The present disclosure relates generally to systems, methods, and devices for processing currency. More particularly, aspects of this disclosure relate to currency processing systems and coin processing machines with a disk-type coin sorter.
Some businesses, particularly banks, are regularly faced with large amounts of currency which must be organized, counted, authenticated and recorded. To hand count and record large amounts of currency of mixed denominations requires diligent care and effort, and demands significant manpower and time that might otherwise be available for more profitable and less tedious activity. To make counting of bills and coins less laborious, machines have been developed which automatically sort, by denomination, mixed assortments of currency, and transfer the processed currency into receptacles specific to the corresponding denominations. For example, coin processing machines for processing large quantities of coins from either the public at large or private institutions, such as banks, casinos, supermarkets, and cash-in-transit (CIT) companies, have the ability to receive bulk coins from customers and other users of the machine, count and sort the coins, and store the received coins in one or more coin receptacles, such as coin bins or coin bags. One type of currency processing machine is a redemption-type processing machine wherein, after the deposited coins and/or bank notes are counted, funds are returned to the user in a pre-selected manner, such as a payment ticket or voucher, a smartcard, a cash card, a gift card, and the like. Another variation is the deposit-type processing machine where funds which have been deposited by the user are credited to a personal account. Hybrid variations of these machines are also known and available.
A well-known device for processing coins is the disk-type coin sorter. In one exemplary configuration, the coin sorter, which is designed to process a batch of mixed coins by denomination, includes a rotatable disk that is driven by an electric motor. The lower surface of a stationary, annular sorting head (or “sort disk”) is parallel to and spaced slightly from the upper surface of the rotatable disk. The mixed batch of coins is progressively deposited onto the top surface of the rotatable disk. As the disk is rotated, the coins deposited on the top surface thereof tend to slide outwardly due to centrifugal force. As the coins move outwardly, those coins which are lying flat on the top surface of the rotatable disk enter a gap between the disk and the sorting head. The lower surface of the sorting head is formed with an array of channels which guide coins of different denominations to different exit locations around the periphery of the disk. The exiting coins, having been sorted by denomination for separate storage, are counted by sensors located along the exit channel. A representative disk-type coin sorting mechanism is disclosed in U.S. Pat. No. 5,009,627, to James M. Rasmussen, which is incorporated herein by reference in its entirety and for all purposes.
It is oftentimes desirable in the sorting of coins to discriminate between valid coins and invalid coins. Use of the term “valid coin” can refer to genuine coins of the type to be sorted. Conversely, use of the term “invalid coin” can refer to items in the coin processing unit that are not one of the coins to be sorted. For example, it is common that foreign (or “stranger”) coins and counterfeit coins enter a coin processing system for sorting domestic coin currency. So that such items are not sorted and counted as valid coins, it is helpful to detect and discard these “invalid coins” from the coin processing system. In another application wherein it is desired to process only U.S. quarters, nickels and dimes, all other U.S. coins, including dollar coins, half-dollar coins, pennies, etc., are considered “invalid.” Additionally, coins from all other coins sets including Canadian coins and European coins, for example, would be considered “invalid” when processing U.S. coins. In another application it may be desirable to separate coins of one country (e.g., Canadian coins) from coins of another country (e.g., U.S. coins). Finally, any truly counterfeit coins (also referred to in the art as “slugs”) are always considered “invalid” regardless of application.
All-metal sort disks, the most common form factor for high-speed and high-volume disk-type coin sorting applications, typically require high-grade raw materials, precision machining, heat treating, polishing, water jet cutting, etc., and therefore are very expensive to manufacture and, thus, costly to purchase and replace. On top of initiatives to reduce the costs associated with manufacturing and purchasing a sort head, it is also desirable to customers and manufacturers to reduce downtime of a currency processing machine for repair or replacement of consumable parts, including worn and damaged sort heads. In addition to high-volume, high-speed applications, there are also applications, such as retail and recycling, that process significantly smaller volumes at lower speeds and therefore require a more cost effective sort head solution. It is therefore desirable, in at least some aspects of the disclosed concepts, to extend the operational life expectancy of sorting heads and to offer sort head configurations that are more economical.
Softer metal coins can gall when urged into contact with the harder material of all-metal sort disks. Galling, which is caused by sliding friction and adhesion between sliding surfaces of two engaging metal parts, results in material from the softer metal coins being stuck or even friction welded to the surface of the harder sorting disk. Conversely, high-speed, high-volume coin processing can cause premature wear on the recesses and contoured walls of the sort disk. Higher volumes of a single coin denomination can also cause uneven wear to corresponding sections of the sort disk. Coin galling and premature or uneven wear of the sort disk can result in mis-sorts/mis-match errors, errors in authentication, coin jams, sensor errors, coins exiting the disk prematurely, false rejects, and bag count inaccuracy. It is therefore desirable, in at least some aspects of the disclosed concepts, to offer sort head configurations that reduce coin galling, minimize premature or uneven wear of the sort disk, and/or offer a cost effective solution for remediating galling and wear.
Currency processing systems, coin processing machines, coin processing units, and methods of processing batches of coins are presented herein. For example, aspects of the present disclosure are directed to disk-type coin processing units and currency processing machines with disk-type coin processing units which utilize a multi-material sorting disk. In some embodiments, localized impact-resistant inserts fabricated from distinctively hard, abrasion and deformation resistant materials (e.g., tool steel) are provided at predetermined locations on the sort disk (e.g., high impact points in the exit channels, critical impact points in the gauging and queuing channels, etc.). In some embodiments, localized galling-resistant inserts fabricated from distinctively softer, friction reducing materials (e.g., low-friction polymer, carbon coated aluminum, etc.) are provided at predetermined locations on the sort disk (e.g., areas of high galling). In some embodiments, localized exit inserts fabricated from distinctively hard, wear resistant materials (e.g., tungsten carbide) are provided at predetermined locations on the sort disk (e.g., each exit channel is provided with an independent insert of distinct material). These localized inserts eliminate the need to replace the entire sort disk as a result of premature or uneven wear, allow for easy field change out, offer improved operational life of the sort disk, and provide increased uptimes of the machine, all of which help to reduce overhead, maintenance and warranty costs, and help to minimize service time and downtime.
In some embodiments, an all-plastic sort disk is provided, which helps to reduce the cost and galling issues associated with all-metal sort disks. For some embodiments, a plastic sort disk with a metal backing plate is provided. The metal backing provides the rigidity and alignment indexing needed for quick replacement of a worn or damaged plastic sort disk, which the plastic sort disk helps to reduce the cost and galling issues associated with all-metal sort disks. In some embodiments, a coin sort disk with a plastic sorting surface over-molded onto a metal backing plate is disclosed. An over-mold process is used to mold a plastic sort disk with a metal support ring to offer the rigidity needed to process coins. For some configurations, a plastic sort disk (with or without metal backing or over-mold) with localized inserts is provided. Inserts could be strategically located at high impact points, critical impact points, areas of high galling, and/or at the exit and queuing channels to improve the life of the sort disk. In some embodiments, a plastic molded sort disk with over-molded inserts is provided. The necessary mounting provisions and/or sensors can be molded directly into the sort disc. Optionally, inserts of varying materials can be utilized to create necessary friction surfaces and thereby provide localized friction requirements for varying coin control needs.
Aspects of the present disclosure are directed to a currency processing system with a housing, one or more coin receptacles, and a disk-type coin processing unit. The housing has a coin input area for receiving a batch of coins. One or more coin receptacles, which are stowed inside or adjacent the housing, are operatively coupled to the housing for receiving and storing processed coins. The disk-type coin processing unit is operatively coupled to the coin input area and the coin receptacle(s) to transfer coins therebetween. The coin processing unit includes a rotatable disk for imparting motion to a plurality of the coins received by the coin input area of the housing. A sorting head of a first material has a lower surface that is generally parallel to and at least partially spaced from the rotatable disk. The lower surface of the sorting head forms a plurality of shaped regions that guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit channels configured to sort and discharge the coins through a plurality of exit stations to the coin receptacle(s). The sorting head also includes a plurality of localized inserts of a second material which is distinct from the first material of the sorting head. Each localized insert may have a distinct shape and can be readily removably attached at a distinct one of a plurality of predetermined locations on the sorting head.
A coin processing machine is also featured in accordance with aspects of this disclosure. The coin processing machine has a housing with a coin input area for receiving therethrough a batch of coins. Plural coin receptacles and a processor are stowed inside the housing. A disk-type coin processing unit is disposed at least partially inside the housing and is operatively coupled to the coin input area and the coin receptacles to transfer coins therebetween. The coin processing unit includes a rotatable disk for supporting on an upper surface thereof and imparting motion to a plurality of coins received from the coin input area. The coin processing unit also includes a stationary sorting disk with a lower surface that is generally parallel to and spaced slightly apart from the rotatable disk. The lower surface of the sorting disk forms a plurality of shaped regions that guide the coins, under the motion imparted by the rotatable disk, from a central region of the sorting disk to a plurality of circumferentially spaced exit channels. The exit channels sort and discharge the coins through a plurality of exit stations to the coin receptacles. The stationary sorting disk is fabricated from a first material with a first hardness. The sorting disk also includes a plurality of localized inserts fabricated from a second material of a second hardness which is distinct from the first material and the first hardness of the sorting disk, respectively. Optionally, the hardness of the material of the stationary sorting disk is approximately the same as the hardness of the material of one or more or all of the inserts. Each localized insert can have a distinct shape and can be readily removably attached at a distinct one of a plurality of predetermined locations on the sorting disk.
According to other aspects of the present disclosure, a disk-type coin processing unit for a currency processing apparatus is presented. The currency processing apparatus includes a housing with an input area for receiving coins, and one or more coin receptacles for stowing processed coins. The disk-type coin processing unit includes a rotatable disk configured to impart motion to a plurality of the coins. The disk-type coin processing unit also includes a sorting head of a first material with a first hardness having a lower surface that is generally parallel to and at least partially spaced from the rotatable disk. The lower surface of the sorting head forms a plurality of shaped regions configured to guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit channels configured to sort and discharge the coins through a plurality of exit stations to the one or more coin receptacles. The disk-type coin processing unit further comprises a plurality of localized inserts of a second material with a second hardness which is distinct from the first material and the first hardness of the sorting head, respectively. Each of the localized inserts can have a distinct shape and can be readily removably attached at a distinct one of a plurality of predetermined locations on the sorting head.
