to IR light and/or visible light, and vice versa. For example, according to some embodiments, one or more types of photodetectors/photosensors are employed to detect different wavelengths of illumination such as, for example, GaAsP detectors detecting light in the 200-800 nm range, Ge detectors detecting light in the 600-1700 nm range and InGaAs detectors detecting light in the 800-1900 nm, and/or Silicon sensors detecting light in the 200-1100 nm range.


According to some embodiments, the illumination of a passing coin 11 with different wavelengths of light is synchronized with the sensing of light by one or more of the photodetectors 1166, 1266 and/or some or all of the photosensors 1172, 1272. For example, in some embodiments, in a first period of time a coin 11 may be illuminated with only ultraviolet light and readings taken from the photodetectors 1166, 1266 and/or some or all of the photosensors 1172, 1272 while in a second period of time the coin 11 may be illuminated with only visible light and readings taken from the photodetectors 1166, 1266 and/or some or all of the photosensors 1172, 1272 and/or in a third period of time the coin 11 may be illuminated with only infrared light and readings taken from the photodetectors 1166, 1266 and/or some or all of the photosensors 1172, 1272. A processor such as processor 338 may be used to control the time of the activation of different light sources and/or the sampling of different photodetectors 1166, 1266 and/or some or all of the photosensors 1172, 1272. According to some embodiments the switching the wavelength of light of the illumination will allow multi-wavelength imaging of the coin.


According to some embodiments, multiple detectors such as for example, photodetectors 1166, 1266 including high and low resolution arrays of detectors may be employed for detecting multiple wavelengths of light.


The embodiment of the sensor arrangement 1362 of FIG. 13 illustrates the use of light sources 1168, 1368 positioned on opposite sides of a location at which a coin is to be illuminated but otherwise may be the same as described above in connection with FIGS. 11A, 11B, and/or 12. As shown in FIG. 13, according to some embodiments, first 1168 and second 1368 light sources or light emitting devices may be positioned on opposite sides of cover glass 1176. According to some embodiments, the light sources 1168, 1368 generate light having the same range of wavelengths, e.g., broadband illumination including UV, visible, and IR light. According to some embodiments, the light sources 1168, 1368 generate light having the different ranges of wavelengths, e.g., light source 1168 may generate visible light and light source 1368 may generate UV or IR light. According to some embodiments, more than two light sources may be employed, e.g., one for UV light, one for visible light, and one for IR light. As described above, light of different wavelengths may be sequentially or simultaneously used to illuminate the surface 13 of a passing coin 11 and the activation of the one or more light sources may be controlled by a processor such as processor 338 and may be synchronized with sampling by one or more photodetectors 1166, 1266 and/or some or all of the photosensors 1172, 1272. Selection of the wavelengths of light detected by sensors could be controlled by using selective wavelengths illumination or filters in the detectors optical path.


Although not illustrated, as mentioned above, according the some embodiments, the sensor arrangements 1262 and 1362 of FIGS. 12 and 13 may comprise second light emitting devices comprising one or more light sources for controllably emitting light onto the surface 13 of the passing coin 11 at high-angle incidence (such as light sources 369, 373, 471, and 571). As described above, in embodiments employing both near-normal light sources 1168 and high-angle light sources, a processor such as processor 338 may operate or activate the near-normal light sources 1168 and high-angle light sources either simultaneously or with only the near-normal light source 1168 being illuminated, or only the high-angle light sources being turned on at any given time to vary the type of illumination incident on the surface 13 of a passing coin 11.


According to some embodiments, the one or more half mirrors 1190, 1290, 1390 are 50/50 mirrors for reflection and transmission. Optical waveguides may also be optionally employed to direct light from light sources 1168, 1368 onto the surface 13 of the coin 11 and/or onto one or more of the half mirrors 1190, 1390.


According to some embodiments, the lens 1178 may be a SELFOC lens.


The architectures of FIGS. 12 and 13 may also utilize one or more light diffusing elements 1180, 1380 operable to diffuse light emitted by the light source(s) 1168, 1368. According to some embodiments, one or more sections of the inside walls 1164a of the sensor housing 1164 (such as near cover glass 1176) are coated by scattering media to provide efficient and uniform illumination.


According to some embodiments, multiple rows of LEDs and/or waveguides may be employed to provide a wider area of illumination. While some of the above embodiments are described as employing LED arrays, desired illumination may be obtained without employing linear arrays of LEDs. For example, waveguides may direct light to the desired locations with the desired distribution over a scan area (e.g., the surface of a passing coin) with or without employing linear arrays of LEDs. For example, waveguide may be employed to appropriately diffuse light over a desired scan area. Some exemplary materials that may be employed in waveguides include glass, quartz, and plastic.


According to some embodiments, the sensor arrangements 1162, 1162′, 1262, 1362 of FIGS. 11A, 11B, 12 and 13 enable high-speed real-time imaging of a moving coin. According to some embodiments, the coin processing unit 200 of FIG. 4 employing the sensor arrangements 1162, 1162′, 1262, and/or 1362 process coins of a plurality of denominations (mixed coins) at a rate of 3,100 coins per minute and the sensor arrangements 1162, 1162′, 1262, and/or 1362 image the coins at that rate. According to some embodiments, the coin processing unit 200 of FIG. 4 employing the sensor arrangements 1162, 1162′, 1262, and/or 1362 process coins of a plurality of denominations (mixed coins) at a rate of at least 1,000 to 4,000 coins per minute and the sensor arrangements 1162, 1162′, 1262, and/or 1362 image the coins at that rate. According to some embodiments, the coin processing unit 200 of FIG. 4 employing the sensor arrangements 1162, 1162′, 1262, and/or 1362 process coins of a single of denomination at a rate of 10,000-12,000 coins per minute and the sensor arrangements 1162, 1162′, 1262, and/or 1362 image the coins at that rate. According to some embodiments, the coin processing unit 200 of FIG. 4 employing the sensor arrangements 1162, 1162′, 1262, and/or 1362 process coins of a single of denomination at a rate of at least 10,000 coins per minute and the sensor arrangements 1162, 1162′, 1262, and/or 1362 image the coins at that rate. According to some embodiments, the coin processing unit 200 of FIG. 4 employing the sensor arrangements 1162, 1162′, 1262, and/or 1362 process coins of a plurality of denominations (mixed coins) at a rate wherein the rotatable disk 214 and the resilient pad 218 rotate at a rate of at least about 400 revolutions per minute (rpm) and the sensor arrangements 1162, 1162′, 1262, and/or 1362 image the coins at that rate.


According to some embodiments, the coin processing unit 200 of FIG. 4 employing the sensor arrangements 1162, 1162′, 1262, and/or 1362 employs a sorting head 212 having an 11-inch diameter and a rotating disk 214 and pad 222 that has a normal operating speed of 320-360 revolutions per minute (rpm). According to some such embodiments, the disk is rotated at a normal operating speed of 320 rpm and coins passing by under the sorting head 212 are imaged by the sensor arrangements 1162, 1162′, 1262, and/or 1362 when the disk is rotating at 320 rpm with a linear speed of at least 9,000 inches per minute. According to some such embodiments, the disk is rotated at a normal operating speed of 360 rpm and coins pass by and are imaged by the sensor arrangements 1162, 1162′, 1262, and/or 1362 when the disk is rotating at 360 rpm with a linear speed of at least 10,000 inches per minute or at least 11,000 inches per minute. According to some such embodiments, the disk is rotated at a higher operating speed of 500 rpm and coins pass by and are imaged by the sensor arrangements 1162, 1162′, 1262, and/or 1362 when the disk is rotating at 500 rpm with a linear speed of at least 15,000 inches per minute. It should be noted that according to some embodiments, the speed of rotation of the disk is monitored by an encoder and the sensor arrangements 1162, 1162′, 1262, and/or 1362 are controlled by a processor such as processor 338 so that even as the disk is slowing down (such as when it is needed to stop the rotation of the disk) or speeding up (such as when starting up the rotation of the disk after it has been stopped), the coin processing unit 200 of FIG. 4 is still able to image the passing coins even though their speed of movement past the sensor arrangements 1162, 1162′, 1262, and/or 1362 is changing and/or is below their speed when the disk is rotating at a normal operating speed.


According to some embodiments, the sensor arrangements 1162, 1162′, 1262, 1362 of FIGS. 11A, 11B, 12 and 13 enable speed independent operation such as by employing an encoder which monitors the rotation of the rotatable disk 214 and the resilient pad 218 disposed on therein which in turn can be used to monitor and track the movement of coins disposed on the surface of the resilient pad. The output of the encoder can be used by a processor such as processor 338 to adjust the sampling times of linear optical sensors (or “sensor arrangements”) 362, 462, 562, 650, 1162, 11621262 and/or 1362 and/or the timing of activating the various light sources and/or LEDs discussed above in connection with FIGS. 7-13. For example, as the speed of the rotatable disk 214 is increased, the processor 338 may increase the rate at which the outputs of these sensor arrangements 362, 462, 562, 650, 1162, 11621262 and/or 1362 are sampled and/or increase the rate and/or adjust the timing of when the various light sources and/or LEDs discussed above in connection with FIGS. 7-13 are turned on. Likewise, as the speed of the rotatable disk 214 is decreased, the processor 338 may decrease the rate at which the outputs of these sensor arrangements 362, 462, 562, 650, 1162, 1162′, 1262 and/or 1362 are sampled and/or decrease the rate and/or adjust the timing of when the various light sources and/or LEDs discussed above in connection with FIGS. 7-13 are turned on. As a result, the resulting images obtained may be independent of the speed of the rotatable disk 214 and the speed at which a coin to be imaged passes the sensor arrangements 362, 462, 562, 650, 1162, 1162′, 1262 and/or 1362.


Aspects of the present disclosure are distinguishable from other coin-imaging apparatuses that are commercially available by utilizing a linear, low-cost sensor array instead of utilizing a conventional two-dimensional (2D) imaging camera. 2D cameras are slow, costly, and difficult to implement in many coin sorters because of the required large window for imaging. Aspects of the present disclosure solve these issues by utilizing a high-speed linear sensor array that only requires a narrow window in the coin sorter. In addition, aspects of this disclosure enable capturing two different types of images: uniform illumination to reveal coin surface details, and high-angle illumination to produce edge-enhanced images to reveal surface topography variations and coin wear. Additionally, the sensor image capture mode can be reconfigured in real time to (1) switch between the two different types of images, and (2) simultaneously capture both types of images by simple electronic control. One or more of the sensor systems disclosed herein can produce an image of a coin that reveals details on the surface of the coin regardless of topography.


Turning next to FIG. 14, there is shown a coin processing unit, designated generally as 1400, for sorting coins, counting coins, authenticating coins, denominating coins, validating coins, and/or any other form of processing coins. Similar to coin processing unit 300, the coin processing unit 1400 can be incorporated into or otherwise take on any of the various forms, optional configurations, and functional alternatives described herein with respect to the examples shown in FIGS. 1-9, and vice versa, and thus can include any of the corresponding options and features. By way of non-limiting example, the coin processing unit 1400 of FIG. 14 is a disk-type coin processing unit for sorting batches of coins, including batches with coins of mixed denomination, country of origin, etc. The coin processing unit 1400 is operatively coupled to the coin input area of a currency processing system (e.g., coin input area 116 of coin processing machine 100) to receive therefrom deposited coins, and is also operatively coupled to one or more coin receptacles (e.g., coin receptacles 108A-H) into which processed coins are deposited. In alternative embodiments, the coin-imaging sensor assemblies disclosed herein can be incorporated into other types of coin processing apparatuses, such as programmable power rail coin processing devices, without departing from the intended scope and spirit of the present disclosure.


Similar to the disk-type coin processing unit 200 of FIGS. 4 and 5, the coin processing unit 1400 of FIG. 14 comprises a rotatable disk 1414 for supporting on an upper surface thereof, and imparting motion to, coins received from a coin input area (e.g., coin input bin 16 of FIG. 1) of a currency processing system (e.g., currency processing machine 10 of FIG. 1). Coins are typically fed through a central opening 1430 in an annular sorting head 1412 (or “sorting disk”) and deposited onto a resilient pad 1418 disposed on the rotatable disk 1414. In contrast to the configuration illustrated in FIG. 4, the rotatable disk 1414 of FIG. 14 is mounted for rotation on a support spindle 1424 and is driven by an electric motor 1416 through driving engagement of a continuous drive belt 1426 that extends circumferentially around the outer periphery of the disk 1414. The sorting head 1412 is pivotably mounted proximate the rotatable disk 1414 via a lateral spring-biased hinge 1428. In so doing, the sorting head 1412 can be selectively transitioned from a raised or “inoperative” position, whereat the sorting disk is displaced from the rotatable disk 1414 (e.g., is generally orthogonal with the rotatable disk 1414 as seen in FIG. 14), to a lowered or “operational” position, such that a lower surface 1440 of the sort disk 1412 is positioned generally parallel to and spaced slightly apart from the top surface 1418 of the rotatable disk 1414 (e.g., FIG. 4). The lower surface 1440 of the sorting head 1412 forms a plurality of distinctly shaped regions/exit channels—three of which are designated at 1461, 1462 and 1463 in FIG. 14. Each exit channel guides coins of a common diameter, responsive to motion imparted thereto by the rotatable disk 1414, to one of various exit stations through which the coins are discharged from the coin processing unit 1400 to the one or more coin receptacles.


A linear array of sensors, designated generally as 1450 in FIGS. 14 and 15, is mounted proximate to or, as shown, directly on and at least partially within the sorting head 1412. When the sort disk 1412 is placed in the generally horizontal “operational” position, the sensor array 1450 is adjacent and facing the resilient pad 1418 disposed on the rotatable disk 1414. Sensor array 1450 examines or otherwise senses coins seated on the rotatable disk 1414 and outputs a signal indicative of coin image information for each of the processed coins. For some implementations, the linear array 1450 consists essentially of a one-dimensional (1D) array of optical imaging sensors. By way of non-limiting example, the linear array of sensors 1450 includes a row of rectilinearly aligned optical sensors for detecting topographic variations, surface details, coin wear, and/or other pre-designated characteristics of passing coins. For some embodiments, the coin processing unit 1400 may include one or more additional sensor arrays or individual sensors positioned, for example, to image obverse and reverse faces of the coin and/or the side of the coin. The sensor array(s) could also extend beyond the sorting disk, for example, in configurations where the coins extend outside the sorting disk.


Coin image information signals generated by the sensor array 1450 are stored, for example, in a resident system memory device 1460, such as flash memory, erasable programmable read only memory (EEPROM), random access memory (RAM), or any other type of computer-readable medium. The memory device 1460 can be read, for example, by a central processing unit (CPU) 1438 which may comprise one or more processors whereby the signals can be interpreted, and an image of the topographic variations in the coin can be generated. In at least some aspects of the presented concepts, the imaging information detected by the sensor array 1450 is processed by array electronics (e.g., an analog signal filter and/or amplifiers in a sensor control circuit 1458) and interpreted by imaging software (e.g., stored in a physical, non-transient computer readable medium associated with the processor(s) 1438). With the coin image information signals received from the coin imaging sensor system 1450, the processor(s) 1438 then determines, for example, whether each of the coins is valid or invalid, which may include determining the denomination and/or authenticity of each coin, by comparing the sensed coin image to a previously authenticated image that is stored in a library in the memory device 1460. For at least some configurations, the CPU 1438 is further operable to accept signals from an operator interface panel (e.g., touchscreen display device 12 of FIG. 1), one or more encoder sensors, one or more coin-tracking counters, one or more discrimination sensors (not shown), etc. CPU 1438 produces output signals to control the coin sorter drive system (e.g., motor 1416), coin-tracking counters, the operator interface panel, and the sensor array 1450.



FIG. 16 of the drawings illustrates an example of one of the linear optical sensors 1462 (also referred to herein as “sensor assembly” or “sensor arrangement”) from the sensor array 1450 of FIGS. 14 and 15. In the illustrated non-limiting example, the sensor assembly 1462 includes a bipartite housing 1464 within which is nested a photodetector 1466 and first and second light emitting devices 1468 and 1470, respectively. Photodetector 1466 comprises a linear array of light-sensitive photosensor elements 1472 that detect the presence of visible light, infrared transmission (IR), and/or ultraviolet (UV) energy. For example, each photosensor may utilize a photoconductive semiconductor in which the electrical conductance varies depending on the intensity of radiation striking the semiconductor. In this regard, the photosensors 1472 may take on any of a variety of available configurations, such as photodiodes, phototransistors, active-pixel sensors (APS), photosensitive field-effect transistors (photoFET), etc. The sensing chips/elements can use complementary metal-oxide-semiconductor (CMOS) technology or charge-coupled device (CCD) technology, or both. Enclosed within the housing 1464 is a sensor printed circuit board (PCB) 1474 with a lower surface onto which the photosensors 1472 are mounted and oriented with a normal or substantially normal incidence with the upper surface 13 of a passing coin 11. Depending on the design and configuration, additional passive and active electronic components and/or connectors are mounted on the sensor PCB. The angle of incidence is the angle between a ray or line incident on a surface and a line perpendicular to that surface at the point of incidence, called the normal N14. For the embodiment of FIG. 16, the angle between a straight line S14, which is perpendicular to the photosensors 1472 and PCB 1474, and the normal N14 of the coin's upper surface 13 is zero or substantially zero. While only select components of the sensor assembly 1462 have been shown and are described in detail herein, the sensor assembly 1462 can include numerous additional and alternative features, options, and other well-known peripheral components (e.g., active and passible elements) without departing from the intended scope and spirit of the present disclosure.


In the illustrated non-limiting example, first light emitting device 1468 of the sensor arrangement 1462 of FIG. 16 comprises multiple light sources for controllably emitting light onto the surface 13 of the passing coin 11 at multiple distinct incidences. By way of example, and not limitation, the light sources of the first light emitting device 1468 comprise a first row of light emitting diodes (LED) 1467 configured to emit light onto the coin 11 at a first near-normal angle of incidence NH1, and a second row of LEDs 1469 configured to emit light onto the coin 11 at a first high-angle of incidence HB1. Likewise, the second light emitting device 1470, which is diametrically spaced from the first light emitting device 1468 relative to the coin 11, comprises multiple light sources for controllably emitting light onto the surface 13 of the passing coin 11 at multiple distinct incidences. In the illustrated example, the light sources of the second light emitting device 1470 comprise a third row of LEDs 1471 configured to emit light onto the coin 11 at a second near-normal angle of incidence NH2, and a fourth row of LEDs 1473 configured to emit light onto the coin 11 at a second high-angle of incidence HB2. The group of LEDs can emit single-wavelength or multi-wavelength light depending on, for example, the intended application or configuration. For at least some alternate designs, the light emitting device(s) can comprise a plurality of optical waveguides or other light carrying medium and a group of light emitting elements at one or each end of each of the waveguides. For near-normal incidence, the angle of incidence of illumination is approximately or substantially parallel to, but not completely parallel to the normal of the surface of the coin 11. For example, the first near-normal incidence NH1 may be equal to approximately −5 degrees or less from the normal N14 (on a standard Cartesian coordinate system), while the second near-normal incidence NH2 may be equal to approximately 5 degrees or less from the normal N14. Comparatively, for high-angle incidence, the angle of incidence of illumination is an oblique angle that is at least approximately 45 degrees from the normal of the coin. In the illustrated embodiment, for example, the first high-angle of incidence HB1 may be equal to approximately −65 degrees from the normal N14 of the coin 11, whereas the second high-angle of incidence HB2 may be equal to approximately 65 degrees from the normal N14.


A transparent quartz cover glass 1476 is mounted to the housing 1464 under the photodetector 1466 to allow light generated by the light emitting devices 1468, 1470 to pass from the housing 1464 to the surface 13 of the coin 11, and to allow light reflected off of the coin 11 to reenter the housing 1464 and be captured by the linear array of photosensors 1472. In alternate embodiments, a sapphire glass or other transparent material with the requisite optical spectrum medium can be employed. Disposed between the photodetector 1466 and the passing coin 11 is a lens array 1478 for focusing light reflected off of the coin 11 (e.g., via internal refraction) and transmitting the light to the photodetector 1466. The lens array 1478 may take on a variety of different forms, including a gradient-index (GRIN) lens array or a SELFOC® lens array (SLA), for example. Light emitting devices 1468, 1470 are mounted to their own respective LED PCB's 1482 and 1484, each of which is positioned at a distinct location within the housing 1464.


With continuing reference to FIG. 16, the photodetector 1466 senses the time of reflection, intensity, incidence angle and/or other parameter of the light reflected off of the surface 13 of the coin 11 and outputs a signal indicative of the reflected light as coin image information for optically imaging and processing the coin. One or more processors 1438 read or otherwise receive the coin image information signals and determine therefrom whether the passing coin is valid or invalid, which may include determining a denomination, a fitness, a country of origin, or an authenticity, or any combination thereof, of the passing coin by comparing the image data with a library of image data of authentic coins. One or more processors 1438 are operable, in at least some embodiments, to simultaneously activate both the first and second light emitting devices 1468, 1469, and thus all four rows of LEDs 1467, 1469, 1471, 1473, to thereby simultaneously provide both high-angle and near-normal illumination (referred to herein as “uniform illumination”) of the surface 13 of the passing coin 11. The one or more processors 1438 may be further operable to selectively activate only one of the light emitting devices 1468, 1469 or only the second and fourth rows of high-angle LEDs 1469, 1473 to thereby provide only high-angle illumination (otherwise referred to herein as “edge-enhanced illumination”) of the surface 13 of coin 11. When all four rows of LEDs 1467, 1469, 1471, 1473 (or other light sources) are turned on such that the coin 11 is illuminated uniformly, the features and details of the surface 13 of coin 11 are visible to the detector. Comparatively, when only high-angle incidence illumination is provided, then an optically edge-enhanced image is obtained, which can be used to measure the topography and wear of the coin. The user can electronically choose the type of illumination suitable for the task required. The sensor arrangement 1462 of FIG. 16 allows for real-time electronic selection between the aforementioned types of coin illumination to enable enhanced functionality, such as improved authentication and fitness measurement.


Shown in FIG. 17 is an example of an electronic sensor control circuit 1458 for helping to control operation of the coin-imaging sensor assembly 1462 of FIG. 16. The illustrated example may be a two channel system or, optionally, a multichannel system. In the case of a three or four channel system, for example, circuit content and layout will be varied from that which is shown in the drawings (e.g., the number of amplifiers will increase to three or four). Control circuit 1458—the components of which may be mounted to a dedicated and distinct interface PCB 1459—includes a pair of connectors 1486 and 1488 for operatively connecting to the photodetector 1466 and sensor PCB 1474 a main machine PCB 1439 of the CPU 1438, respectively. In particular, the first connector 1486, which may be in the nature of a discrete multi-pin connector, operates to mechanically and electrically connect an illumination control device 1492 and a photodetector control device 1494/1496 of the control circuit 1458 to the main machine PCB 1439. Connector 1486 also operates to mechanically and electrically connect the CPU 1438 to a pair of amplifiers 1498A and 1498B of the control circuit 1458 and electrically connect the CPU 1438 to the sensor PCB 1474 of the sensor assembly 1462. In this regard, the second connector 1488, which may also be in the nature of a discrete multi-pin connector, mechanically and electrically connects the photodetector control device 1494/1496 and amplifiers 1498A and 1498B to the sensor circuit board 1474. Optionally, one or both of the connectors 1486, 1488 may be omitted and replaced, for example, by one or more flex cables or other flexible electrical interconnects.


Illumination of the first and second light emitting devices 1468 and 1470 (designated “Left side illumination” and “Right side illumination” in FIG. 17) is regulated by an illumination control device 1492. The illumination control device 1492 may be in the nature of a microprocessor or other discrete integrated circuit (IC) package that is operable to modulate or otherwise control light output of the light emitting devices 1468, 1470. Each means for illuminating coins can be controlled separately, for example, by a separate control device, or together, for example, by a single, shared control device (as shown). As indicated above, the illumination control circuitry 1492 may be mounted on the interface board 1459. For at least some embodiments where simple illumination control is desired, power supply can be activated (“turned on”) and deactivated (“turned off”) by a simple switching mechanism. For multi-wavelength applications, a microprocessor can be implemented to control type and length of each illumination. Coin illumination can be provided by one or more raw LED's, one or more discrete LED's, one or more LED's coupled to one or more waveguides, fiber optics, one or more groups of different wavelength LEDs, etc. Tangentially, the sensing chips/elements can use complementary metal-oxide-semiconductor (CMOS) technology or charge-coupled device (CCD) technology, or both.


The first connector 1486 of FIG. 17 may also be operable to connect the control circuit 1458 to a power supply 1490, which may be resident to the circuit 1458 (e.g., a battery or battery pack) or discrete from the circuit 1458 (e.g., provided by way of the main machine PCB or other external power source). Power supply 1490 generally provides conditioned power to the sensor assembly 1462 and the electronic sensor control circuit 1458. A power conditioner can be implemented to deliver voltage and/or current at a desired or predetermined level with desired or predetermined characteristics to enable the various devices of the control circuit 1458 and sensor assembly 1462 to function properly.


A photodetector control device—represented in FIG. 17 in a non-limiting example by a differential-to-single-ended transceiver 1494 and a start pulse and enable timing control module 1496—is communicatively coupled to and operable for controlling the photodetector 1466 and sensor PCB 1474 of the sensor assembly 1462. Each element of the photodetector control device may be in the nature of one or more microprocessors or other discrete integrated circuit (IC) package(s) operable, for example, to initiate and discontinue the collection of data by the photodetector elements 1472 of the sensor circuit board 1474. By way of non-limiting example, photodetector control device provides electronic control signals to the photodetector 1466 for when to begin collecting data, when to end collecting data, and any other information required to control sensor chip performance.