Aspects of the present disclosure are directed to a currency processing system with a housing, one or more coin receptacles, and a disk-type coin processing unit. The housing has a coin input area for receiving a batch of coins. One or more coin receptacles, which are stowed inside or adjacent the housing, are operatively coupled to the housing for receiving and storing processed coins. The disk-type coin processing unit is operatively coupled to the coin input area and the coin receptacle(s) to transfer coins therebetween. The coin processing unit includes a rotatable disk and a multi-part sorting head assembly. The rotatable disk is configured to impart motion to some or all of the coins received by the coin input area of the housing. The multi-part sorting head assembly includes an annular sorting disk that is fabricated from a first rigid material and attached to an annular backing plate that is fabricated from a second rigid material which is distinct from the first rigid material. The annular sorting disk has a lower surface which is generally parallel to and at least partially spaced from the rotatable disk. The lower surface forms numerous shaped regions configured to guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit channels configured to sort and discharge the coins through a plurality of exit stations to the one or more coin receptacles.
Other aspects of the present disclosure are directed to a coin processing machine for sorting, authenticating, denominating, counting or otherwise processing batches of coins. The coin processing machine includes a housing with an input area for receiving therethrough a batch of coins. A plurality of coin receptacles and a processor are stored inside the housing. The coin processing machine also includes a disk-type coin processing unit that is disposed at least partially inside the housing and operatively coupled to the coin input area and the coin receptacles to transfer coins therebetween. The coin processing unit includes a rotatable disk and a bipartite sorting head. The rotatable disk is configured to support on an upper surface thereof and impart motion to a plurality of coins received from the coin input area. The bipartite sorting head assembly includes a single-piece annular sorting disk that is fabricated from a rigid or substantially rigid first (polymeric) material that is overmolded onto a single-piece annular backing plate that is fabricated from a rigid second (metallic) material. The annular sorting disk having a lower surface that is generally parallel to and at least partially spaced from the rotatable disk. The lower surface forms a plurality of shaped regions configured to guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit channels configured to sort and discharge the coins through a plurality of exit stations to the one or more coin receptacles.
Also presented in this disclosure are disk-type coin processing units for a currency processing apparatus. The currency processing apparatus includes a housing with an input area for receiving coins, and one or more coin receptacles for stowing processed coins. The disk-type coin processing unit comprises a rotatable disk for imparting motion to the coins, and a multi-part sorting head assembly with an annular sorting disk of a first rigid material attached to an annular backing plate of a second distinct rigid material. The annular sorting disk has a lower surface that is generally parallel to and at least partially spaced from the rotatable disk. The lower surface forms a plurality of shaped regions configured to guide the coins, under the motion imparted by the rotatable disk, to a plurality of exit channels configured to sort and discharge the coins through a plurality of exit stations to the one or more coin receptacles.
Methods of making and methods of using any of the foregoing processing systems, processing machines, processing units, etc., are also within the scope and spirit of this disclosure.
The above summary is not intended to represent every embodiment or every aspect of the present disclosure. Rather, the foregoing summary merely provides an exemplification of some of the novel aspects and features set forth herein. The above features and advantages, and other features and advantages of the present disclosure, will be readily apparent from the following detailed description of the exemplary embodiments and modes for carrying out the present invention when taken in connection with the accompanying drawings and appended claims.
The present disclosure is susceptible to various modifications and alternative forms, and some representative embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the inventive aspects of this disclosure are not limited to the particular forms illustrated in the drawings. Rather, the disclosure is to cover all modifications, equivalents, combinations and subcombinations, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
This disclosure is susceptible of embodiment in many different forms. There are shown in the drawings, and will herein be described in detail, representative embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspects of the invention to the illustrated embodiments. To that extent, elements and limitations that are disclosed, for example, in the Abstract, Summary, and Detailed Description sections, but not explicitly set forth in the claims, should not be incorporated into the claims, singly or collectively, by implication, inference or otherwise. For purposes of the present detailed description, unless specifically disclaimed: the singular includes the plural and vice versa; the word “all” means “any and all”; the word “any” means “any and all”; and the words “including” or “comprising” or “having” means “including without limitation.” Moreover, words of approximation, such as “about,” “almost,” “substantially,” “approximately,” and the like, can be used herein in the sense of “at, near, or nearly at,” or “within 3-5% of,” or “within acceptable manufacturing tolerances,” or any logical combination thereof, for example.
Referring now to the drawings, wherein like reference numerals refer to like components throughout the several views,
The currency processing system 10 is a hybrid redemption-type and deposit-type currency processing machine with which funds may be deposited into and returned from the machine, in similar or different forms, in whole or in part, and/or funds may be credited to and withdrawn from a personal account. The currency processing machine 10 illustrated in
The currency processing machine 10 includes a coin input area 14, such as a bin or tray, which receives batches of coins from a user. Each coin batch may be of a single denomination, a mixed denomination, a local currency, or a foreign currency, or any combination thereof. Additionally, a bank note input area 16, which may be in the nature of a retractable pocket or basket, is also offered by the currency processing machine 10. The bank note input area 16, which is illustrated in its open position in
In addition to the above-noted output devices, the currency processing machine 10 may include various output devices, such as a bank note dispensing receptacle 20 and a coin dispensing receptacle 22 for dispensing to the user a desired amount of funds in bank notes, coins, or a combination thereof. An optional bank note return slot 18 may also be included with the currency processing machine 10 to return notes to the user, such as those which are deemed to be counterfeit or otherwise cannot be authenticated or processed. Coins which cannot be authenticated or otherwise processed may be returned to the user via the coin dispensing receptacle 22. The currency processing machine 10 further includes a paper dispensing slot 26, which can be operable for providing a user with a receipt of the transaction that was performed.
In one representative transaction, the currency processing machine 10 receives funds from a user via the coin input area 14 and/or the bank note input area 16 and, after these deposited funds have been authenticated and counted, the currency processing machine 10 returns to the user an amount equal to the deposited funds but in a different variation of bank notes and coins. Optionally, the user may be assessed one or more fees for the transaction (e.g., service fees, transaction fees, etc.). For example, the user of the currency processing machine 10 may input $102.99 in various small bank notes and pennies and in turn receive a $100 bank note, two $1 bank notes, three quarters, two dimes, and four pennies. As another option or alternative, the currency processing machine 10 may simply output a voucher or a receipt of the transaction through the paper dispensing slot 26 which the user can then redeem for funds by an attendant of the currency processing machine 10. Yet another option or alternative would be for the currency processing machine 10 to credit some or all of the funds to a personal account, such as a bank account or store account. As yet another option, the currency processing machine 10 may credit some or all of the funds to a smartcard, gift card, cash card, virtual currency, etc.
The currency processing machine 10 may also include a media reader slot 24 into which the user inserts a portable medium or form of identification, such as a driver's license, credit card, or bank card, so that the currency processing machine 10 can, for example, identify the user and/or an account associated with the user. The media reader 24 may take on various forms, such as a ticket reader, card reader, bar code scanner, wireless transceiver (e.g., RFID, Bluetooth, etc.), or computer-readable-storage-medium interface. The display device 12 with a touchscreen typically provides the user with a menu of options which prompts the user to carry out a series of actions for identifying the user by displaying certain commands and requesting that the user press touch keys on the touch screen (e.g. a user PIN). The media reader device 24 of the illustrated example is configured to read from and write to one or more types of media. This media may include various types of memory storage technology such as magnetic storage, solid state memory devices, and optical devices. It should be understood that numerous other peripheral devices and other elements exist and are readily utilizable in any number of combinations to create various forms of a currency processing machine in accord with the present concepts.
The representative currency processing machine 10 shown in
The currency processing machine 10 further includes a bank note dispensing module 34 which is connected via a transport mechanism 35 to the user-accessible bank note dispensing receptacle 20. The bank note dispensing module 34 typically dispenses loose bills in response to a request of the user for such bank notes. Also, the bank note dispensing module 34 may be configured to dispense strapped notes into the bank note dispensing receptacle 20 if that is desired. In one embodiment of the present disclosure, the user may select the denominations of the loose/strapped bills dispensed into the bank note dispensing receptacle 20.
The currency processing machine 10 also includes a coin dispensing module 36 which dispenses loose coins to the user via the coin dispensing receptacle 22. The coin dispensing module 36 is connected to the coin dispensing receptacle 22, for example, via a coin tube 37. With this configuration, a user of the currency processing machine 10 has the ability to select the desired coin denominations that he or she will receive during a transaction, for example, in response to user inputs received by one or more of the available input devices. Also, the coin dispensing module 36 may be configured to dispense packaged (e.g., sachet or rolled) coins into the coin dispensing receptacle 22 if that is desired. The coins which have been sorted into their respective denominations by the coin processing module 32 are discharged into one or more coin chutes or tubes 39 which direct coins to a coin receptacle station(s) 40. In at least some aspects, a plurality of tubes 39 are provided and advantageously are positioned to direct coins of specified denominations to designated coin receptacles. The currency processing machine 10 may include more or fewer than the modules illustrated in
The currency processing machine 10 includes a controller 38 which is coupled to each module within the currency processing machine 10, and optionally to an external system, and controls the interaction between each module. For example, the controller 38 may review the input totals from the funds processing modules 30 and 32 and direct an appropriate funds output via the funds dispensing modules 34 and 36. The controller 38 also directs the operation of the coin receptacle station 40 as described below. While not shown, the controller 38 is also coupled to the other peripheral components of the currency processing machine 10, such as a media reader associated with the media reader slot 24 and also to a printer at the receipt dispenser 26, if these devices are present on the coin processing mechanism 10. The controller 38 may be in the nature of a central processing unit (CPU) connected to a memory device. The controller 38 may include any suitable processor, processors and/or microprocessors, including master processors, slave processors, and secondary or parallel processors. The controller 38 may comprise any suitable combination of hardware, software, or firmware disposed inside and/or outside of the housing 11.