Also shown in FIG. 17 is a pair of amplifiers 1498A and 1498B mounted on the interface PCB 1459. As indicated above, these amplifiers 1498A, 1498B are communicatively coupled to the sensor circuit board 1474, e.g., via connector 1488, and operate to boost and/or condition analog signals generated by the photosensor assembly 1466. For some embodiments, the sensing chips 1472 on the sensor board 1474 can be provided with built-in amplifiers if additional boosting and/or conditioning of the analog signal is required. It is also possible to combine amplifiers with analog-to-digital (A/D) converters. In some applications, the A/D converter(s) are mounted on a host card.


ALTERNATIVE EMBODIMENTS
Embodiment 1

A high-speed currency processing system comprising:


a housing with a coin input area configured to receive a batch of coins;


one or more coin receptacles operatively coupled to the housing;


a coin processing unit operatively coupled to the coin input area and the one or more coin receptacles, the coin processing unit being configured to process a plurality of the coins and discharge the processed coins to the one or more coin receptacles; and


a sensor arrangement operatively coupled to the coin processing unit, the sensor arrangement including a photodetector and first and second light emitting devices, the first light emitting device being configured to emit light onto a surface of a passing coin at normal or near-normal incidence, the second light emitting device being configured to emit light onto the surface of the passing coin at high-angle incidence, and the photodetector being configured to sense light reflected off the surface of the passing coin and output a signal indicative of coin image information for processing the coin;


wherein the coins pass the sensor arrangement and the sensor arrangement outputs a signal indicative of coin image information at a rate of at least 2000 coins per minute.


Embodiment 2

The currency processing system of Embodiment 1, wherein the photodetector includes a linear array of photosensors with a normal incidence with the surface of the passing coin.


Embodiment 3

The currency processing system of Embodiment 1, further comprising a lens array between the photodetector and the passing coin.


Embodiment 4

The currency processing system of Embodiment 3, wherein the lens array includes a gradient-index (GRIN) lens array or a SELFOC lens array.


Embodiment 5

The currency processing system of Embodiment 1, wherein the first light emitting device comprises light sources configured to emit light onto the surface of the passing coin at a first near-normal incidence and a first high-angle of incidence, and the second light emitting device comprises light sources configured to emit light onto the surface of the passing coin at a second near-normal incidence and a second high-angle of incidence


Embodiment 6

The currency processing system of Embodiment 5, wherein the light sources of the first light emitting device include first and second rows of light emitting diodes (LED), and the light sources of the second light emitting device include third and fourth rows of LEDs.


Embodiment 7

The currency processing system of Embodiment 1, further comprising a processor operatively coupled to the sensor arrangement and operable to selectively simultaneously activate both the first and second light emitting devices to thereby provide both high-angle and near-normal illumination of the surface of the passing coin.


Embodiment 8

The currency processing system of Embodiment 7, wherein the processor is further operable to selectively activate the second light emitting device and thereby provide only high-angle illumination of the surface of the passing coin.


Embodiment 9

The currency processing system of Embodiment 1, further comprising a light diffusing element operable to diffuse high-angle incidence light emitted by the second light emitting device.


Embodiment 10

The currency processing system of Embodiment 1, further comprising a cylindrical lens and a light scattering element operable to scatter high-angle incidence light emitted by the second light emitting device.


Embodiment 11

The currency processing system of Embodiment 1, further comprising a processor operatively coupled to the sensor arrangement to receive the coin image information signals and determine therefrom whether the passing coin is valid or invalid.


Embodiment 12

The currency processing system of Embodiment 1, further comprising a processor operatively coupled to the sensor arrangement to receive the coin image information signals and determine therefrom a country, a denomination, a fitness, or an authenticity, or any combination thereof, of the passing coin.


Embodiment 13

The currency processing system of Embodiment 1, wherein the sensor arrangement is configured to sense all or substantially all of a top surface of the passing coin.


Embodiment 14

A high-speed coin processing machine comprising:


a housing with an input area configured to receive therethrough a batch of coins;


a plurality of coin receptacles stowed inside the housing;


a processor stored inside the housing; and


a disk-type coin processing unit disposed at least partially inside the housing and operatively coupled to the coin input area and the plurality of coin receptacles to transfer coins therebetween, the coin processing unit including:

    • a rotatable disk configured to support on an upper surface thereof and impart motion to a plurality of coins received from the coin input area,
    • a stationary sorting head having a lower surface generally parallel to and spaced slightly apart from the rotatable disk, the lower surface forming a plurality of exit channels configured to guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit stations through which the coins are discharged from the coin processing unit to the plurality of coin receptacles, and
    • a sensor arrangement mounted to the sorting head facing the rotatable disk, the sensor arrangement including a linear array of photosensors and first and second rows of LEDs, the first row of LEDs being configured to emit light onto respective surfaces of passing coins at near-normal incidence, the second row of LEDs being configured to emit light onto the respective surfaces of the passing coins at high-angle incidence, and the linear array of photosensors having a normal incidence with the surfaces of the passing coins and being configured to sense light reflected off the respective surfaces of the passing coins and output signals indicative thereof,


wherein the processor is configured to receive the coin image signals from the sensor arrangement and generate therefrom multiple images of the respective surfaces of each of the passing coins for processing the coins with the rotatable disk turning at a rate of at least 120 rpm.


Embodiment 15

A high-speed coin imaging sensor system for a coin processing apparatus, the coin processing apparatus including a housing with an input area for receiving coins, a coin receptacle for stowing processed coins, a coin sorting device for separating coins by denomination, and a coin transport mechanism for transferring coins from the input area, through the coin sorting device, to the coin receptacle, the coin imaging sensor system comprising:


a sensor arrangement configured to mount inside the housing adjacent the coin transport mechanism upstream of the coin receptacle and downstream from the coin input area, the sensor arrangement including a photodetector and first and second light emitting devices, the first light emitting device being configured to emit light onto a surface of a passing coin at near-normal incidence, the second light emitting device being configured to emit light onto the surface of the passing coin at high-angle incidence, and the photodetector being configured to sense light reflected off the surface of the passing coin and output a signal indicative of coin image information;


an image processing circuit operatively coupled to the sensor arrangement and configured to process the coin image information signal output therefrom; and


a processor operatively coupled to the image processing circuit and configured to analyze the processed signals and generate therefrom an image for the passing coin


wherein the coins pass the sensor arrangement, the sensor arrangement outputs a signal indicative of coin image information, and the processor generates an image of each passing coin at a rate of at least 2000 coins per minute.


Embodiment 16

The coin imaging sensor system of Embodiment 15, wherein the photodetector includes a linear array of photosensors with a normal incidence with the surface of the passing coin.


Embodiment 17

The coin imaging sensor system of Embodiment 15, further comprising a lens or a lens array between the photodetector and the passing coin.


Embodiment 18

The coin imaging sensor system of Embodiment 15, wherein the first light emitting device comprises light sources configured to emit light onto the surface of the passing coin at a first near-normal incidence and a first high-angle of incidence, and the second light emitting device comprises light sources configured to emit light onto the surface of the passing coin at a second near-normal incidence and a second high-angle of incidence.


Embodiment 19

The coin imaging sensor system of Embodiment 18, wherein the light sources of the first light emitting device include first and second rows of light emitting diodes (LED), and the light sources of the second light emitting device include third and fourth rows of LEDs.


Embodiment 20

The coin imaging sensor system of Embodiment 15, wherein the processor is further operable to selectively simultaneously activate both the first and second light emitting devices to thereby provide both high-angle and near-normal illumination of the surface of the passing coin.


Embodiment 21

The currency processing system of Embodiment 1, wherein a coin processing unit comprises a rotatable disk configured to support on an upper surface thereof and impart motion to a plurality of coins received from the coin input area, and a stationary sorting head having an eleven inch diameter having a lower surface generally parallel to and spaced slightly apart from the rotatable disk, the lower surface forming a plurality of exit channels configured to guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit stations through which the coins are discharged from the coin processing unit to a plurality of coin receptacles.


Embodiment 22

The currency processing system of Embodiment 1, wherein the rotatable disk rotates at a rate of at least 300 rpm.


Embodiment 23

The currency processing system of Embodiment 1, wherein the coins pass the sensor arrangement and the sensor arrangement outputs a signal indicative of coin image information at a rate of at least 3000 coins per minute.


Embodiment 24

The currency processing system of Embodiment 23, wherein a coin processing unit comprises a rotatable disk configured to support on an upper surface thereof and impart motion to a plurality of coins received from the coin input area, and a stationary sorting head having an eleven inch diameter having a lower surface generally parallel to and spaced slightly apart from the rotatable disk, the lower surface forming a plurality of exit channels configured to guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit stations through which the coins are discharged from the coin processing unit to a plurality of coin receptacles.


Embodiment 25

The currency processing system of Embodiment 24, wherein the rotatable disk rotates at a rate of at least 300 rpm.


Embodiment 26

The high-speed coin processing machine of Embodiment 14, wherein the processor is configured to receive the coin image signals from the sensor arrangement and generate therefrom multiple images of the respective surfaces of each of the passing coins at a rate of at least 2000 coins per minute.


Embodiment 27

The high-speed coin processing machine of Embodiment 14, wherein the stationary sorting head has a diameter of eleven (11) inches.


Embodiment 28

The high-speed coin processing machine of Embodiment 14, wherein the processor is configured to receive the coin image signals from the sensor arrangement and generate therefrom multiple images of the respective surfaces of each of the passing coins at a rate of at least 3000 coins per minute.


Embodiment 29

The high-speed coin processing machine of Embodiment 28, wherein the stationary sorting head has a diameter of eleven (11) inches.


Embodiment 30

The coin imaging sensor system of Embodiment 15, wherein the coins pass the sensor arrangement, the sensor arrangement outputs a signal indicative of coin image information, and the processor generates an image of each passing coin at a rate of at least 3000 coins per minute.


Embodiment 31

A currency processing system comprising:


a housing with a coin input area configured to receive a batch of coins;


one or more coin receptacles operatively coupled to the housing;


a coin processing unit operatively coupled to the coin input area and the one or more coin receptacles, the coin processing unit being configured to process a plurality of the coins and discharge the processed coins to the one or more coin receptacles; and


a sensor arrangement operatively coupled to the coin processing unit, the sensor arrangement including a photodetector and a first light emitting device, the first light emitting device being configured to emit light in a generally horizontal direction onto a surface of a half-mirror, the half-mirror being oriented at about 45° to the horizontal direction, the half-mirror being configured to re-direct at least some of the light in a generally vertical direction and onto a passing coin at normal or near-normal angle of incidence and the photodetector being configured to sense light reflected off the surface of the passing coin and passed through the half-mirror and output a signal indicative of coin image information for processing the coin.


Embodiment 32

The currency processing system of Embodiment 31 further comprising of a second light emitting device being configured to emit light onto the surface of the passing coin at high-angle incidence.


Embodiment 33

The currency processing system of Embodiment 31 further comprising a processor configured to receive the signal indicative of coin image information and generate an image of the passing coin at a rate of at least 1,000 coins per minute.


Embodiment 34

The currency processing system of Embodiment 31 further comprising a processor configured to receive the signal indicative of coin image information and generate an image of the passing coin at a rate of at least 2,000 coins per minute.


Embodiment 35

The currency processing system of Embodiment 31 further comprising a processor configured to receive the signal indicative of coin image information and generate an image of the passing coin at a rate of at least 3,000 coins per minute.


Embodiment 36

The currency processing system of Embodiment 31, further comprising a light diffusing element positioned between the first light emitting device and the half-mirror.


Embodiment 37

A coin processing machine comprising:


a housing with an input area configured to receive therethrough a batch of coins;


a plurality of coin receptacles stowed inside the housing;


a processor stored inside the housing; and


a disk-type coin processing unit disposed at least partially inside the housing and operatively coupled to the coin input area and the plurality of coin receptacles to transfer coins therebetween, the coin processing unit including:

    • a rotatable disk configured to support on an upper surface thereof and impart motion to a plurality of coins received from the coin input area,
    • a stationary sorting head having a lower surface generally parallel to and spaced slightly apart from the rotatable disk, the lower surface forming a plurality of exit channels configured to guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit stations through which the coins are discharged from the coin processing unit to the plurality of coin receptacles, and
    • a sensor arrangement mounted to the sorting head facing the rotatable disk, the sensor arrangement including a linear array of photosensors and a first light source being configured to emit light in a generally horizontal direction onto a surface of a half-mirror, the half-mirror being oriented at about 45° to the horizontal direction, the half-mirror being configured to re-direct at least some of the light in a generally vertical direction and onto respective surfaces of passing coins at normal or near-normal angle of incidence and the linear array of photosensors having a normal incidence with the surfaces of the passing coins and being configured to sense light reflected off the respective surfaces of the passing coins and passed through the half-mirror and output signals indicative thereof,


wherein the processor is configured to receive the coin image signals from the sensor arrangement and generate therefrom multiple images of the respective surfaces of each of the passing coins.