Another example of a currency processing system is illustrated in accordance with aspects of this disclosure in
A user interface 118 interacts with a controller (e.g., controller 38 of
During an exemplary batch sorting operation, an operator dumps a batch of mixed coins into the coin tray 112 and inputs an identification number along with any requisite information via the interface 118. The operator (or the machine 100) then transfers some or all of the coins within the coin tray 112 to the sorting mechanism through the coin input area 116 of the cabinet 104. Coin processing may be initiated automatically by the machine 100 or in response to a user input. While the coins are being sorted, the operator can deposit the next batch of coins into the coin tray 112 and enter data corresponding to the next batch. The total value of each processed (e.g., sorted, denominated and authenticated) batch of coins can be redeemed, for example, via a printed receipt or any of the other means disclosed herein.
The coin processing machine 100 has a coin receptacle station 102 disposed within the housing 104. When the coin processing machine 100 is disposed in a retail setting or other publicly accessible environment, e.g., for use as a retail coin redemption machine, the coin receptacle station 102 can be secured inside housing 104, e.g., via a locking mechanism, to prevent unauthorized access to the processed coins. The coin receptacle station 102 includes a plurality of moveable coin-receptacle platforms 106A-H (“moveable platforms”), each of which has one or more respective coin receptacles 108A-H disposed thereon. Each moveable platform 106A-H is slidably attached to a base 110, which may be disposed on the ground beneath the coin processing machine 100, may be mounted to the coin processing machine 100 inside the housing 104, or a combination thereof. In the illustrated embodiment, the coin receptacle station 102 includes eight moveable coin-receptacle platforms 106A-H, each of which supports two coin receptacles 108A-H, such that the coin processing machine 100 accommodates as many as sixteen individual receptacles. Recognizably, the coin processing machine 100 may accommodate greater or fewer than sixteen receptacles that are supported on greater or fewer than eight coin-receptacle platforms.
The coin receptacles 108A-H of the illustrated coin receptacle station 102 are designed to accommodate coin bags. Alternative variations may be designed to accommodate coin cassettes, cashboxes, coin bins, etc. Alternatively still, the moveable platforms 106A-H may have more than one type of receptacle disposed thereon. In normal operation, each of the coin receptacles 108A-H acts as a sleeve that is placed inside of a coin bag to keep coins within a designated volume during filling of the coin bag. In effect, each coin receptacle 108A-H acts as an internal armature, providing an otherwise non-rigid coin bag with a generally rigid internal geometry. Each of the platforms 106A-H includes a coin bag partition 122 that separates adjacent coin bags from one another for preventing coin bags from contacting adjacent coin bags and disrupting the flow of coins into the coin bags. For other embodiments, each moveable platform 106A-H may include multiple partitions 122 to accommodate three or more coin receptacles 108A-H. The moveable platforms 106A-H also include bag clamping mechanisms 124 for each of the coin receptacles 108A-H. Each bag clamping mechanism 124 operatively positions the coin bag for receiving processed coins, and provides structural support to the coin receptacle 108A-H when the moveable platform 106A-H is moved in and out of the machine.
The number of moveable platforms 106A-H incorporated into the coin processing machine 100 can correspond to the number of coin denominations to be processed. For example, in the U.S. coin set: pennies can be directed to the first coin receptacles 108A disposed on the first moveable platform 106A, nickels can be directed to the second coin receptacles 108B disposed on the second moveable platform 106B, dimes can be directed to the third coin receptacles 108C disposed on the third moveable platform 106C, quarters can be directed to the fourth coin receptacles 108D disposed on the fourth moveable platform 106D, half-dollar coins can be directed to the fifth coin receptacles 108E disposed on the fifth moveable platform 106E, dollar coins can be directed to the sixth coin receptacles 108F disposed on the sixth moveable platform 106F. The seventh and/or eighth moveable platforms 106G, 106H can be configured to receive coin overflow, invalid coins, or other rejected coins. Optionally, coins can be routed to the coin receptacles 108A-H in any of a variety of different manners. For example, in the illustrated configuration, if the operator of the coin processing machine 100 is anticipating a larger number of quarters than the other coin denominations, three or more of the coin receptacles 108A-H on the moveable platforms 106A-H may be dedicated to receiving quarters. Alternatively, half-dollar coins and dollar coins, of which there are fewer in circulation and regular use than the other coin denominations, can each be routed to a single dedicated coin receptacle.
In operation, an operator of the coin processing machine 100 who desires to access one or more of the coin receptacles 108A-H unlocks and opens a front door 130 of the housing 104 to access the coin receptacle station 102. Depending on which coin receptacle(s) the operator needs to empty, for example, the operator slides or otherwise moves one of the moveable coin-receptacle platforms 106A-H from a first “stowed” position inside the housing 104 (e.g., moveable platform 106A in
This rotatable disk 214 is mounted for rotation on a shaft (not visible) and driven by an electric motor 216. The rotation of the rotatable disk 214 of
The underside of the inner periphery of the sorting head 212 is spaced above the pad 218 by a distance which is approximately the same as or, in some embodiments, just slightly less than the thickness of the thinnest coin. While the disk 214 rotates, coins deposited on the resilient pad 218 tend to slide outwardly over the top surface of the pad 218 due to centrifugal force. As the coins continue to move outwardly, those coins that are lying flat on the pad 218 enter a gap between the upper surface of the pad 218 and the lower surface of the sorting head 212. As is described in further detail below, the sorting head 212 includes a plurality of coin directing channels (also referred to herein as “exit channels”) for manipulating the movement of the coins from an entry area to a plurality of exit stations (or “exit slot”) where the coins are discharged from the coin processing unit 200. The coin directing channels may sort the coins into their respective denominations and discharge the coins from exit stations in the sorting head 212 corresponding to their denominations.
Referring now to
An outer wall 236 of the entry channel 232 divides the entry channel 232 from the lowermost surface 240 of the sorting head 212. The lowermost surface 240 is preferably spaced from the pad 218 by a distance that is slightly less than the thickness of the thinnest coins. Consequently, the initial outward radial movement of all the coins is terminated when the coins engage the outer wall 236, although the coins continue to move more circumferentially along the wall 236 (e.g., in a counterclockwise direction in
While the pad 218 continues to rotate, those coins that were initially aligned along the wall 236 move across the ramp 262 leading to a queuing channel 266 for aligning the innermost edge of each coin along an inner queuing wall 270. The coins are gripped between the queuing channel 266 and the pad 218 as the coins are rotated through the queuing channel 266. The coins, which were initially aligned with the outer wall 236 of the entry channel 232 as the coins move across the ramp 262 and into the queuing channel 266, are rotated into engagement with inner queuing wall 270. As the pad 218 continues to rotate, the coins which are being positively driven by the pad move through the queuing channel 266 along the queuing wall 270 past a trigger sensor 234 and a discrimination sensor 238, which may be operable for discriminating between valid and invalid coins. In some embodiments, the discrimination sensor 238 may also be operable to determine the denomination of passing coins. The trigger sensor 234 sends a signal to the discrimination sensor 238 that a coin is approaching.
In the illustrated example, coins determined to be invalid are rejected by a diverting pin 242 that is lowered into the coin path such that the pin 242 impacts the invalid coin and thereby redirects the invalid coin to a reject channel 244. In some embodiments, the reject channel 244 guides the rejected coins to a reject chute that returns the coin to the user (e.g., rejected coins ejected into the coin reject tube 33 to the coin dispensing receptacle 22 of
The gauging wall 252 aligns the coins along a common outer radius as the coins approach a series of coin exit channels 261-268 which discharge coins of different denominations through corresponding exit stations 281-288. The first exit channel 261 is dedicated to the smallest coin to be sorted (e.g., the dime in the U.S. coin set). Beyond the first exit channel 261, the sorting head 212 shown in
The innermost edges of the exit channels 261-268 are positioned so that the inner edge of a coin of only one particular denomination can enter each channel 261-268. The coins of all other denominations reaching a given exit channel extend inwardly beyond the innermost edge of that particular exit channel so that those coins cannot enter the channel and, therefore, continue on to the next exit channel under the circumferential movement imparted on them by the pad 218. To maintain a constant radial position of the coins, the pad 218 continues to exert pressure on the coins as they move between successive exit channels 261-268.
Further details of the operation of the sorting head 212 shown in
Turning next to
Coins that are deposited on the rotatable disk initially enter an entry channel 332 formed by the underside of the sorting head 312. An outer wall 336 of the entry channel 332 divides the entry channel 332 from the lowermost surface 340 of the sorting head 312, which is spaced from the resilient pad of the rotatable disk. Coins that were initially aligned along the wall 336 are moved across a ramp 360 leading to a queuing channel 366 for aligning the innermost edge of each coin along an inner queuing wall 370. As the resilient pad continues to rotate, the coins are driven through the queuing channel 366 along the queuing wall 370 past a trigger sensor 334 and a discrimination sensor 338, which may be similar in function and operation to the sensors described above with respect to
Non-reject coins continue along inner queuing wall 370 to a gauging region 350 (also referred to herein as “gauging channel”). The inner queuing wall 370 and, concomitantly, the queuing channel 366 both terminate just downstream of the reject channel 344. The radial position of the coins, which remain under pad pressure, is maintained until the coins contact an outer wall 352 of the gauging region 350. The gauging wall 352 aligns the coins along a common outer radius as the coins approach a series of coin exit channels 361-366 which cooperatively sort and discharge coins of different denominations through respective exit stations 381-386. Similar to the stationary sorting head 212 of
The innermost edges of the exit channels 361-366 are positioned so that the inner edge of a coin of only one particular denomination can enter each channel 361-366. The coins of all other denominations reaching a given exit channel extend inwardly beyond the innermost edge of that particular exit channel so that those coins cannot enter the channel and, therefore, continue on to the next exit channel under the circumferential movement imparted on them by the rotatable disk. To maintain a constant radial position of the coins, the resilient pad continues to exert pressure on the coins as they move between successive exit channels 361-366.
To help extend operational life expectancy, as well as help to minimize premature and uneven wear and offer a cost effective solution for remediating damage and wear, the sorting head 312 illustrated in
The sorting head 312 illustrated in
As can be seen in
In the embodiment of
Shown in
In order to reduce unwanted galling and, thus, decrease sorting and authentication errors, machine down time and related warranty costs, the sorting head 412 illustrated in
Similar to the sort head architecture illustrated in
Each of the localized inserts seen in
In the embodiment of
Although not readily visible in the view provided in
The localized inserts of
The localized inserts of
Turning next to
The annular sorting disk 714, which has a first stiffness and may be fabricated from a first material, such as a rigid polymer, is mechanically coupled with or otherwise rigidly attached to the annular backing plate 716, which has a second stiffness that is greater than that of the sorting disk 714 and may be fabricated from a second material, such as a rigid metallic material. In some configurations, the polymeric annular sorting disk 714 is adhered and/or mechanically fastened to the backing plate 716. For some configurations, a rigid backing plate 716 can be set in a mold, and a polymeric annular sorting disk 714 can be formed, e.g., by injection molding, insert molding, etc., onto the rigid backing plate 716 or mechanically fastened, e.g., via screws, to the rigid backing plate 716. Optionally, the molding process may include generating integrally formed stakes, screws, snap fasteners, or other fastening means to positively couple the polymeric sorting disk 714 to the rigid backing plate 716. In so doing, the rigid backing plate 716 provides the requisite structural integrity and positional stability for the polymeric sorting disk 714.
As can be seen in
Illustrated in
In the embodiment illustrated in
Backing plate 816 of
As seen in
By using the architecture illustrated in
In the embodiment illustrated in
For at least some embodiments, the life of the sorting disk 814 is expected to be at least approximately five (5) million coins and/or approximately one (1) year of regular to light use. With the illustrated configuration, field refurbishment of the sorting disc is simplified and more cost effective than replacement of the entire assembly, while optional, is no longer necessary. In addition, a worn out sorting disk may be repurposed and reused, e.g., by recovering and resurfacing the sorting disk. Likewise, the backing plate may be reused and, if desired, repurposed for warranty replacements.
In addition to the various attachment options described above (e.g., overmolding and/or (temporary or permanent) mechanical attachment via fasteners such as pins, screws, inserts, etc.), the sorting disk 814 and backing plate 816 can also be coupled together by using adhesive sheet(s) and other forms of lamination, integral mounting contours (e.g., twist lock and pin), magnets (e.g., rare earth magnets embedded into sorting disk to attach to metal backing plate or magnets embedded in a polymeric backing plate). In addition, the backing plate 816 may be configured with one or more or all of the following features and integrated components: a voice coil housing, a sensor support, an interface printed circuit board (PCB) support, a pivot/support, concentricity fixturing, a coin hopper support, and/or a coin hopper. Likewise, the sorting disk 814 may be configured with one or more or all of the following features and integrated components: retention features, coupling features, concentricity establishment features, anti-rotation component and associated mounting features, coin sensing devices and associated mounting features, interface PCB bracket and associated mounting features, coin hopper interface and associated mounting features, latching/support arms, reject actuation device and associated mounting features, pivot/support device, assembly hardware, etc.
Illustrated in
Some of the attendant advantages corresponding to one or more or all of the multi-material sorting disk configurations disclosed herein offer reduced machining and treating time, decreased fabrication costs, a longer operational life expectancy, lower warranty and maintenance costs, and less expensive, easier to replace consumable segments. In some embodiments, the disk-type coin processing units can process approximately 10,000 coins per minute and can provide one or more or all of the following functions: sorting, authenticating, denominating, counting, stripping of double layered coins, re-circulation of genuine coins, rejection of misaligned coins, separation of shingled coins, and rejection of non-genuine coins.
The following exemplary features, options and configurations are not intended to represent every embodiment or every aspect of the present disclosure. Each of the disclosed systems, methods, devices, etc., including those illustrated in the figures, may comprise any of the features, options, and alternatives described herein above and below with respect to the other embodiments, singly and in any combination, unless explicitly disclaimed or logically prohibited.
Aspects of the present disclosure are directed to a currency processing system with a housing, one or more coin receptacles, and a disk-type coin processing unit. The housing is provided with a coin input area for receiving a batch of coins. The one or more coin receptacles are operatively coupled to the housing for stowing processed coins. The disk-type coin processing unit is operatively coupled to the coin input area and the coin receptacle(s) to transfer coins therebetween. This coin processing unit includes a rotatable disk, which is configured to impart motion to a plurality of the coins, and a sorting head, which is configured to sort the coins. The sorting head is fabricated from a first material and has a lower surface that is generally parallel to and at least partially spaced from the rotatable disk. The lower surface forms various shaped regions configured to guide the coins, under the motion imparted by the rotatable disk, to exit channels configured to discharge the coins through exit stations to the one or more coin receptacles. The coin processing unit also has an assortment of localized inserts which are fabricated from a second material that is distinct from the first material of the sorting head. Each of the localized inserts has a distinct shape and is readily removably attached at a distinct one of a plurality of predetermined locations on the sorting head.
For any of the disclosed processing systems, machines and units, the localized inserts can include first and second exit-channel inserts, wherein the first exit-channel insert is shaped to cooperatively define with the sorting head a first of the exit channels, and the second exit-channel insert is shaped to cooperatively define with the sorting head a second of the exit channels. The sorting head can define first and second recessed pockets into which are seated the first and second exit-channel inserts, respectively. The localized inserts can further include a gauging channel insert shaped to cooperatively define with the sorting head a gauging channel. The first material of the sorting head can comprise a first metal having a first hardness, and the second material of the localized inserts can comprise a second metal having a second hardness greater than the first hardness. The localized inserts can include first and second exit-station inserts, wherein the first exit-station insert is shaped to define a first of the exit stations, and the second exit-station insert is shaped define a second of the exit stations. The sorting head can define first and second recessed pockets into which are seated the first and second exit-station inserts, respectively.
For any of the disclosed processing systems, machines and units, the first material of the sorting head can comprise a first material having a first coefficient of friction, and the second material of the localized inserts can comprise a second material having a second coefficient of friction less than the first coefficient of friction. The plurality of localized inserts can include first and second exit inserts, wherein the first exit insert is shaped to define a first of the exit channels and a first of the exit stations, and the second exit insert is shaped to define a second of the exit channels and a second of the exit stations of the sorting head. The sorting head can define first and second recessed pockets into which are seated the first and second exit inserts, respectively. The localized inserts may further include a gauging channel insert that is shaped to cooperatively define with the sorting head a gauging channel.
Aspects of the present disclosure are directed to a coin processing machine that comprises a housing, a plurality of coin receptacles, a processor, and a disk-type coin processing unit. The housing includes an input area that receives therethrough a batch of coins. The coin receptacles, the processor and the disk-type coin processing unit are disposed partially or completely inside the housing. The coin processing unit is operatively coupled to the coin input area and the coin receptacles to transfer coins therebetween. The coin processing unit includes a rotatable disk that supports on an upper surface thereof and imparts motion to coins received from the coin input area. A stationary sorting disk has a lower surface that is generally parallel to and spaced slightly apart from the rotatable disk. This lower surface forms various shaped regions that guide the coins, under the motion imparted by the rotatable disk, from a central region of the sorting disk to a plurality of circumferentially spaced exit channels that sort and discharge the coins through exit stations to the coin receptacles. The stationary sorting disk is fabricated from a first material of a first hardness. Disposed around the sorting disk is a plurality of localized inserts fabricated from a second material of a second hardness, which are distinct from the first material and the first hardness of the sorting disk. Each localized insert has a distinct shape and is readily removably attached at a distinct one of a plurality of predetermined locations on the sorting disk.
Aspects of the present disclosure are directed to a disk-type coin processing unit for a currency processing apparatus. The currency processing apparatus includes a housing with an input area for receiving coins, and one or more coin receptacles for stowing processed coins. The disk-type coin processing unit comprises a rotatable disk for imparting motion to a plurality of the coins. The coin processing unit further comprises a sorting head of a first material with a first hardness having a lower surface generally parallel to and at least partially spaced from the rotatable disk. The lower surface forms shaped regions configured to guide the coins, under the motion imparted by the rotatable disk, to exit channels configured to sort and discharge the coins through a plurality of exit stations to the one or more coin receptacles. Also provided is plurality of localized inserts of a second material with a second hardness, which are distinct from the first material and the first hardness of the sorting head. Each of the localized inserts has a distinct shape and is readily removably attached at a distinct one of a plurality of predetermined locations on the sorting head.
The plurality of localized inserts may comprise first and second exit-channel inserts, wherein the first exit-channel insert is shaped to cooperatively define with the sorting head a first of the exit channels, and the second exit-channel insert is shaped to cooperatively define with the sorting head a second of the exit channels. The sorting head can define insert pockets, each of the localized inserts being seated inside a respective one of the insert pockets. The plurality of localized inserts may comprise a gauging channel insert that is shaped to cooperatively define with the sorting head a gauging channel. The first material of the sorting head may comprise a first metal having a first hardness, and the second material of the localized inserts may comprise a second metal having a second hardness greater than the first hardness. The plurality of localized inserts may comprise first and second exit-station inserts, the first exit-station insert being shaped to cooperatively define with the sorting head a first of the exit stations, and the second exit-channel insert being shaped to cooperatively define with the sorting head a second of the exit stations. The first material of the sorting head may comprise a metal having a first hardness, and the second material of the localized inserts may comprise a polymer having a second hardness less than the first hardness. The plurality of localized inserts may comprise first and second exit inserts, the first exit insert being shaped to define a first of the exit channels and a first of the exit stations, and the second exit insert being shaped to define a second of the exit channels and a second of the exit stations of the sorting head.