Embodiment 38

The coin processing machine of Embodiment 37 further comprising a second light source configured to emit light onto the respective surfaces of the passing coins at high-angle incidence.


Embodiment 39

The coin processing machine of Embodiment 37 wherein the rotatable disk rotates at a rate of at least 120 rpm.


Embodiment 40

The coin processing machine of Embodiment 37 wherein the first light source comprises one or more light sources, collectively, generating light of a plurality of wavelengths.


Embodiment 41

The coin processing machine of Embodiment 40 wherein the plurality of wavelengths comprise visible light and infrared light.


Embodiment 42

The coin processing machine of Embodiment 40 wherein the plurality of wavelengths comprise visible light and ultraviolet light.


Embodiment 43

The coin processing machine of Embodiment 40 wherein the plurality of wavelengths comprise ultraviolet light and infrared light.


Embodiment 44

The coin processing machine of Embodiment 40 wherein the plurality of wavelengths comprise visible light, ultraviolet light and infrared light.


Embodiment 45

The coin processing machine of Embodiment 40 further comprising one or more light filters positioned in front of the one or more of the photosensors.


Embodiment 46

The coin processing machine of Embodiment 45 wherein the one or more light filters permit only visible light to reach the one or more of the photosensors.


Embodiment 47

The coin processing machine of Embodiment 45 wherein the one or more light filters permit only infrared light to reach the one or more of the photosensors.


Embodiment 48

The coin processing machine of Embodiment 45 wherein the one or more light filters permit only ultraviolet light to reach the one or more of the photosensors.


Embodiment 49

The coin processing machine of Embodiment 45 wherein the one or more light filters permit only visible light to reach a first group of the one or more of the photosensors and permit only infrared light to reach a second group of the one or more of the photosensors.


Embodiment 50

The coin processing machine of Embodiment 45 wherein the one or more light filters permit only visible light to reach a first group of the one or more of the photosensors and permit only ultraviolet light to reach a second group of the one or more of the photosensors.


Embodiment 51

The coin processing machine of Embodiment 45 wherein the one or more light filters permit only visible light to reach a first group of the one or more of the photosensors, permit only ultraviolet light to reach a second group of the one or more of the photosensors, and permit only infrared light to reach a third group of the one or more of the photosensors.


Embodiment 52

A coin imaging sensor system for a coin processing apparatus, the coin processing apparatus including a housing with an input area for receiving coins, a coin receptacle for stowing processed coins, a coin sorting device for separating coins by denomination, and a coin transport mechanism for transferring coins from the input area, through the coin sorting device, to the coin receptacle, the coin imaging sensor system comprising:


a sensor arrangement configured to mount inside the housing adjacent the coin transport mechanism upstream of the coin receptacle and downstream from the coin input area, the sensor arrangement including a photodetector and a first light source, the first light source being configured to emit light in a generally horizontal direction onto a surface of a half-mirror, the half-mirror being oriented at about 45° to the horizontal direction, the half-mirror being configured to re-direct at least some of the light in a generally vertical direction and onto a surface of a passing coin at a normal or near-normal angle of incidence, and the photodetector being configured to sense light reflected off the surface of the passing coin and passed through the half-mirror and output a signal indicative of coin image information;


an image processing circuit operatively coupled to the sensor arrangement and configured to process the coin image information signal output therefrom; and


a processor operatively coupled to the image processing circuit and configured to analyze the processed signals and generate therefrom an image for the passing coin.


Embodiment 53

The coin imaging sensor system of Embodiment 52 further comprising a second light source being configured to emit light onto the surface of the passing coin at high-angle incidence.


Embodiment 54

The coin imaging sensor system of Embodiment 53 wherein the coins pass the sensor arrangement, the sensor arrangement outputs a signal indicative of coin image information, and the processor generates an image of each passing coin at a rate of at least 2000 coins per minute.


Embodiment 55

The coin imaging sensor system of Embodiment 52 wherein the coins pass the sensor arrangement, the sensor arrangement outputs a signal indicative of coin image information, and the processor generates an image of each passing coin at a rate of at least 2000 coins per minute.


Embodiment 56

The coin imaging sensor system of Embodiment 52 wherein the first light source comprises one or more light sources, collectively, generating light of a plurality of wavelengths.


Embodiment 57

The coin imaging sensor system of Embodiment 56 wherein the plurality of wavelengths comprise visible light and infrared light.


Embodiment 58

The coin imaging sensor system of Embodiment 56 wherein the plurality of wavelengths comprise visible light and ultraviolet light.


Embodiment 59

The coin imaging sensor system of Embodiment 56 wherein the plurality of wavelengths comprise ultraviolet light and infrared light.


Embodiment 60

The coin imaging sensor system of Embodiment 56 wherein the plurality of wavelengths comprise visible light, ultraviolet light and infrared light.


Embodiment 61

The coin imaging sensor system of Embodiment 56 wherein the photodetector comprises a plurality of photosensors and further comprising one or more light filters positioned in front of the one or more of the photosensors.


Embodiment 62

The coin imaging sensor system of Embodiment 61 wherein the one or more light filters permit only visible light to reach the one or more of the photosensors.


Embodiment 63

The coin imaging sensor system of Embodiment 61 wherein the one or more light filters permit only infrared light to reach the one or more of the photosensors.


Embodiment 64

The coin imaging sensor system of Embodiment 61 wherein the one or more light filters permit only ultraviolet light to reach the one or more of the photosensors.


Embodiment 65

The coin imaging sensor system of Embodiment 61 wherein the one or more light filters permit only visible light to reach a first group of the one or more of the photosensors and permit only infrared light to reach a second group of the one or more of the photosensors.


Embodiment 66

The coin imaging sensor system of Embodiment 61 wherein the one or more light filters permit only visible light to reach a first group of the one or more of the photosensors and permit only ultraviolet light to reach a second group of the one or more of the photosensors.


Embodiment 67

The coin imaging sensor system of Embodiment 61 wherein the one or more light filters permit only infrared light to reach a first group of the one or more of the photosensors and permit only ultraviolet light to reach a second group of the one or more of the photosensors.


Embodiment 68

The coin imaging sensor system of Embodiment 61 wherein the one or more light filters permit only visible light to reach a first group of the one or more of the photosensors, permit only ultraviolet light to reach a second group of the one or more of the photosensors, and permit only infrared light to reach a third group of the one or more of the photosensors.


Embodiment 69

A high-speed currency processing system comprising:


a housing with a coin input area configured to receive a batch of coins;


one or more coin receptacles operatively coupled to the housing;


a coin processing unit operatively coupled to the coin input area and the one or more coin receptacles, the coin processing unit being configured to process a plurality of the coins and discharge the processed coins to the one or more coin receptacles; and


a sensor arrangement operatively coupled to the coin processing unit, the sensor arrangement including a photodetector and at least one light emitting device, the light emitting device being configured to emit light onto a surface of a passing coin, and the photodetector being configured to sense light reflected off the surface of the passing coin and output a signal indicative of coin image information for processing the coin;


wherein the coins pass the sensor arrangement and the sensor arrangement outputs a signal indicative of coin image information at a rate of at least 2000 coins per minute.


While particular embodiments and applications of the present disclosure have been illustrated and described, it is to be understood that the present disclosure is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims. Moreover, this disclosure expressly includes any and all combinations and subcombinations of the preceding elements and aspects.