The present disclosure is not limited to the precise construction and compositions disclosed herein. Each of these embodiments, including any and all modifications, changes, and variations apparent from the foregoing description, is contemplated as falling within the scope of the invention as defined in the appended claims. Moreover, the present concepts expressly include any and all combinations and subcombinations of the preceding elements and aspects.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 62/078,245, which was filed on Nov. 11, 2014, and is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1099705 | Lindeen | Jun 1914 | A |
2570920 | Clough et al. | Oct 1951 | A |
2669998 | Buchholz | Feb 1954 | A |
2750949 | Kulo et al. | Jun 1956 | A |
2835260 | Buchholz | May 1958 | A |
2865561 | Rosapepe | Dec 1958 | A |
3132654 | Adams | May 1964 | A |
3376970 | Roseberg | Apr 1968 | A |
3771583 | Bottemiller | Nov 1973 | A |
3778595 | Hatanaka et al. | Dec 1973 | A |
3851755 | Hull et al. | Dec 1974 | A |
3916922 | Prumm | Nov 1975 | A |
3998237 | Kressin | Dec 1976 | A |
3998379 | Myers et al. | Dec 1976 | A |
4050218 | Call | Sep 1977 | A |
4059122 | Kinoshita | Nov 1977 | A |
4075460 | Gorgens | Feb 1978 | A |
4124111 | Hayashi | Nov 1978 | A |
4150740 | Douno | Apr 1979 | A |
4166945 | Inoyama et al. | Sep 1979 | A |
4172462 | Uchida et al. | Oct 1979 | A |
4179685 | O'Maley | Dec 1979 | A |
4179723 | Spencer | Dec 1979 | A |
4184366 | Butler | Jan 1980 | A |
4197986 | Nagata | Apr 1980 | A |
4208549 | Polillo et al. | Jun 1980 | A |
4228812 | Marti | Oct 1980 | A |
4232295 | McConnell | Nov 1980 | A |
4234003 | Ristvedt et al. | Nov 1980 | A |
4249552 | Margolin et al. | Feb 1981 | A |
4251867 | Uchida et al. | Feb 1981 | A |
4286703 | Schuller et al. | Sep 1981 | A |
RE30773 | Glaser et al. | Oct 1981 | E |
4310885 | Azcua et al. | Jan 1982 | A |
4317957 | Sendrow | Mar 1982 | A |
4341951 | Benton | Jul 1982 | A |
4355369 | Garvin | Oct 1982 | A |
4360034 | Davila et al. | Nov 1982 | A |
4369442 | Werth et al. | Jan 1983 | A |
4380316 | Glinka et al. | Apr 1983 | A |
4383540 | DeMeyer et al. | May 1983 | A |
4385285 | Horst et al. | May 1983 | A |
4412292 | Sedam et al. | Oct 1983 | A |
4416299 | Bergman | Nov 1983 | A |
4417136 | Rushby et al. | Nov 1983 | A |
4423316 | Sano et al. | Dec 1983 | A |
4434359 | Watanabe | Feb 1984 | A |
4436103 | Dick | Mar 1984 | A |
4454414 | Benton | Jun 1984 | A |
4474197 | Kinoshita et al. | Oct 1984 | A |
4488116 | Plesko | Dec 1984 | A |
4531531 | Johnson et al. | Jul 1985 | A |
4543969 | Rasmussen | Oct 1985 | A |
4549561 | Johnson et al. | Oct 1985 | A |
4556140 | Okada | Dec 1985 | A |
4558711 | Yoshiaki et al. | Dec 1985 | A |
4564036 | Ristvedt | Jan 1986 | A |
4570655 | Raterman | Feb 1986 | A |
4594664 | Hashimoto | Jun 1986 | A |
4602332 | Hirose et al. | Jul 1986 | A |
4607649 | Taipale et al. | Aug 1986 | A |
4620559 | Childers et al. | Nov 1986 | A |
4641239 | Takesako | Feb 1987 | A |
4674260 | Rasmussen et al. | Jun 1987 | A |
4681128 | Ristvedt et al. | Jul 1987 | A |
4705154 | Masho et al. | Nov 1987 | A |
4718218 | Ristvedt | Jan 1988 | A |
4731043 | Ristvedt et al. | Mar 1988 | A |
4733765 | Watanabe | Mar 1988 | A |
4749074 | Ueki et al. | Jun 1988 | A |
4753624 | Adams et al. | Jun 1988 | A |
4753625 | Okada | Jun 1988 | A |
4765464 | Ristvedt | Aug 1988 | A |
4766548 | Cedrone et al. | Aug 1988 | A |
4767090 | Hartman | Aug 1988 | A |
4775353 | Childers et al. | Oct 1988 | A |
4775354 | Rasmussen et al. | Oct 1988 | A |
4778983 | Ushikubo | Oct 1988 | A |
4803347 | Sugahara et al. | Feb 1989 | A |
4804830 | Miyagisima et al. | Feb 1989 | A |
4812629 | O'Neil et al. | Mar 1989 | A |
4839505 | Bradt et al. | Jun 1989 | A |
4840290 | Nakamura | Jun 1989 | A |
4844369 | Kanayachi | Jul 1989 | A |
4848556 | Shah et al. | Jul 1989 | A |
4863414 | Ristvedt et al. | Sep 1989 | A |
4883158 | Kobayashi et al. | Nov 1989 | A |
4884212 | Stutsman | Nov 1989 | A |
4900909 | Nagashima et al. | Feb 1990 | A |
4908516 | West | Mar 1990 | A |
4921463 | Primdahl et al. | May 1990 | A |
4936435 | Griner | Jun 1990 | A |
4953086 | Fukatsu | Aug 1990 | A |
4954697 | Kokubun et al. | Sep 1990 | A |
4964495 | Rasmussen | Oct 1990 | A |
4966570 | Ristvedt et al. | Oct 1990 | A |
4970655 | Winn et al. | Nov 1990 | A |
4971187 | Furuya et al. | Nov 1990 | A |
4988849 | Sasaki et al. | Jan 1991 | A |
4992647 | Konishi et al. | Feb 1991 | A |
4995848 | Goh | Feb 1991 | A |
5009627 | Rasmussen | Apr 1991 | A |
5010238 | Kadono et al. | Apr 1991 | A |
5010485 | Bigari | Apr 1991 | A |
5011455 | Rasmussen | Apr 1991 | A |
5022889 | Ristvedt et al. | Jun 1991 | A |
5025139 | Halliburton, Jr. | Jun 1991 | A |
5026320 | Rasmussen | Jun 1991 | A |
5031098 | Miller et al. | Jul 1991 | A |
5033602 | Saarinen et al. | Jul 1991 | A |
5039848 | Stoken | Aug 1991 | A |
5055086 | Raterman et al. | Oct 1991 | A |
5055657 | Miller et al. | Oct 1991 | A |
5056643 | Kirberg | Oct 1991 | A |
5064999 | Okamoto et al. | Nov 1991 | A |
5067928 | Harris | Nov 1991 | A |
5080633 | Ristvedt et al. | Jan 1992 | A |
5091713 | Horne et al. | Feb 1992 | A |
5104353 | Ristvedt et al. | Apr 1992 | A |
5105601 | Horiguchi et al. | Apr 1992 | A |
5106338 | Rasmussen et al. | Apr 1992 | A |
5111927 | Schulze | May 1992 | A |
5114381 | Ueda et al. | May 1992 | A |
5120945 | Nishibe et al. | Jun 1992 | A |
5123873 | Rasmussen | Jun 1992 | A |
5129205 | Rasmussen | Jul 1992 | A |
5135435 | Rasmussen | Aug 1992 | A |
5140517 | Nagata et al. | Aug 1992 | A |
5141443 | Rasmussen et al. | Aug 1992 | A |
5141472 | Todd et al. | Aug 1992 | A |
5145455 | Todd | Sep 1992 | A |
5146067 | Sloan et al. | Sep 1992 | A |
5154272 | Nishiumi et al. | Oct 1992 | A |
5163866 | Rasmussen | Nov 1992 | A |
5163867 | Rasmussen | Nov 1992 | A |
5163868 | Adams et al. | Nov 1992 | A |
5167313 | Dobbins et al. | Dec 1992 | A |
5167571 | Waller | Dec 1992 | A |
5175416 | Mansvelt et al. | Dec 1992 | A |
5176565 | Ristvedt et al. | Jan 1993 | A |
5179517 | Sarbin et al. | Jan 1993 | A |
5183142 | Latchinian et al. | Feb 1993 | A |
5184709 | Nishiumi et al. | Feb 1993 | A |
5194037 | Jones et al. | Mar 1993 | A |
5197919 | Geib et al. | Mar 1993 | A |
5205780 | Rasmussen | Apr 1993 | A |
5207784 | Schwartzendruber | May 1993 | A |
5209696 | Rasmussen et al. | May 1993 | A |
5236071 | Lee | Aug 1993 | A |
5243174 | Veeneman et al. | Sep 1993 | A |
5251738 | Dabrowski | Oct 1993 | A |
5252811 | Henochowicz et al. | Oct 1993 | A |
5253167 | Yoshida et al. | Oct 1993 | A |
5259491 | Ward, II | Nov 1993 | A |
5263566 | Nara et al. | Nov 1993 | A |
5265874 | Dickinson et al. | Nov 1993 | A |
5268561 | Kimura et al. | Dec 1993 | A |
5277651 | Rasmussen et al. | Jan 1994 | A |
5282127 | Mii | Jan 1994 | A |
5286226 | Rasmussen | Feb 1994 | A |
5286954 | Sato et al. | Feb 1994 | A |
5291003 | Avnet et al. | Mar 1994 | A |
5291560 | Daugman | Mar 1994 | A |
5293981 | Abe et al. | Mar 1994 | A |
5297030 | Vassigh et al. | Mar 1994 | A |
5297598 | Rasmussen | Mar 1994 | A |
5297986 | Ristvedt et al. | Mar 1994 | A |