Claims
  • 1. A currency processing system comprising: a housing with a coin input area configured to receive a batch of coins;one or more coin receptacles operatively coupled to the housing;a disk-type coin processing unit operatively coupled to the coin input area and the one or more coin receptacles to transfer coins therebetween, the coin processing unit including: a rotatable disk configured to impart motion to a plurality of the coins, the rotatable disk having a top surface, anda sorting head having a lower surface generally parallel to and spaced slightly apart from the top surface of the rotatable disk, the lower surface forming a plurality of shaped regions configured to guide the coins, responsive to motion imparted by the rotatable disk, to a plurality of exit stations through which the coins are discharged from the coin processing unit to the one or more coin receptacles; andan optical sensor assembly mounted at least partially within the sorting head adjacent the rotatable disk, the sensor assembly being configured to analyze coins moving on the rotatable disk and generate image signals indicative of coin image information for processing the coins, the sensor assembly including a sensor circuit board with one or more photodetector elements, a gradient-index (GRIN) lens array disposed between the rotatable disk and the one or more photodetector elements, one or more light emitting devices, an illumination control device communicatively coupled to and operable for controlling the one or more light emitting devices, and a photodetector control device communicatively coupled to and operable for controlling the one or more photodetector elements and;wherein images of the coins having a resolution of at least 50 dots per inch (dpi) are generated from the image signals and wherein the images of the coins comprise images of topographic variations in the coins.
  • 2. The currency processing system of claim 1, wherein images of the coins having a resolution of at least 100 dots per inch (dpi) are generated from the image signals.
  • 3. The currency processing system of claim 1, wherein images of the coins having a resolution of at least 200 dots per inch (dpi) are generated from the image signals.
  • 4. The currency processing system of claim 1, wherein the illumination control device comprises one or more microprocessors operable to modulate light output of the one or more light emitting devices.
  • 5. The currency processing system of claim 1, wherein the photodetector control device comprises one or more microprocessors operable to initiate and discontinue the collection of data by the one or more photodetector elements of the sensor circuit board.
  • 6. The currency processing system of claim 1, wherein the photodetector control device comprises a differential-to-single-ended transceiver and a start pulse and enable timing control module.
  • 7. The currency processing system of claim 1, further comprising a central processing unit (CPU) with a main machine printed circuit board (PCB) operable for communicating with and controlling the sensor assembly, wherein the sensor assembly further comprises a first connector operatively coupling the illumination control device and the photodetector control device to the main machine PCB of the CPU.
  • 8. The currency processing system of claim 7, wherein the sensor assembly further comprises a second connector operatively coupling the sensor circuit board to the photodetector control device.
  • 9. The currency processing system of claim 8, wherein the second connector includes a multi-pin connector physically and electrically connecting the sensor circuit board to the photodetector control device.
  • 10. The currency processing system of claim 1, wherein the sensor assembly further comprises one or more amplifiers communicatively coupled to the sensor circuit board and operable for boosting or conditioning, or both, of an analog signal generated by the sensor circuit board.
  • 11. The currency processing system of claim 1, wherein the sensor assembly further comprises a housing storing therein the sensor assembly, the one or more light emitting devices, the illumination control device and the photodetector control device.
  • 12. The currency processing system of claim 1, wherein the one or more light emitting devices include first and second light emitting devices, the first light emitting device comprising a first row of light emitting diodes (LED), and the second light emitting device comprising a second row of LEDs.
  • 13. The currency processing system of claim 1, wherein the one or more photodetector elements includes a linear array of photosensors with a normal incidence with a surface of a passing coin.
  • 14. The currency processing system of claim 1, further comprising: an image processing circuit communicatively coupled to the sensor circuit board and configured to process the coin image information signals output therefrom; anda processor operatively coupled to the image processing circuit and configured to analyze the processed signals and generate therefrom an image for each of the coins.
  • 15. The currency processing system of claim 1 further comprising a processor configured to receive the image signals indicative of coin image information and generate an image of the passing coins at a rate of at least 1,000 coins per minute.
  • 16. The currency processing system of claim 1 further comprising a processor configured to receive the image signals indicative of coin image information and generate an image of the passing coins at a rate of at least 2,000 coins per minute.
  • 17. The currency processing system of claim 1 further comprising a processor configured to receive the image signals indicative of coin image information and generate an image of the passing coins at a rate of at least 3,000 coins per minute.
  • 18. A currency processing system comprising: a housing with a coin input area configured to receive a batch of coins;a disk-type coin processing unit operatively coupled to the coin input area, the coin processing unit including: a rotatable disk configured to impart motion to a plurality of the coins, the rotatable disk having a top surface onto which the coins are received from the coin input area and on which a bottom surface of each of the coins lays with an opposing upper surface of each coin facing generally upward, anda sorting head having a lower surface generally parallel to and spaced slightly apart from the top surface of the rotatable disk such that coins are pressed into contact with portions of the lower surface of the sorting head, the lower surface forming a plurality of shaped regions configured to guide the coins, responsive to motion imparted by the rotatable disk, to a plurality of exit stations through which the coins are discharged from the coin processing unit; andan optical coin image sensor assembly mounted to, adjacent or within the sorting head adjacent the rotatable disk such that the coin image sensor assembly is spaced slightly apart from the top surface of the rotatable disc and the upper surfaces of the coins, wherein the optical coin image sensor assembly comprises a gradient-index (GRIN) lens array disposed between the rotatable disk and one or more photodetector elements, the optical coin image sensor assembly being configured to generate images of the upper surfaces of coins moving on the rotatable disk at a resolution of at least 50 dots per inch (dpi), wherein the images of the coins comprise images of topographic variations in the upper surfaces of the coins.
  • 19. The currency processing system of claim 18, wherein the coin image sensor assembly generates images of the coins at a resolution of at least 100 dots per inch (dpi).
  • 20. The currency processing system of claim 18, wherein the coin image sensor assembly generates images of the coins at a resolution of at least 200 dots per inch (dpi).
  • 21. The currency processing system of claim 18, wherein the coin image sensor assembly comprises a linear array of photosensors.
  • 22. The currency processing system of claim 18 wherein the coin image sensor assembly generates images of the passing coins at a rate of at least 1,000 coins per minute.
  • 23. The currency processing system of claim 18 wherein the coin image sensor assembly generates images of the passing coins at a rate of at least 2,000 coins per minute.
  • 24. The currency processing system of claim 18 wherein the coin image sensor assembly generates images of the passing coins at a rate of at least 3,000 coins per minute.
  • 25. A currency processing system comprising: a housing with a coin input area configured to receive a batch of coins;a disk-type coin processing unit operatively coupled to the coin input area, the coin processing unit including: a rotatable disk configured to impart motion to a plurality of the coins, the rotatable disk having a top surface, anda sorting head having a lower surface generally parallel to and spaced slightly apart from the top surface of the rotatable disk, the lower surface forming a plurality of shaped regions configured to guide the coins, responsive to motion imparted by the rotatable disk, to a plurality of exit stations through which the coins are discharged from the coin processing unit; andan optical coin image sensor assembly mounted at least partially within the sorting head adjacent the rotatable disk, the coin image sensor assembly being configured to generate images of coins moving on the rotatable disk at a resolution of at least 50 dots per inch (dpi), wherein the images of the coins comprise images of topographic variations in the coins, wherein the optical coin image sensor assembly comprises a gradient-index (GRIN) lens array disposed between the rotatable disk and one or more photodetector elements.
  • 26. The currency processing system of claim 25, wherein the coin image sensor assembly generates images of the coins at a resolution of at least 100 dots per inch (dpi).
  • 27. The currency processing system of claim 25, wherein the coin image sensor assembly generates images of the coins at a resolution of at least 200 dots per inch (dpi).
  • 28. The currency processing system of claim 25, wherein the coin image sensor assembly comprises a linear array of photosensors.
  • 29. The currency processing system of claim 25 wherein the coin image sensor assembly generates images of the coins at a rate of at least 1,000 coins per minute.
  • 30. The currency processing system of claim 25 wherein the coin image sensor assembly generates images of the coins at a rate of at least 2,000 coins per minute.
  • 31. The currency processing system of claim 25 wherein the coin image sensor assembly generates images of the coins at a rate of at least 3,000 coins per minute.