5299977 | Mazur et al. | Apr 1994 | A |
5302811 | Fukatsu | Apr 1994 | A |
5324922 | Roberts | Jun 1994 | A |
5326104 | Pease et al. | Jul 1994 | A |
5370575 | Geib et al. | Dec 1994 | A |
5372542 | Geib et al. | Dec 1994 | A |
5374814 | Kako et al. | Dec 1994 | A |
5379344 | Larson et al. | Jan 1995 | A |
5379875 | Shames et al. | Jan 1995 | A |
5382191 | Rasmussen | Jan 1995 | A |
5390776 | Thompson | Feb 1995 | A |
5401211 | Geib et al. | Mar 1995 | A |
5404986 | Hossfield et al. | Apr 1995 | A |
5410590 | Blood et al. | Apr 1995 | A |
RE34934 | Raterman et al. | May 1995 | E |
5425669 | Geib et al. | Jun 1995 | A |
5429550 | Mazur et al. | Jul 1995 | A |
5440108 | Tran et al. | Aug 1995 | A |
5443419 | Adams et al. | Aug 1995 | A |
5450938 | Rademacher | Sep 1995 | A |
5453047 | Mazur et al. | Sep 1995 | A |
5458285 | Remien | Oct 1995 | A |
5468182 | Geib | Nov 1995 | A |
5470079 | LeStrange et al. | Nov 1995 | A |
5472381 | Ayre, Jr. | Dec 1995 | A |
5474495 | Geib et al. | Dec 1995 | A |
5474497 | Jones et al. | Dec 1995 | A |
5480348 | Mazur et al. | Jan 1996 | A |
5481790 | Koreis | Jan 1996 | A |
5489237 | Geib et al. | Feb 1996 | A |
5500514 | Veeneman et al. | Mar 1996 | A |
5501631 | Mennie | Mar 1996 | A |
5507379 | Mazur et al. | Apr 1996 | A |
5514034 | Jones et al. | May 1996 | A |
5520577 | Rasmussen | May 1996 | A |
5531309 | Kloss et al. | Jul 1996 | A |
5538468 | Ristvedt et al. | Jul 1996 | A |
5542880 | Geib et al. | Aug 1996 | A |
5542881 | Geib | Aug 1996 | A |
5553320 | Matsuura et al. | Sep 1996 | A |
5559887 | Davis et al. | Sep 1996 | A |
5564546 | Molbak et al. | Oct 1996 | A |
5564974 | Mazur et al. | Oct 1996 | A |
5564978 | Jones et al. | Oct 1996 | A |
5570465 | Tsakanikas | Oct 1996 | A |
5573457 | Watts et al. | Nov 1996 | A |
5584758 | Geib | Dec 1996 | A |
5592377 | Lipkin | Jan 1997 | A |
5602933 | Blackwell et al. | Feb 1997 | A |
5615625 | Cassidy et al. | Apr 1997 | A |
5620079 | Molbak | Apr 1997 | A |
5623547 | Jones et al. | Apr 1997 | A |
5625562 | Veeneman et al. | Apr 1997 | A |
5630494 | Strauts | May 1997 | A |
5641050 | Smith et al. | Jun 1997 | A |
5650605 | Morioka et al. | Jul 1997 | A |
5650761 | Gomm et al. | Jul 1997 | A |
5652421 | Veeneman et al. | Jul 1997 | A |
5665952 | Ziarno | Sep 1997 | A |
5679070 | Ishida et al. | Oct 1997 | A |
5684597 | Hossfield et al. | Nov 1997 | A |
5696366 | Ziarno | Dec 1997 | A |
5743373 | Strauts | Apr 1998 | A |
5746299 | Molbak et al. | May 1998 | A |
5774874 | Veeneman et al. | Jun 1998 | A |
5782686 | Geib et al. | Jul 1998 | A |
5799767 | Molbak | Sep 1998 | A |
5813510 | Rademacher | Sep 1998 | A |
5823315 | Hoffman et al. | Oct 1998 | A |
5830054 | Petri | Nov 1998 | A |
5838812 | Pare, Jr. et al. | Nov 1998 | A |
5842188 | Ramsey et al. | Nov 1998 | A |
5842916 | Gerrity et al. | Dec 1998 | A |
5850076 | Morioka et al. | Dec 1998 | A |
5854581 | Mori et al. | Dec 1998 | A |
5865673 | Geib et al. | Feb 1999 | A |
5875879 | Hawthorn | Mar 1999 | A |
5880444 | Shibata et al. | Mar 1999 | A |
5892211 | Davis et al. | Apr 1999 | A |
5892827 | Beach et al. | Apr 1999 | A |
5909793 | Beach et al. | Jun 1999 | A |
5909794 | Molbak et al. | Jun 1999 | A |
5913399 | Takemoto et al. | Jun 1999 | A |
5918748 | Clark et al. | Jul 1999 | A |
5940623 | Watts et al. | Aug 1999 | A |
5941364 | Wei | Aug 1999 | A |
5944162 | Filiberti | Aug 1999 | A |
5944600 | Zimmermann | Aug 1999 | A |
5944601 | Hayashi et al. | Aug 1999 | A |
5951476 | Beach et al. | Sep 1999 | A |
5957262 | Molbak et al. | Sep 1999 | A |
5988348 | Martin et al. | Nov 1999 | A |
5995949 | Morioka et al. | Nov 1999 | A |
5997395 | Geib et al. | Dec 1999 | A |
6017270 | Ristvedt et al. | Jan 2000 | A |
6021883 | Casanova et al. | Feb 2000 | A |
6032859 | Muehlberger et al. | Mar 2000 | A |
6039644 | Geib et al. | Mar 2000 | A |
6039645 | Mazur | Mar 2000 | A |
6042470 | Geib et al. | Mar 2000 | A |
6047807 | Molbak | Apr 2000 | A |
6047808 | Neubarth et al. | Apr 2000 | A |
6056104 | Neubarth et al. | May 2000 | A |
6080056 | Karlsson | Jun 2000 | A |
6082519 | Martin et al. | Jul 2000 | A |
6086471 | Zimmermann | Jul 2000 | A |
6095313 | Molbak et al. | Aug 2000 | A |
6116402 | Beach et al. | Sep 2000 | A |
6131625 | Casanova et al. | Oct 2000 | A |
6139418 | Geib et al. | Oct 2000 | A |
6142285 | Panzeri et al. | Nov 2000 | A |
6145738 | Stinson et al. | Nov 2000 | A |
6154879 | Pare, Jr. et al. | Nov 2000 | A |
6168001 | Davis | Jan 2001 | B1 |
6171182 | Geib et al. | Jan 2001 | B1 |
6174230 | Gerrity et al. | Jan 2001 | B1 |
6196371 | Martin et al. | Mar 2001 | B1 |
6196913 | Geib et al. | Mar 2001 | B1 |
6202006 | Scott | Mar 2001 | B1 |
6213277 | Blad et al. | Apr 2001 | B1 |
6230928 | Hanna et al. | May 2001 | B1 |
6264545 | Magee et al. | Jul 2001 | B1 |
6308887 | Korman et al. | Oct 2001 | B1 |
6318536 | Korman et al. | Nov 2001 | B1 |
6318537 | Jones et al. | Nov 2001 | B1 |
6349972 | Geiger et al. | Feb 2002 | B1 |
6386323 | Ramachandran et al. | May 2002 | B1 |
6412620 | Imura | Jul 2002 | B1 |
6431342 | Schwartz | Aug 2002 | B1 |
6438230 | Moore | Aug 2002 | B1 |
6456928 | Johnson | Sep 2002 | B1 |
6471030 | Neubarth et al. | Oct 2002 | B1 |
6474548 | Montross et al. | Nov 2002 | B1 |
6484863 | Molbak | Nov 2002 | B1 |
6484884 | Gerrity et al. | Nov 2002 | B1 |
6494776 | Molbak | Dec 2002 | B1 |
6499277 | Warner et al. | Dec 2002 | B1 |
6503138 | Spoehr et al. | Jan 2003 | B2 |
6520308 | Martin | Feb 2003 | B1 |
6522772 | Morrison et al. | Feb 2003 | B1 |
6547131 | Foodman et al. | Apr 2003 | B1 |
6552781 | Rompel et al. | Apr 2003 | B1 |
6554185 | Montross et al. | Apr 2003 | B1 |
6579165 | Kuhlin et al. | Jun 2003 | B2 |
6581042 | Pare, Jr. et al. | Jun 2003 | B2 |
6602125 | Martin | Aug 2003 | B2 |
6609604 | Jones et al. | Aug 2003 | B1 |
6612921 | Geib et al. | Sep 2003 | B2 |
6637576 | Jones et al. | Oct 2003 | B1 |
6640956 | Zwieg et al. | Nov 2003 | B1 |
6644696 | Brown et al. | Nov 2003 | B2 |
6652380 | Luciano | Nov 2003 | B1 |
6655585 | Shinn | Dec 2003 | B2 |
6659259 | Knox et al. | Dec 2003 | B2 |
6662166 | Pare, Jr. et al. | Dec 2003 | B2 |
6663675 | Blake et al. | Dec 2003 | B2 |
6666318 | Gerrity et al. | Dec 2003 | B2 |
6719121 | Alexander et al. | Apr 2004 | B2 |
6755730 | Geib et al. | Jun 2004 | B2 |
6758316 | Molbak | Jul 2004 | B2 |
6761308 | Hanna et al. | Jul 2004 | B1 |
6766892 | Martin et al. | Jul 2004 | B2 |
6783452 | Hino | Aug 2004 | B2 |
6786398 | Stinson et al. | Sep 2004 | B1 |
6854581 | Molbak | Feb 2005 | B2 |
6854640 | Peklo | Feb 2005 | B2 |
6863168 | Gerrity et al. | Mar 2005 | B1 |
6892871 | Strauts et al. | May 2005 | B2 |
6896118 | Jones et al. | May 2005 | B2 |
6928546 | Nanavati et al. | Aug 2005 | B1 |
6950810 | Lapsley et al. | Sep 2005 | B2 |
6953150 | Shepley et al. | Oct 2005 | B2 |
6957746 | Martin et al. | Oct 2005 | B2 |
6966417 | Peklo et al. | Nov 2005 | B2 |
6976570 | Molbak | Dec 2005 | B2 |
6977096 | LeClaire | Dec 2005 | B2 |
6988606 | Geib et al. | Jan 2006 | B2 |
6991530 | Hino | Jan 2006 | B2 |
7004831 | Hino et al. | Feb 2006 | B2 |
7014029 | Winters | Mar 2006 | B2 |
7014108 | Sorenson et al. | Mar 2006 | B2 |
7017729 | Gerrity et al. | Mar 2006 | B2 |
7018286 | Blake et al. | Mar 2006 | B2 |
7028827 | Molbak et al. | Apr 2006 | B1 |
7036651 | Tam et al. | May 2006 | B2 |
7083036 | Adams | Aug 2006 | B2 |
7113929 | Beach et al. | Sep 2006 | B1 |
7131580 | Molbak | Nov 2006 | B2 |
7149336 | Jones et al. | Dec 2006 | B2 |
7152727 | Waechter | Dec 2006 | B2 |
7158662 | Chiles | Jan 2007 | B2 |
7188720 | Geib et al. | Mar 2007 | B2 |
7213697 | Martin et al. | May 2007 | B2 |
7243773 | Bochonok et al. | Jul 2007 | B2 |
7269279 | Chiles | Sep 2007 | B2 |
7303119 | Molbak | Dec 2007 | B2 |
7331521 | Sorenson et al. | Feb 2008 | B2 |
7337890 | Bochonok et al. | Mar 2008 | B2 |
7427230 | Blake | Sep 2008 | B2 |
7438172 | Long et al. | Oct 2008 | B2 |
7464802 | Gerrity et al. | Dec 2008 | B2 |
7500568 | Cousin | Mar 2009 | B2 |
7520374 | Martin et al. | Apr 2009 | B2 |
7551764 | Chiles et al. | Jun 2009 | B2 |
7552810 | Mecklenburg | Jun 2009 | B2 |
7580859 | Economy | Aug 2009 | B2 |
7604107 | Richard et al. | Oct 2009 | B2 |
7654450 | Mateen et al. | Feb 2010 | B2 |
7658270 | Bochonok et al. | Feb 2010 | B2 |
7735125 | Alvarez et al. | Jun 2010 | B1 |
7743902 | Wendell et al. | Jun 2010 | B2 |
7778456 | Jones et al. | Aug 2010 | B2 |
7819308 | Osterberg et al. | Oct 2010 | B2 |
7874478 | Molbak | Jan 2011 | B2 |
7886890 | Blake et al. | Feb 2011 | B2 |
7931304 | Brown et al. | Apr 2011 | B2 |
7946406 | Blake et al. | May 2011 | B2 |
7963382 | Wendell et al. | Jun 2011 | B2 |
7980378 | Jones et al. | Jul 2011 | B2 |
8023715 | Jones et al. | Sep 2011 | B2 |
8042732 | Blake et al. | Oct 2011 | B2 |
8229821 | Mennie et al. | Jul 2012 | B2 |
8393455 | Blake et al. | Mar 2013 | B2 |
8443958 | Jones et al. | May 2013 | B2 |
RE44252 | Jones et al. | Jun 2013 | E |
8523641 | Kuykendall et al. | Sep 2013 | B2 |
8545295 | Blake et al. | Oct 2013 | B2 |
8602200 | Blake | Dec 2013 | B2 |
8607957 | Blake et al. | Dec 2013 | B2 |
8616359 | Bochonok et al. | Dec 2013 | B2 |
RE44689 | Wendell et al. | Jan 2014 | E |
8684159 | Blake | Apr 2014 | B2 |
8684160 | Hallowell et al. | Apr 2014 | B2 |
8701860 | Blake et al. | Apr 2014 | B1 |
8950566 | Hallowell et al. | Feb 2015 | B2 |
8959029 | Jones et al. | Feb 2015 | B2 |
9092924 | Rasmussen et al. | Jul 2015 | B1 |
20010034203 | Geib et al. | Oct 2001 | A1 |
20010048025 | Shinn | Dec 2001 | A1 |
20020000543 | Arthur | Jan 2002 | A1 |
20020065033 | Geib et al. | May 2002 | A1 |
20020069104 | Beach et al. | Jun 2002 | A1 |
20020074209 | Karlsson | Jun 2002 | A1 |
20020085745 | Jones et al. | Jul 2002 | A1 |
20020095587 | Doyle et al. | Jul 2002 | A1 |
20020107738 | Beach et al. | Aug 2002 | A1 |
20020116887 | Niday | Aug 2002 | A1 |
20020126885 | Mennie et al. | Sep 2002 | A1 |
20020130011 | Casanova | Sep 2002 | A1 |
20020147588 | Davis et al. | Oct 2002 | A1 |
20020151267 | Kuhlin et al. | Oct 2002 | A1 |
20020174348 | Ting | Nov 2002 | A1 |
20020179401 | Knox et al. | Dec 2002 | A1 |
20030004878 | Akutsu et al. | Jan 2003 | A1 |
20030013403 | Blake et al. | Jan 2003 | A1 |
20030042110 | Wilfong | Mar 2003 | A1 |
20030081824 | Mennie et al. | May 2003 | A1 |
20030127299 | Jones et al. | Jul 2003 | A1 |
20030168309 | Geib et al. | Sep 2003 | A1 |
20030168310 | Strauts et al. | Sep 2003 | A1 |
20030182217 | Chiles | Sep 2003 | A1 |
20030190882 | Blake et al. | Oct 2003 | A1 |
20030230464 | Deaville et al. | Dec 2003 | A1 |
20030234153 | Blake et al. | Dec 2003 | A1 |
20040021898 | Ashizaki | Feb 2004 | A1 |
20040055902 | Peklo | Mar 2004 | A1 |
20040092222 | Kowalczyk | May 2004 | A1 |
20040153406 | Alarcon-Luther et al. | Aug 2004 | A1 |
20040153421 | Robinson | Aug 2004 | A1 |
20040154899 | Peklo et al. | Aug 2004 | A1 |
20040173432 | Jones | Sep 2004 | A1 |
20040188221 | Carter | Sep 2004 | A1 |
20040195302 | Washington et al. | Oct 2004 | A1 |
20040199924 | Ganesh et al. | Oct 2004 | A1 |
20040200691 | Geib et al. | Oct 2004 | A1 |
20040238319 | Hand et al. | Dec 2004 | A1 |
20040238614 | Yoshioka et al. | Dec 2004 | A1 |
20040256197 | Blake et al. | Dec 2004 | A1 |
20040259490 | Hino | Dec 2004 | A1 |
20050006197 | Wendell et al. | Jan 2005 | A1 |
20050035140 | Carter | Feb 2005 | A1 |
20050040007 | Geib et al. | Feb 2005 | A1 |
20050040225 | Csulits et al. | Feb 2005 | A1 |
20050045450 | Geib et al. | Mar 2005 | A1 |
20050067305 | Bochonok et al. | Mar 2005 | A1 |
20050077142 | Tam et al. | Apr 2005 | A1 |
20050086140 | Ireland et al. | Apr 2005 | A1 |
20050087425 | Peklo | Apr 2005 | A1 |
20050096986 | Taylor et al. | May 2005 | A1 |
20050098625 | Walker et al. | May 2005 | A1 |
20050108165 | Jones et al. | May 2005 | A1 |
20050109836 | Ben-Aissa | May 2005 | A1 |
20050121507 | Brown et al. | Jun 2005 | A1 |
20050124407 | Rowe | Jun 2005 | A1 |
20050150740 | Finkenzeller et al. | Jul 2005 | A1 |
20050156318 | Douglas | Jul 2005 | A1 |
20050205654 | Carter | Sep 2005 | A1 |
20050205655 | Carter | Sep 2005 | A1 |
20050228717 | Gusler et al. | Oct 2005 | A1 |
20050233684 | Abe | Oct 2005 | A1 |
20050256792 | Shimizu et al. | Nov 2005 | A1 |
20060037835 | Doran et al. | Feb 2006 | A1 |
20060054455 | Kuykendall et al. | Mar 2006 | A1 |
20060054457 | Long et al. | Mar 2006 | A1 |
20060060363 | Carter | Mar 2006 | A2 |
20060064379 | Doran et al. | Mar 2006 | A1 |
20060065717 | Hurwitz et al. | Mar 2006 | A1 |
20060069654 | Beach et al. | Mar 2006 | A1 |
20060146839 | Hurwitz et al. | Jul 2006 | A1 |
20060148394 | Blake | Jul 2006 | A1 |
20060149415 | Richards | Jul 2006 | A1 |
20060151285 | String | Jul 2006 | A1 |
20060154589 | String | Jul 2006 | A1 |
20060175176 | Blake | Aug 2006 | A1 |
20060182330 | Chiles | Aug 2006 | A1 |
20060196754 | Bochonok et al. | Sep 2006 | A1 |
20060205481 | Dominelli | Sep 2006 | A1 |
20060207856 | Dean et al. | Sep 2006 | A1 |
20060219519 | Molbak et al. | Oct 2006 | A1 |
20060253332 | Dobbins | Nov 2006 | A1 |
20060283685 | Cousin | Dec 2006 | A1 |
20070051582 | Bochonok et al. | Mar 2007 | A1 |
20070071302 | Jones et al. | Mar 2007 | A1 |
20070108015 | Bochonok et al. | May 2007 | A1 |
20070119681 | Blake et al. | May 2007 | A1 |
20070181676 | Mateen et al. | Aug 2007 | A1 |
20070187494 | Hanna | Aug 2007 | A1 |
20070221470 | Mennie et al. | Sep 2007 | A1 |
20070251800 | Castleberry | Nov 2007 | A1 |
20070269097 | Chiles et al. | Nov 2007 | A1 |
20070270997 | Brumfield et al. | Nov 2007 | A1 |
20080033829 | Mennie et al. | Feb 2008 | A1 |
20080044077 | Mennie et al. | Feb 2008 | A1 |
20080135608 | Ireland et al. | Jun 2008 | A1 |
20080220707 | Jones et al. | Sep 2008 | A1 |
20080223930 | Rolland et al. | Sep 2008 | A1 |
20090018959 | Doran et al. | Jan 2009 | A1 |
20090236200 | Hallowell et al. | Sep 2009 | A1 |
20090236201 | Blake et al. | Sep 2009 | A1 |
20090239459 | Watts et al. | Sep 2009 | A1 |
20090242626 | Jones et al. | Oct 2009 | A1 |
20090320106 | Jones et al. | Dec 2009 | A1 |
20100038419 | Blake et al. | Feb 2010 | A1 |
20100041289 | Spencer | Feb 2010 | A1 |
20100065623 | Sauter | Mar 2010 | A1 |
20100198726 | Doran et al. | Aug 2010 | A1 |
20100234985 | Shuren et al. | Sep 2010 | A1 |
20100261421 | Wendell et al. | Oct 2010 | A1 |