CLAIM OF PRIORITY AND CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. patent application Ser. No. 15/356,295, filed on Nov. 18, 2016, and entitled Systems, Methods and Devices for Processing Coins Utilizing Normal or Near-Normal and/or High-Angle of Incidence Lighting, which is a continuation-in-part of U.S. patent application Ser. No. 14/794,262, filed on Jul. 8, 2015, and entitled Systems, Methods and Devices for Processing Coins Utilizing Near-Normal and High-Angle of Incidence Lighting, now U.S. Pat. No. 9,501,885, which issued Nov. 22, 2016, which claims the benefit of priority to U.S. Provisional Patent Application No. 62/022,373, which was filed on Jul. 9, 2014; and this application is a continuation-in-part of U.S. patent application Ser. No. 14/936,846, filed on Nov. 10, 2015, and entitled Systems, Methods and Devices for Processing Batches of Coins Utilizing Coin Imaging Sensor Assemblies, which claims the benefit of priority to U.S. Provisional Patent Application No. 62/077,992, which was filed on Nov. 11, 2014, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (572)
Number Name Date Kind
1099706 Lindeen Jun 1914 A
2570920 Clough et al. Oct 1951 A
2669998 Buchholz Feb 1954 A
2750949 Kulo et al. Jun 1956 A
2835260 Buchholz May 1958 A
2865561 Rosapepe Dec 1958 A
3132654 Adams May 1964 A
3376970 Roseberg Apr 1968 A
3771583 Bottemiller Nov 1973 A
3778595 Hatanaka et al. Dec 1973 A
3851755 Hull et al. Dec 1974 A
3916922 Prumm Nov 1975 A
3998237 Kressin Dec 1976 A
3998379 Myers et al. Dec 1976 A
4050218 Call Sep 1977 A
4059122 Kinoshita Nov 1977 A
4075460 Gorgens Feb 1978 A
4124111 Hayashi Nov 1978 A
4150740 Douno Apr 1979 A
4166945 Inoyama et al. Sep 1979 A
4172462 Uchida et al. Oct 1979 A
4179685 O'Maley Dec 1979 A
4179723 Spencer Dec 1979 A
4184366 Butler Jan 1980 A
4197986 Nagata Apr 1980 A
4208549 Polillo et al. Jun 1980 A
4228812 Marti Oct 1980 A
4232295 McConnell Nov 1980 A
4234003 Ristvedt et al. Nov 1980 A
4249552 Margolin et al. Feb 1981 A
4251867 Uchida et al. Feb 1981 A
4286703 Schuller et al. Sep 1981 A
RE30773 Glaser et al. Oct 1981 E
4310885 Azcua et al. Jan 1982 A
4317957 Sendrow Mar 1982 A
4341951 Benton Jul 1982 A
4355369 Garvin Oct 1982 A
4360034 Davila et al. Nov 1982 A
4369442 Werth et al. Jan 1983 A
4380316 Glinka et al. Apr 1983 A
4383540 DeMeyer et al. May 1983 A
4385285 Horst et al. May 1983 A
4412292 Sedam et al. Oct 1983 A
4416299 Bergman Nov 1983 A
4417136 Rushby et al. Nov 1983 A
4423316 Sano et al. Dec 1983 A
4434359 Watanabe Feb 1984 A
4436103 Dick Mar 1984 A
4454414 Benton Jun 1984 A
4474197 Kinoshita et al. Oct 1984 A
4488116 Plesko Dec 1984 A
4531531 Johnson et al. Jul 1985 A
4543969 Rasmussen Oct 1985 A
4549561 Johnson et al. Oct 1985 A
4556140 Okada Dec 1985 A
4558711 Yoshiaki et al. Dec 1985 A
4564036 Ristvedt Jan 1986 A
4570655 Raterman Feb 1986 A
4594664 Hashimoto Jun 1986 A
4602332 Hirose et al. Jul 1986 A
4607649 Taipale et al. Aug 1986 A
4620559 Childers et al. Nov 1986 A
4641239 Takesako Feb 1987 A
4674260 Rasmussen et al. Jun 1987 A
4681128 Ristvedt et al. Jul 1987 A
4705154 Masho et al. Nov 1987 A
4718218 Ristvedt Jan 1988 A
4731043 Ristvedt et al. Mar 1988 A
4733765 Watanabe Mar 1988 A
4749074 Ueki et al. Jun 1988 A
4753624 Adams et al. Jun 1988 A
4753625 Okada Jun 1988 A
4765464 Ristvedt Aug 1988 A
4766548 Cedrone et al. Aug 1988 A
4775353 Childers et al. Oct 1988 A
4775354 Rasmussen et al. Oct 1988 A
4778983 Ushikubo Oct 1988 A
4803347 Sugaham et al. Feb 1989 A
4804830 Miyagisima et al. Feb 1989 A
4812629 O'Neil et al. Mar 1989 A
4839505 Bradt et al. Jun 1989 A
4840290 Nakamura et al. Jun 1989 A
4844369 Kanayachi Jul 1989 A
4848556 Shah et al. Jul 1989 A
4863414 Ristvedt et al. Sep 1989 A
4883158 Kobayashi et al. Nov 1989 A
4884212 Stutsman Nov 1989 A
4900909 Nagashima et al. Feb 1990 A
4908516 West Mar 1990 A
4921463 Primdahl et al. May 1990 A
4936435 Griner Jun 1990 A
4953086 Fukatsu Aug 1990 A
4954697 Kokubun et al. Sep 1990 A
4964495 Rasmussen Oct 1990 A
4966570 Ristvedt et al. Oct 1990 A
4970655 Winn et al. Nov 1990 A
4971187 Furuya et al. Nov 1990 A
4988849 Sasaki et al. Jan 1991 A
4992647 Konishi et al. Feb 1991 A
4995848 Goh Feb 1991 A
5009627 Rasmussen Apr 1991 A
5010238 Kadono et al. Apr 1991 A
5010485 Bigari Apr 1991 A
5011455 Rasmussen Apr 1991 A
5022889 Ristvedt et al. Jun 1991 A
5025139 Halliburton, Jr. Jun 1991 A
5026320 Rasmussen Jun 1991 A
5031098 Miller et al. Jul 1991 A
5033602 Saarinen et al. Jul 1991 A
5039848 Stoken Aug 1991 A
5055086 Raterman et al. Oct 1991 A
5055657 Miller et al. Oct 1991 A
5056643 Kitherg Oct 1991 A
5064999 Okamoto et al. Nov 1991 A
5067928 Harris Nov 1991 A
5080633 Ristvedt et al. Jan 1992 A
5091713 Horne et al. Feb 1992 A
5104353 Ristvedt et al. Apr 1992 A
5105601 Horiguchi et al. Apr 1992 A
5106338 Rasmussen et al. Apr 1992 A
5111927 Schulze May 1992 A
5114381 Ueda et al. May 1992 A
5120945 Nishibe et al. Jun 1992 A
5123873 Rasmussen Jun 1992 A
5129205 Rasmussen Jul 1992 A
5133019 Merton Jul 1992 A
5135435 Rasmussen Aug 1992 A
5140517 Nagata et al. Aug 1992 A
5141443 Rasmussen et al. Aug 1992 A
5141472 Todd et al. Aug 1992 A
5145455 Todd Sep 1992 A
5146067 Sloan et al. Sep 1992 A
5154272 Nishiumi et al. Oct 1992 A
5163866 Rasmussen Nov 1992 A
5163867 Rasmussen Nov 1992 A
5163868 Adams et al. Nov 1992 A
5167313 Dobbins et al. Dec 1992 A
5175416 Mansvelt et al. Dec 1992 A
5176565 Ristvedt et al. Jan 1993 A
5179517 Sathin et al. Jan 1993 A
5183142 Latchinian et al. Feb 1993 A
5184709 Nishiumi et al. Feb 1993 A
5194037 Jones et al. Mar 1993 A
5197919 Geib et al. Mar 1993 A
5205780 Rasmussen Apr 1993 A
5207784 Schwartzendruber May 1993 A
5209696 Rasmussen et al. May 1993 A
5220614 Crain Jun 1993 A
5236071 Lee Aug 1993 A
5243174 Veeneman et al. Sep 1993 A
5251738 Dabrowski Oct 1993 A
5252811 Henochowicz et al. Oct 1993 A
5253167 Yoshida et al. Oct 1993 A
5259491 Ward, II Nov 1993 A
5263566 Nara et al. Nov 1993 A
5265874 Dickinson et al. Nov 1993 A
5268561 Kimura et al. Dec 1993 A
5277651 Rasmussen et al. Jan 1994 A
5282127 Mii Jan 1994 A
5286226 Rasmussen Feb 1994 A
5286954 Sato et al. Feb 1994 A
5291003 Avnet et al. Mar 1994 A
5291560 Daugman Mar 1994 A
5293981 Abe et al. Mar 1994 A
5297030 Vassigh et al. Mar 1994 A
5297598 Rasmussen Mar 1994 A
5297986 Ristvedt et al. Mar 1994 A
5299977 Mazur et al. Apr 1994 A
5302811 Fukatsu Apr 1994 A
5324922 Roberts Jun 1994 A
5326104 Pease et al. Jul 1994 A
5370575 Geib et al. Dec 1994 A
5372542 Geib et al. Dec 1994 A
5374814 Kako et al. Dec 1994 A
5379344 Larson et al. Jan 1995 A
5379875 Shames et al. Jan 1995 A
5382191 Rasmussen Jan 1995 A
5390776 Thompson Feb 1995 A
5401211 Geib et al. Mar 1995 A
5404986 Hossfield et al. Apr 1995 A
5410590 Blood et al. Apr 1995 A
RE34934 Raterman et al. May 1995 E
5425669 Geib et al. Jun 1995 A
5429550 Mazur et al. Jul 1995 A
5440108 Tran et al. Aug 1995 A
5443419 Adams et al. Aug 1995 A
5450938 Rademacher Sep 1995 A
5453047 Mazur et al. Sep 1995 A
5458285 Remien Oct 1995 A
5468182 Geib Nov 1995 A
5470079 LeStrange et al. Nov 1995 A
5474495 Geib et al. Dec 1995 A
5474497 Jones et al. Dec 1995 A
5480348 Mazur et al. Jan 1996 A
5489237 Geib et al. Feb 1996 A
5500514 Veeneman et al. Mar 1996 A
5501631 Mennie et al. Mar 1996 A
5507379 Mazur et al. Apr 1996 A
5514034 Jones et al. May 1996 A
5520577 Rasmussen May 1996 A
5531309 Kloss et al. Jul 1996 A
5538468 Ristvedt et al. Jul 1996 A
5542880 Geib et al. Aug 1996 A
5542881 Geib Aug 1996 A
5553320 Matsuura et al. Sep 1996 A
5559887 Davis et al. Sep 1996 A
5564546 Molbak et al. Oct 1996 A
5564974 Mazur et al. Oct 1996 A
5564978 Jones et al. Oct 1996 A
5570465 Tsakanikas Oct 1996 A
5573457 Watts et al. Nov 1996 A
5584758 Geib Dec 1996 A
5592377 Lipkin Jan 1997 A
5602933 Blackwell et al. Feb 1997 A
5615625 Cassidy et al. Apr 1997 A
5620079 Molbak Apr 1997 A
5623547 Jones et al. Apr 1997 A
5625562 Veeneman et al. Apr 1997 A
5630494 Strauts May 1997 A
5641050 Smith et al. Jun 1997 A
5650605 Morioka et al. Jul 1997 A
5650761 Gomm et al. Jul 1997 A
5652421 Veeneman et al. Jul 1997 A
5665952 Ziarno Sep 1997 A
5679070 Ishida et al. Oct 1997 A
5684597 Hossfield et al. Nov 1997 A
5696366 Ziarno Dec 1997 A
5743373 Strauts Apr 1998 A
5746299 Molbak et al. May 1998 A
5767506 Bell Jun 1998 A
5774874 Veeneman et al. Jun 1998 A
5782686 Geib et al. Jul 1998 A
5799767 Molbak Sep 1998 A
5813510 Rademacher Sep 1998 A
5823315 Hoffman et al. Oct 1998 A
5830054 Petri Nov 1998 A
5838812 Pare, Jr. et al. Nov 1998 A
5842188 Ramsey et al. Nov 1998 A
5842916 Gerrity et al. Dec 1998 A
5850076 Morioka et al. Dec 1998 A
5854581 Mori et al. Dec 1998 A
5865673 Geib et al. Feb 1999 A
5875879 Hawthorn Mar 1999 A
5880444 Shibata et al. Mar 1999 A
5892211 Davis et al. Apr 1999 A
5892827 Beach et al. Apr 1999 A
5909793 Beach et al. Jun 1999 A
5909794 Molbak et al. Jun 1999 A
5913399 Takemoto et al. Jun 1999 A
5918748 Clark et al. Jul 1999 A
5940623 Watts et al. Aug 1999 A
5941364 Wei Aug 1999 A
5944162 Filiberti Aug 1999 A
5944600 Zimmermann Aug 1999 A
5944601 Hayashi et al. Aug 1999 A
5951476 Beach et al. Sep 1999 A
5957262 Molbak et al. Sep 1999 A
5988348 Martin et al. Nov 1999 A
5995949 Morioka et al. Nov 1999 A
5997395 Geib et al. Dec 1999 A
6017270 Ristvedt et al. Jan 2000 A
6021883 Casanova et al. Feb 2000 A
6032859 Muehlberger et al. Mar 2000 A
6039644 Geib et al. Mar 2000 A
6039645 Mazur Mar 2000 A
6042470 Geib et al. Mar 2000 A
6047807 Molbak Apr 2000 A
6047808 Neubarth et al. Apr 2000 A
6056104 Neubarth et al. May 2000 A
6068194 Mazur May 2000 A
6080056 Karlsson Jun 2000 A
6082519 Martin et al. Jul 2000 A
6086471 Zimmermann Jul 2000 A
6095313 Molbak et al. Aug 2000 A
6116402 Beach et al. Sep 2000 A
6131625 Casanova et al. Oct 2000 A
6139418 Geib et al. Oct 2000 A
6142285 Panzeri et al. Nov 2000 A
6145738 Stinson et al. Nov 2000 A
6154879 Pare, Jr. et al. Nov 2000 A
6168001 Davis Jan 2001 B1
6171182 Geib et al. Jan 2001 B1
6174230 Gerrity et al. Jan 2001 B1
6196371 Martin et al. Mar 2001 B1
6196913 Geib et al. Mar 2001 B1
6202006 Scott Mar 2001 B1
6213277 Blad et al. Apr 2001 B1
6230928 Hanna et al. May 2001 B1
6264545 Magee et al. Jul 2001 B1
6305523 House Oct 2001 B1
6308887 Korman et al. Oct 2001 B1
6318536 Korman et al. Nov 2001 B1
6318537 Jones et al. Nov 2001 B1
6349972 Geiger et al. Feb 2002 B1
6386323 Ramachandran et al. May 2002 B1
6412620 Imura Jul 2002 B1
6431342 Schwartz Aug 2002 B1
6438230 Moore Aug 2002 B1
6446867 Sanchez Sep 2002 B1
6456928 Johnson Sep 2002 B1
6471030 Neubarth et al. Oct 2002 B1
6474548 Montross et al. Nov 2002 B1
6484863 Molbak Nov 2002 B1
6484865 Hibari Nov 2002 B1
6484884 Gerrity et al. Nov 2002 B1
6494776 Molbak Dec 2002 B1
6499277 Warner et al. Dec 2002 B1
6503138 Spoehr et al. Jan 2003 B2
6520308 Martin et al. Feb 2003 B1
6522772 Morrison et al. Feb 2003 B1
6547131 Foodman et al. Apr 2003 B1
6552781 Rompel et al. Apr 2003 B1
6554185 Montross et al. Apr 2003 B1
6579165 Kuhlin et al. Jun 2003 B2
6581042 Pare, Jr. et al. Jun 2003 B2
6602125 Martin Aug 2003 B2
6609604 Jones Aug 2003 B1
6612921 Geib et al. Sep 2003 B2
6637576 Jones et al. Oct 2003 B1
6640956 Zwieg Nov 2003 B1
6644696 Brown et al. Nov 2003 B2
6652380 Luciano Nov 2003 B1
6655585 Shinn Dec 2003 B2
6659259 Knox et al. Dec 2003 B2
6662166 Pare, Jr. et al. Dec 2003 B2
6663675 Blake et al. Dec 2003 B2
6666318 Gerrity et al. Dec 2003 B2
6679770 Sugai Jan 2004 B1
6688449 Yamagishi Feb 2004 B1
6719121 Alexander et al. Apr 2004 B2
6721442 Mennie Apr 2004 B1
6755730 Geib et al. Jun 2004 B2
6758316 Molbak Jul 2004 B2
6761308 Hanna et al. Jul 2004 B1
6766892 Martin et al. Jul 2004 B2
6783452 Hino et al. Aug 2004 B2
6786398 Stinson et al. Sep 2004 B1
6854581 Molbak Feb 2005 B2
6854640 Peklo Feb 2005 B2
6863168 Gerrity et al. Mar 2005 B1
6892871 Strauts et al. May 2005 B2
6896118 Jones et al. May 2005 B2
6928546 Nanavati et al. Aug 2005 B1
6950810 Lapsley et al. Sep 2005 B2
6953150 Shepley et al. Oct 2005 B2
6957746 Martin et al. Oct 2005 B2
6966417 Peklo et al. Nov 2005 B2
6976570 Molbak Dec 2005 B2
6988606 Geib et al. Jan 2006 B2
6991530 Hino et al. Jan 2006 B2
7004831 Hino et al. Feb 2006 B2
7014029 Winters Mar 2006 B2
7014108 Sorenson et al. Mar 2006 B2
7017729 Gerrity et al. Mar 2006 B2
7018286 Blake et al. Mar 2006 B2
7028827 Molbak et al. Apr 2006 B1
7036651 Tam et al. May 2006 B2
7083036 Adams Aug 2006 B2
7113929 Beach et al. Sep 2006 B1
7131580 Molbak Nov 2006 B2
7149336 Jones et al. Dec 2006 B2
7152727 Waechter Dec 2006 B2
7158662 Chiles Jan 2007 B2
7188720 Geib et al. Mar 2007 B2
7213697 Martin et al. May 2007 B2
7243773 Bochonok et al. Jul 2007 B2
7269279 Chiles Sep 2007 B2
7303119 Molbak Dec 2007 B2
7331521 Sorenson et al. Feb 2008 B2
7337890 Bochonok et al. Mar 2008 B2
7427230 Blake et al. Sep 2008 B2
7438172 Long et al. Oct 2008 B2
7464802 Gerrity et al. Dec 2008 B2
7480407 Imamura Jan 2009 B2
7500568 Cousin Mar 2009 B2
7520374 Martin et al. Apr 2009 B2
7551764 Chiles et al. Jun 2009 B2
7552810 Mecklenburg Jun 2009 B2
7580859 Economy Aug 2009 B2
7604107 Richard et al. Oct 2009 B2
7654450 Mateen et al. Feb 2010 B2
7658270 Bochonok et al. Feb 2010 B2
7735125 Alvarez et al. Jun 2010 B1
7743902 Wendell et al. Jun 2010 B2
7778456 Jones et al. Aug 2010 B2
7819308 Osterberg et al. Oct 2010 B2
7874478 Molbak Jan 2011 B2
7886890 Blake et al. Feb 2011 B2
7931304 Brown et al. Apr 2011 B2
7946406 Blake et al. May 2011 B2
7949582 Mennie et al. May 2011 B2
7963382 Wendell et al. Jun 2011 B2
7980378 Jones et al. Jul 2011 B2
8023715 Jones et al. Sep 2011 B2
8042732 Blake et al. Oct 2011 B2
8202144 Hino et al. Jun 2012 B2
8229821 Mennie et al. Jul 2012 B2
8346610 Mennie et al. Jan 2013 B2
8352322 Mennie et al. Jan 2013 B2
8393455 Blake et al. Mar 2013 B2
8443958 Jones et al. May 2013 B2
RE44252 Jones et al. Jun 2013 E
8523641 Kuykendall et al. Sep 2013 B2
8545295 Blake et al. Oct 2013 B2
8602200 Blake Dec 2013 B2
8607957 Blake et al. Dec 2013 B2
8616359 Bochonok et al. Dec 2013 B2
RE44689 Wendell et al. Jan 2014 E
8684159 Blake Apr 2014 B2
8684160 Hallowell et al. Apr 2014 B2
8701860 Blake et al. Apr 2014 B1
8708129 Gunst Apr 2014 B2
8950566 Hallowell et al. Feb 2015 B2
8959029 Jones et al. Feb 2015 B2
9092924 Rasmussen et al. Jul 2015 B1
9330515 Rasmussen et al. May 2016 B1
9430893 Blake et al. Aug 2016 B1
9437069 Blake et al. Sep 2016 B1
9443367 Baltazor Sep 2016 B2
9501885 Yacoubian Nov 2016 B1
9508208 Jagielinski Nov 2016 B1
9633500 Blake et al. Apr 2017 B1
9916713 Yacoubian Mar 2018 B1
9940439 Royaee Apr 2018 B2
20010034203 Geib et al. Oct 2001 A1
20010048025 Shinn Dec 2001 A1
20020065033 Geib et al. May 2002 A1
20020069104 Beach et al. Jun 2002 A1
20020074209 Karlsson Jun 2002 A1
20020074210 Brandle et al. Jun 2002 A1
20020085745 Jones et al. Jul 2002 A1
20020095587 Doyle et al. Jul 2002 A1
20020107738 Beach et al. Aug 2002 A1
20020126885 Mennie et al. Sep 2002 A1
20020130011 Casanova et al. Sep 2002 A1
20020147588 Davis et al. Oct 2002 A1
20020151267 Kuhlin et al. Oct 2002 A1
20020174348 Ting Nov 2002 A1
20020179401 Knox et al. Dec 2002 A1
20030004878 Akutsu et al. Jan 2003 A1
20030013403 Blake et al. Jan 2003 A1
20030042110 Wilfong Mar 2003 A1
20030062243 Mattice Apr 2003 A1
20030081824 Mennie et al. May 2003 A1
20030127299 Jones et al. Jul 2003 A1
20030168309 Geib et al. Sep 2003 A1
20030168310 Strauts et al. Sep 2003 A1
20030168508 Daellenbach Sep 2003 A1
20030182217 Chiles Sep 2003 A1
20030190882 Blake et al. Oct 2003 A1
20030230464 Deaville et al. Dec 2003 A1
20030234153 Blake et al. Dec 2003 A1
20040021898 Ashizaki Feb 2004 A1
20040055902 Peklo Mar 2004 A1
20040092222 Kowalczyk et al. May 2004 A1
20040129528 Takebayashi Jul 2004 A1
20040149540 Yamagishi Aug 2004 A1
20040153406 Alarcon-Luther et al. Aug 2004 A1
20040153421 Robinson Aug 2004 A1
20040154899 Peklo et al. Aug 2004 A1
20040173432 Jones Sep 2004 A1
20040188221 Carter Sep 2004 A1
20040195302 Washington et al. Oct 2004 A1
20040199924 Ganesh et al. Oct 2004 A1
20040200691 Geib et al. Oct 2004 A1
20040238319 Hand et al. Dec 2004 A1
20040238614 Yoshioka et al. Dec 2004 A1
20040256197 Blake et al. Dec 2004 A1
20050006197 Wendell et al. Jan 2005 A1
20050035140 Carter Feb 2005 A1
20050040007 Geib et al. Feb 2005 A1
20050040225 Csulits et al. Feb 2005 A1
20050045450 Geib et al. Mar 2005 A1
20050067305 Bochonok et al. Mar 2005 A1
20050077142 Tam et al. Apr 2005 A1
20050086140 Ireland et al. Apr 2005 A1
20050087425 Peklo Apr 2005 A1
20050096986 Taylor et al. May 2005 A1
20050098625 Walker et al. May 2005 A1
20050108165 Jones et al. May 2005 A1
20050109836 Ben-Aissa May 2005 A1
20050121507 Brown et al. Jun 2005 A1
20050124407 Rowe Jun 2005 A1
20050150740 Finkenzeller et al. Jul 2005 A1
20050156318 Douglas Jul 2005 A1
20050205654 Carter Sep 2005 A1
20050205655 Carter Sep 2005 A1
20050228717 Gusler et al. Oct 2005 A1
20050256792 Shimizu et al. Nov 2005 A1
20060032726 Vook Feb 2006 A1
20060037835 Doran et al. Feb 2006 A1
20060054455 Kuykendall et al. Mar 2006 A1
20060054457 Long et al. Mar 2006 A1
20060060363 Carter Mar 2006 A2
20060064379 Doran et al. Mar 2006 A1
20060065717 Hurwitz et al. Mar 2006 A1
20060069654 Beach et al. Mar 2006 A1
20060146839 Hurwitz et al. Jul 2006 A1
20060148394 Blake et al. Jul 2006 A1
20060149415 Richards Jul 2006 A1
20060151285 String Jul 2006 A1
20060154589 String Jul 2006 A1
20060163029 Wollny Jul 2006 A1
20060175176 Blake Aug 2006 A1
20060182330 Chiles Aug 2006 A1
20060196754 Bochonok et al. Sep 2006 A1
20060205481 Dominelli Sep 2006 A1
20060207856 Dean et al. Sep 2006 A1
20060219519 Molbak et al. Oct 2006 A1
20060253332 Dobbins Nov 2006 A1
20060283685 Cousin Dec 2006 A1
20070047795 Takahashi Mar 2007 A1
20070051582 Bochonok et al. Mar 2007 A1
20070071302 Jones et al. Mar 2007 A1
20070108015 Bochonok et al. May 2007 A1
20070119681 Blake et al. May 2007 A1
20070165936 Yonezawa Jul 2007 A1
20070181676 Mateen et al. Aug 2007 A1
20070187494 Hanna Aug 2007 A1
20070221470 Mennie et al. Sep 2007 A1
20070249276 Irie Oct 2007 A1
20070251800 Castleberry Nov 2007 A1
20070269097 Chiles et al. Nov 2007 A1
20070270997 Brumfield et al. Nov 2007 A1
20080033829 Mennie et al. Feb 2008 A1
20080044077 Mennie et al. Feb 2008 A1
20080135608 Ireland et al. Jun 2008 A1
20080205741 Couronne Aug 2008 A1
20080220707 Jones et al. Sep 2008 A1
20080223930 Rolland et al. Sep 2008 A1
20090018959 Doran et al. Jan 2009 A1
20090045031 Gunst Feb 2009 A1
20090048803 Zwieg et al. Feb 2009 A1
20090236200 Hallowell et al. Sep 2009 A1
20090236201 Blake et al. Sep 2009 A1
20090239459 Watts et al. Sep 2009 A1
20090242626 Jones et al. Oct 2009 A1
20090303478 Haddock Dec 2009 A1
20090320106 Jones et al. Dec 2009 A1
20090322019 Gudenburr Dec 2009 A1
20100038419 Blake et al. Feb 2010 A1
20100039818 Haddock Feb 2010 A1
20100065623 Sauter Mar 2010 A1
20100198726 Doran et al. Aug 2010 A1
20100234985 Shuren et al. Sep 2010 A1
20100261421 Wendell et al. Oct 2010 A1
20100276485 Jones et al. Nov 2010 A1
20100327005 Martin et al. Dec 2010 A1
20110098845 Mennie et al. Apr 2011 A1
20110099105 Mennie et al. Apr 2011 A1
20110124405 Okada May 2011 A1
20110259961 Fold et al. Oct 2011 A1
20110270695 Jones et al. Nov 2011 A1
20120067950 Blake Mar 2012 A1
20120156976 Blake et al. Jun 2012 A1
20120247918 Mirumachi Oct 2012 A1
20120277857 Purchase Nov 2012 A1
20120301009 Dabic Nov 2012 A1
20130016100 Bickel Jan 2013 A1
20130178139 Hallowell et al. Jul 2013 A1
20130199890 Blake Aug 2013 A1
20130205723 Blake et al. Aug 2013 A1
20130322730 Borg Dec 2013 A1
20140187134 Stieber Jul 2014 A1
20140301626 Kerschner Oct 2014 A1
20140335770 Martin Nov 2014 A1
20150131890 Rourk May 2015 A1
20150154750 Royaee Jun 2015 A1
20150206369 Baltazor Jul 2015 A1
20150302678 Blake et al. Oct 2015 A1
20160018873 Fernald et al. Jan 2016 A1
20160364934 Baltazor Dec 2016 A1
Foreign Referenced Citations (110)
Number Date Country
2235925 Nov 1995 CA
2189330 Dec 2000 CA
2143943 Mar 2003 CA
06 60 354 May 1938 DE
30 21 327 Dec 1981 DE
0 351 217 Jan 1990 EP
0 667 973 Jan 1997 EP
0 926 634 Jun 1999 EP
1 104 920 Jun 2001 EP
1 209 639 May 2002 EP
1 528 513 May 2005 EP
2042254 Feb 1971 FR
2035642 Jun 1980 GB
2175427 Nov 1986 GB
2198274 Jun 1988 GB
2458387 Sep 2009 GB
2468783 Sep 2010 GB
49-058899 Jun 1974 JP
52-014495 Feb 1977 JP
52-071300 Jun 1977 JP
56-040992 Apr 1981 JP
57-117080 Jul 1982 JP
59-079392 May 1984 JP
60-016271 Feb 1985 JP
62-134168 Aug 1987 JP
62-182995 Aug 1987 JP
62-221773 Sep 1987 JP
62-166562 Oct 1987 JP
64-035683 Feb 1989 JP
64-042789 Feb 1989 JP
64-067698 Mar 1989 JP
01-118995 May 1989 JP
01-307891 Dec 1989 JP
02-050793 Feb 1990 JP
02-252096 Oct 1990 JP
03-012776 Jan 1991 JP
03-063795 Mar 1991 JP
03-092994 Apr 1991 JP
03-156673 Jul 1991 JP
04-085695 Mar 1992 JP
04-175993 Jun 1992 JP
05-046839 Feb 1993 JP
05-217048 Aug 1993 JP
05-274527 Oct 1993 JP
06-035946 Feb 1994 JP
06-103285 Apr 1994 JP
09-44641 Feb 1997 JP
09-251566 Sep 1997 JP
2002-117439 Apr 2002 JP
2003-242287 Aug 2003 JP
2004-213188 Jul 2004 JP
44 244 Sep 1988 SE
WO 8500909 Feb 1985 WO
WO 9106927 May 1991 WO
WO 9108952 Jun 1991 WO
WO 9112594 Aug 1991 WO
WO 9118371 Nov 1991 WO
WO 9208212 May 1992 WO
WO 9220043 Nov 1992 WO
WO 9220044 Nov 1992 WO
WO 9222044 Dec 1992 WO
WO 9300660 Jan 1993 WO
WO 9309621 May 1993 WO
WO 9406101 Mar 1994 WO
WO 9408319 Apr 1994 WO
WO 9423397 Oct 1994 WO
WO 9502226 Jan 1995 WO
WO 9504978 Feb 1995 WO
WO 9506920 Mar 1995 WO
WO 9509406 Apr 1995 WO
WO 9513596 May 1995 WO
WO 9519017 Jul 1995 WO
WO 9523387 Aug 1995 WO
WO 9530215 Nov 1995 WO
WO 9607163 Mar 1996 WO
WO 9607990 Mar 1996 WO
WO 9612253 Apr 1996 WO
WO 9627525 Sep 1996 WO
WO 9627859 Sep 1996 WO
WO 9722919 Jun 1997 WO
WO 9725692 Jul 1997 WO
WO 9824041 Jun 1998 WO
WO 9824067 Jun 1998 WO
WO 9848383 Oct 1998 WO
WO 9848384 Oct 1998 WO
WO 9848385 Oct 1998 WO
WO 9851082 Nov 1998 WO
WO 9859323 Dec 1998 WO
WO 9900776 Jan 1999 WO
WO 9906937 Feb 1999 WO
WO 9916027 Apr 1999 WO
WO 9933030 Jul 1999 WO
WO 9941695 Aug 1999 WO
WO 9948057 Sep 1999 WO
WO 9948058 Sep 1999 WO
WO 0048911 Aug 2000 WO
WO 0065546 Nov 2000 WO
WO 0163565 Aug 2001 WO
WO 02071343 Sep 2002 WO
WO 03052700 Jun 2003 WO
WO 03079300 Sep 2003 WO
WO 03085610 Oct 2003 WO
WO 03107280 Dec 2003 WO
WO 04044853 May 2004 WO
WO 04109464 Dec 2004 WO
WO 05041134 May 2005 WO
WO 05088563 Sep 2005 WO
WO 06086531 Aug 2006 WO
WO 07035420 Mar 2007 WO
WO 07120825 Oct 2007 WO
Non-Patent Literature Citations (107)
Entry
Amiel Industries: AI-1500 ‘Pulsar’ High Performance Sorting and Bagging Machine, 13 pages (date unknown, but prior to Dec. 14, 2000).
AUI: Coinverter—“No More Lines . . . Self-Serve Cash-Out,” by Cassius Elston, 1995 World Games Congress/Exposition Converter, 1 page (dated prior to 1995).
Brandt: 95 Series Coin Sorter Counter, 2 pages (1982).
Brandt: Model 817 Automated Coin and Currency Ordering System, 2 pages (1983).
Brandt: Model 920/925 Counter, 2 pages (date unknown, prior to Jul. 2011, possibly prior to Mar. 17, 1997).
Brandt: System 930 Electric Counter/Sorter, “Solving Problems, Pleasing Customer, Building Deposits,” 1 page (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997).
Brandt: Model 940-6 High Speed Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: System 945 High-Speed Sorter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 2, 2011).
Brandt: Model 952 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: Model 954 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: Model 957 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: Model 958 Coin Sorter/Counter, 5 pages ( © 1982).
Brandt: Model 960 High-Speed Coin Sorter & Counter, 2 pages (1984).
Brandt; Model 966 Microsort™ Coin Sorter and Counter, 4 pages, (1979).
Brandt: Model 970 Coin Sorter and Counter, 2 pages (1983).
Brandt: Model 1205 Coin Sorter Counter, 2 pages (1986).
Brandt: Model 1400 Coin Sorter Counter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997).
Brandt: Model 8904 Upfeed—“High Speed 4-Denomination Currency Dispenser,” 2 pages (1989).
Brandt: Mach 7 High-Speed Coin Sorter/Counter, 2 pages (1992).
Case ICC Limited: CDS Automated Receipt Giving Cash Deposit System, 3 pages (date unknown, prior to Nov. 15, 2000).
Cash, Martin: Newspaper Article “Bank Blends New Technology With Service,” Winnipeg Free Press, 1 page (Sep. 4, 1992).
Childers Corporation: Computerized Sorter/Counter, “To coin an old adage, time is money . . . ,” 3 pages (1981).
CTcoin: CDS602 Cash Deposit System, 1 page (date unknown, prior to Jan. 15, 2001).
Cummins: Cash Information and Settlement Systems (Form 023-1408), 4 pages (date Dec. 1991).
Cummins: The Universal Solution to All Coin and Currency Processing Needs (Form 13C1218 3-83), 1 page (Mar. 1983).
Cummins: JetSort® High Speed Sorter/Counter Kits I & J—Operating Instructions (Form 022-7123-00) 12 pages (1994).
Cummins: JetSort® Coin Sorter Counter/CA-130XL Coin Wrapper, Cumrnins Automated Money Systems (AMS) Case Study—Fifth-Third, “6,000 Coin Per Minute Counter/ Sorter Keeps pace With Fifth-Third Bank's Money Processing Needs,” (Forrn 13C1180), 2 pages (Nov. 1981).
Cummins: JetSort®, “Venders Love JetSort,” (13C1255), 1 page (Mar. 1987).
Cummins: JetSort® “High Speed Coin Sorter & Counter for Payphone Applications,” “CTOCS Ready”(Form 023-1365), 2 pages (Mar. 1989).
Cummins: JetSort® mailer, “One moving part simplicity,” “Vendors—Are validators changing your coin and currency needs?” (Form 023-1297), 3 pages (Apr. 1987)
Cummins: JetSort® Series V High Speed Coin Sorter/Counter, (Form 023-1383), 2 pages (Sep. 1990).
Cummins: JetSort® “Time for a Change, Be a smashing success!,” (Form 023-1328), 1 page (Jun. 1988).
Cummins: JetSort® “Time for a Change—JetSort® vs. Brandt X,” (Form 023-1330), 1 page (Jun. 1988).
Cummins: JetSort® “Time for a Change—No Coins Sorted After 3:00 or on Saturday,” (Form 023-1327), 1 page (Aug. 1988).
Cummins: JetSort®, “What do all these Banks have in Common . . . ?”, JetSort, CA-130XL coin wrapper, CA-118 coin wrapper, CA-4000 JetCount, (13C1203), 3 pages (Aug. 1982).
Cummins: JetSort® 700-01/CA-118 Coin Wrapper, Cunnnins Automated Money Systems (AMS) Case Study—University State Bank, “Cunnnins Money Processing System Boosts Teller Service at University State Bank,” (Form 13C1192), 2 pages (Mar. 1982).
Cummins: JetSort® 700-01, Cumrnins Automated Money Systems (AMS) Case Study—First State Bank of Oregon, “JetSort® Gives Bank Coin Service Edge,” (Form 13C1196), 2 pages (Arp. 1982).
Cummins: JetSort® 700-01 Coin Sorter/Counter, Operating Instructions, 14 pages (1982).
Cummins: JetSort® 701, Cummins Automated Money Systems (AMS) Case Study—Convenco Vending, “High Speed Coin Sorter increases coin processing power at Convenco Vending,” (Form 13C1226), 2 pages (Jul. 1983).
Cummins: JetSort Models 701 and 750 , “State-of-the-art coin processing comes of age,” 2 pages (Feb. 1984).
Cummins: JetSort-Model CA-750 Coin Processor (Item No. 50-152), 1 page (Jul. 1984).
Cummins: JetSort® Model CA-750 Coin Sorter/Counter and CA-4050 JetCount currency counter, “Money Processing Made Easy,” (Form 13C1221) 2 pages (Jun. 1983).
Cummins: JetSort® Model 1701 with JetStops, Operating Instructions Manual (Form 022-1329-00), 16 pages (1984).
Cummins: JetSort® Model 1760 brochure, (Form 023-1262-00), 2 pages (Jul. 1985).
Cummins: JetSort® Models 1770 and 3000, Communication Package specification and operating instructions, 10 pages (uncertain, possibly Nov. 1985).
Cummins: JetSort® Model 1770, “JetSort® Speed and Accuracy, Now with Communications!”, (Form 023-1272) 1 page (Oct. 1986).
Cummins: JetSort® 2000 Series High Speed Coin Sorter/Counter (Form 023-1488), 2 pages (Oct. 2000).
Cummins: JetSort® 3000 Series High Speed Coin Sorter (Form 023-1468 Rev 1), 2 pages (Feb. 1995).
Cummins: JetSort® 3000 Series Options, “Talking JetSort 3000,” (Form 023-1338-00), 1 page (between Jan. 1989-Feb. 1989).
Cummins: JetSort® 3000, “3,000 Coins per Minute!,” (Form 023-1312), 1 page (date unknown, est. 1987).
Cummins: JetSort® 3200, Enhanced electronics for the JetSort® 3200 (Form 023-1350), 1 page (Apr. 1987).
De La Rue: CDS 500 Cash Deponier System, 6 pages (date unknown, p. 5 has date May 1994, p. 6 has date Dec. 1992) (German).
De La Rue: CDS 5700 and CDS 5800 Cash Deponier System (German) and translation, 7 pages (date unknown, prior to Aug. 13, 1996).
Diebold: Merchant MicroBranch, “Merchant MicroBranch Combines ATM After-Hour Depository Rolled-Coin Dispenser,” Bank Technology News, 1 page (Nov. 1997).
Fa. GBS-Geldbearbeitungssysteme: GBS9401SB Technical Specification, 24 pages (date unknown, prior to Nov. 10, 2010).
Frisco Bay: Commercial Kiosk, “Provide self-service solutions for your business customers,” 4 pages (date unknown, prior to Mar. 2, 2011, p. 4 has date 1996).
Glory: AMT Automated Merchant Teller, 4 pages (date unknown, prior to Jan. 15, 2001).
Glory: CRS-8000 Cash Redemption System, 2 pages (1996).
Hamilton: Hamilton's Express Banking Center, In Less Space Than a Branch Manager's Desk, 4 pages (date unknown, prior to Jan. 15, 2001).
Intellectual Australia Pty. Ltd.: Microbank, “From down under: Microbank,” “hand-held smart card terminal that combines smart card functions and telephone banking,” 2 pages (Feb. 1996).
ISH Electronic: ISH I2005/500 Coin Counter (with translation), 4 pages (date unknown, prior to Aug. 1996).
ISH Electronic: ISH I2005/501 Self-Service Unit (with translation), 4 pages (date unknown, prior to Aug. 1996).
Namsys, Inc.: Namsys Express, Making currency management . . . more profitable, 2 pages (date unknown, prior to Jan. 15, 2001).
NGZ Geldzahlmaschinengesellschaft: NGZ 2100 Automated Coin Depository, 4 pages (date unknown, prior to Sep. 1996).
Perconta: Contomat Coin Settlement Machine for Customer Self Service, 2 pages (date unknown, prior to Apr. 2003).
Prema GmbH: Prema 405 (RE) Self Service Coin Deposit Facility, 2 pages (date unknown, prior to Apr. 2003).
Reis Eurosystems: CRS 6501/CRS 6510 Cash Receipt Systems for Self-Service Area, 3 pages (date unknown, prior to Aug. 13, 1996, maybe Feb. 1995).
Reis Eurosystems: CRS 6520/ CRS 6525 prior to Apr. 2003) Standard-Class Coin Deposit Systems, 1 page (date unknown, prior to Apr. 2003).
Reis Eurosystems: CS 3510 Disc-Sorter, 1 page (date unknown, prior to Apr. 2003).
Royal Bank: Hemeon, Jade, “Royal's Burlington drive-in bank provides customers 24-hour tellers,” The Toronto Star, 1 page (Aug. 21, 1991).
Royal Bank: Leitch, Carolyn, “High-Tech Bank Counts Coins,” The Globe and Mail, 2 pages (Sep. 19, 1991).
Royal Bank: Oxby, Murray, “Royal Bank Opens ‘Super Branch,’” The Gazette Montreal, 2 pages (Sep. 14, 1991).
Royal Bank: SuperBranch, “Experience the Ultimate in Convenience Banking,” 2 pages (Feb. 1992).
Scan Coin: International Report, 49 pages (Apr. 1987).
Scan Coin: Money Processing Systems, 8 pages (date unknown, prior to Apr. 2003).
Scan Coin: World, 2 pages (Feb. 1988).
Scan Coin: CDS Cash Deposit System, 6 pages (date unknown, prior to Apr. 2003) [SC 0369].
Scan Coin: CDS Coin Deposit System—Technical Referens Manual, 47 pages (1989).
Scan Coin: CDS 600 User's Manual, 14 pages (date unknown, prior to Apr. 2003).
Scan Coin: CDS 600 & CDS 640 Cash Deposit System—Technical Manual, 45 pages (date unknown, prior to Apr. 2003).
Scan Coin: CDS MK 1 Coin Deposit System—Technical Manual, 32 pages (1991).
Scan Coin: SC 102 Value Counter Technical Manual, 28 pages (date unknown, prior to Apr. 2003).
Pay by Touch: Secure ID News, “Piggly Wiggly Extends Biometric Payments Throughout the Southeast U.S.,” 2 pages, (Dec. 14, 2005).
ESD, Inc: Smartrac Card System, “Coinless laundry makes quarters obsolete; Smartrac Card System really makes a change in laundry industry,” Business Wire, 2 pages (Feb. 23, 1996).
Meece, Mickey: Article “Development Bank of Singapore Gets Cobmnding Edge with Smart Cards,” American Banker, New York, NY, vol. 159, Iss. 195, p. 37, 2 pages (Oct. 10, 1994).
Scan Coin: Coin Sachet System brochure, 4 pages (last page marked “© SCAN COIN / Jun. 2007”).
U.S. Appl. No. 15/356,295, Office Action, dated Jul. 10, 2017; (13 pages).
U.S. Appl. No. 13/836,117, filed Mar. 15, 2013, Blake et al., System, Method and Apparatus for Automatically Filling a Coin Cassette.
U.S. Appl. No. 14/752,474, filed Jun. 26, 2015, John R. Blake et al., System, Method and Apparatus for Repurposing Currency.
U.S. Appl. No. 14/936,829, filed Nov. 10, 2015, John R. Blake et al., Systems, Methods and Devices for Processing Coins Utilizing a Multi-Material Coin Sorting Disk.
U.S. Appl. No. 15/219,665, filed Jul. 26, 2016, Blake et al., Coin Processing Systems, Methods and Devices.
U.S. Appl. No. 15/230,123, filed Aug. 5, 2016, Thomas P. Adams et al., Systems, Methods and Devices for Coin Processing and Coin Recycling.
U.S. Appl. No. 15/356,295, filed Nov. 18, 2016, Yacoubian et al, Systems, Methods and Devices for Processing Coins Utilizing Normal or Near-Normal and/or High-Angle of Incidence Lighting.
U.S. Appl. No. 15/360,004, filed Nov. 23, 2016, Jagielinski, et al, Systems, Methods and Devices for Processing Coins with Linear Array of Coin Imaging Sensors.
U.S. Appl. No. 15/492,561, filed Apr. 20, 2017, Blake, et al., Systems, Methods and Devices for Managing Rejected Coins During Coin Processing.
U.S. Appl. No. 14/804,670, Office Action, dated Mar. 17, 2016; (11 pages).
U.S. Appl. No. 14/794,262, Office Action, dated Mar. 16, 2016; (9 pages).
U.S. Appl. No. 14/936,846, Office Action, dated Nov. 17, 2016; (12 pages).
U.S. Appl. No. 15/492,561, Office Action, dated Dec. 1, 2017; (8 pages).
Coinstar Center Marketing Kit, Sample Newsletter Article, 1 page (no later than Feb. 28, 2019).
Coinstar Center Marketing Kit, Sample Newspaer Ad, Version A, 1 page (no later than Feb. 28, 2019).
Outerwall, Wikipedia, 7 pages (printed Mar. 20, 2019) (from https://en.wikipedia.org/wiki/Outerwall).
“Outerwall, owner of Redbox and Coinstar, going private in $1.6 deal,” article from Seattle Times, 7 pages (Jul. 25, 2016) (printed Mar. 20, 2019 from https://www.seattletimes.com/business/technology/outerwall-to-be-bought-by-private-equity-firm-in-16-billion-deal/).
Assignment records for U.S. Appl. No. 13/489,043, 3 pages (Mar. 20, 2019).
Assignment records for U.S. Appl. No. 14/158,514, 3 pages (Mar. 20, 2019).
Assignment records for U.S. Appl. No. 15/249,681, 3 pages (Mar. 20, 2019).
Cummins Allison, “It's What's Inside Your Machine That Counts,” white paper, 3 page ( © 2016) (023-7037) (from https://www.cumminsallison.com/us/en/downloads/file/Its-Whats-Inside-Your-Coin-Machines-That-Counts-Self-Service-Coin-White-Paper-Cummins-Allison.pdf).
Provisional Applications (2)
Number Date Country
62077992 Nov 2014 US
62022373 Jul 2014 US
Continuation in Parts (3)
Number Date Country
Parent 15356295 Nov 2016 US
Child 15461046 US
Parent 14936846 Nov 2015 US
Child 15356295 US
Parent 14794262 Jul 2015 US
Child 14936846 US