20100276485 | Jones et al. | Nov 2010 | A1 |
20100327005 | Martin et al. | Dec 2010 | A1 |
20110098845 | Mennie et al. | Apr 2011 | A1 |
20110099105 | Mennie et al. | Apr 2011 | A1 |
20110189932 | Adams | Aug 2011 | A1 |
20110259961 | Fold et al. | Oct 2011 | A1 |
20110270695 | Jones et al. | Nov 2011 | A1 |
20120067950 | Blake | Mar 2012 | A1 |
20120156976 | Blake et al. | Jun 2012 | A1 |
20130178139 | Hallowell et al. | Jul 2013 | A1 |
20130199890 | Blake | Aug 2013 | A1 |
20130205723 | Blake et al. | Aug 2013 | A1 |
20150302678 | Blake et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
2235925 | Nov 1995 | CA |
2189330 | Dec 2000 | CA |
2143943 | Mar 2003 | CA |
06 60 354 | May 1938 | DE |
30 21 327 | Dec 1981 | DE |
0 351 217 | Jan 1990 | EP |
0 667 973 | Jan 1997 | EP |
0 926 634 | Jun 1999 | EP |
1 104 920 | Jun 2001 | EP |
1 209 639 | May 2002 | EP |
1 528 513 | May 2005 | EP |
2468656 | Jun 2012 | EP |
2042254 | Feb 1971 | FR |
2035642 | Jun 1980 | GB |
2175427 | Nov 1986 | GB |
2198274 | Jun 1988 | GB |
2458387 | Sep 2009 | GB |
2468783 | Sep 2010 | GB |
49-058899 | Jun 1974 | JP |
52-014495 | Feb 1977 | JP |
52-071300 | Jun 1977 | JP |
56-040992 | Apr 1981 | JP |
57-117080 | Jul 1982 | JP |
59-079392 | May 1984 | JP |
60-016271 | Feb 1985 | JP |
62-134168 | Aug 1987 | JP |
62-182995 | Aug 1987 | JP |
62-221773 | Sep 1987 | JP |
62-166562 | Oct 1987 | JP |
64-035683 | Feb 1989 | JP |
64-042789 | Feb 1989 | JP |
64-067698 | Mar 1989 | JP |
01-118995 | May 1989 | JP |
01-307891 | Dec 1989 | JP |
02-050793 | Feb 1990 | JP |
02-252096 | Oct 1990 | JP |
03-012776 | Jan 1991 | JP |
03-063795 | Mar 1991 | JP |
03-092994 | Apr 1991 | JP |
03-156673 | Jul 1991 | JP |
04-085695 | Mar 1992 | JP |
04-175993 | Jun 1992 | JP |
05-046839 | Feb 1993 | JP |
05-217048 | Aug 1993 | JP |
05-274527 | Oct 1993 | JP |
06-035946 | Feb 1994 | JP |
06-103285 | Apr 1994 | JP |
09-251566 | Sep 1997 | JP |
2002-117439 | Apr 2002 | JP |
2003-242287 | Aug 2003 | JP |
2004-213188 | Jul 2004 | JP |
44 244 | Sep 1988 | SE |
WO 8500909 | Feb 1985 | WO |
WO 9106927 | May 1991 | WO |
WO 9108952 | Jun 1991 | WO |
WO 9112594 | Aug 1991 | WO |
WO 9118371 | Nov 1991 | WO |
WO 9208212 | May 1992 | WO |
WO 9220043 | Nov 1992 | WO |
WO 9220044 | Nov 1992 | WO |
WO 9222044 | Dec 1992 | WO |
WO 9300660 | Jan 1993 | WO |
WO 9309621 | May 1993 | WO |
WO 9406101 | Mar 1994 | WO |
WO 9408319 | Apr 1994 | WO |
WO 9423397 | Oct 1994 | WO |
WO 9502226 | Jan 1995 | WO |
WO 9504978 | Feb 1995 | WO |
WO 9506920 | Mar 1995 | WO |
WO 9509406 | Apr 1995 | WO |
WO 9513596 | May 1995 | WO |
WO 9519017 | Jul 1995 | WO |
WO 9523387 | Aug 1995 | WO |
WO 9530215 | Nov 1995 | WO |
WO 9607163 | Mar 1996 | WO |
WO 9607990 | Mar 1996 | WO |
WO 9612253 | Apr 1996 | WO |
WO 9627525 | Sep 1996 | WO |
WO 9627859 | Sep 1996 | WO |
WO 9722919 | Jun 1997 | WO |
WO 9725692 | Jul 1997 | WO |
WO 9824041 | Jun 1998 | WO |
WO 9824067 | Jun 1998 | WO |
WO 9848383 | Oct 1998 | WO |
WO 9848384 | Oct 1998 | WO |
WO 9848385 | Oct 1998 | WO |
WO 9851082 | Nov 1998 | WO |
WO 9859323 | Dec 1998 | WO |
WO 9900776 | Jan 1999 | WO |
WO 9906937 | Feb 1999 | WO |
WO 9916027 | Apr 1999 | WO |
WO 9933030 | Jul 1999 | WO |
WO 9941695 | Aug 1999 | WO |
WO 9948057 | Sep 1999 | WO |
WO 9948058 | Sep 1999 | WO |
WO 0048911 | Aug 2000 | WO |
WO 0065546 | Nov 2000 | WO |
WO 0163565 | Aug 2001 | WO |
WO 02071343 | Sep 2002 | WO |
WO 03052700 | Jun 2003 | WO |
WO 03079300 | Sep 2003 | WO |
WO 03085610 | Oct 2003 | WO |
WO 03107280 | Dec 2003 | WO |
WO 04044853 | May 2004 | WO |
WO 04109464 | Dec 2004 | WO |
WO 05041134 | May 2005 | WO |
WO 05088563 | Sep 2005 | WO |
WO 06086531 | Aug 2006 | WO |
WO 07035420 | Mar 2007 | WO |
WO 07120825 | Oct 2007 | WO |
Entry |
---|
Microblue Literature dated Nov. 18, 2002, cited in U.S. Appl. No. 10/263,477. |
Amiel Industries: AI-1500 ‘Pulsar’ High Performance Sorting and Bagging Machine, 13 pages (date unknown, but prior to Dec. 14, 2000). |
AUI: Coinverter—“No More Lines . . . Self-Serve Cash-Out,” by Cassius Elston, 1995 World Games Congress/Exposition Converter, 1 page (dated prior to 1995). |
Brandt: 95 Series Coin Sorter Counter, 2 pages (1982). |
Brandt: Model 817 Automated Coin and Currency Ordering System, 2 pages (1983). |
Brandt: Model 920/925 Counter, 2 pages (date unknown, prior to Jul. 2011, possibly prior to Mar. 17, 1997). |
Brandt: System 930 Electric Counter/Sorter, “Solving Problems, Pleasing Customer, Building Deposits,” 1 page (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997). |
Brandt: Model 940-6 High Speed Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989). |
Brandt: System 945 High-Speed Sorter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997). |
Brandt: Model 952 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989). |
Brandt: Model 954 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989). |
Brandt: Model 957 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989). |
Brandt: Model 958 Coin Sorter/Counter, 5 pages (CD1982). |
Brandt: Model 960 High-Speed Coin Sorter & Counter, 2 pages (1984). |
Brandt; Model 966 Microsort™ Coin Sorter and Counter, 4 pages, (1979). |
Brandt: Model 970 Coin Sorter and Counter, 2 pages (1983). |
Brandt: Model 1205 Coin Sorter Counter, 2 pages (1986). |
Brandt: Model 1400 Coin Sorter Counter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997). |
Brandt: Model 8904 Upfeed—“High Speed 4-Denomination Currency Dispenser,” 2 pages (1989). |
Brandt: Mach 7 High-Speed Coin Sorter/Counter, 2 pages (1992). |
Case ICC Limited: CDS Automated Receipt Giving Cash Deposit System, 3 pages (date unknown, prior to Nov. 15, 2000). |
Cash, Martin: Newspaper Article “Bank Blends New Technology With Service,” Winnipeg Free Press, 1 page (Sep. 4, 1992). |
Childers Corporation: Computerized Sorter/Counter, “To coin an old adage, time is money . . . ,” 3 pages (1981). |
CTcoin: CDS602 Cash Deposit System, 1 page (date unknown, prior to Jan. 15, 2001). |
Cummins: Cash Information and Settlement Systems (Form 023-1408), 4 pages (date Dec. 1991). |
Cummins: The Universal Solution To All Coin and Currency Processing Needs (Form 13C1218 3-83), 1 page (Mar. 1983). |
Cummins: JetSort® High Speed Sorter/Counter Kits Kits I & J—Operating Instructions (Form 022-7123-00) 12 pages (1994). |
Cummins: JetSort® Coin Sorter Counter/CA-130XL Coin Wrapper, Cummins Automated Money Systems (AMS) Case Study—Fifth-Third, “6,000 Coin Per Minute Counter/ Sorter Keeps pace With Fifth-Third Bank's Money Processing Needs,” (Form 13C1180), 2 pages (Nov. 1981) |
Cummins: JetSort®, “Venders Love JetSort,” (13C1255), 1 page (Mar. 1987). |
Cummins: JetSort® “High Speed CoinSorter & Counter for Payphone Applications,” “CTOCS Ready” (Form 023-1365), 2 pages (Mar. 1989). |
Cummins: JetSort® mailer, “One moving part simplicity,” “Vendors—Are validators changing your coin and currency needs?” (Form 023-1297), 3 pages (Apr. 1987). |
Cummins: JetSort® Series V High SpeedCoin Sorter/Counter, (Form 023-1383), 2 pages (Sep. 1990). |
Cummins: JetSort® “Time for a Change, Be a smashing success!,” (Form 023-1328), 1 page (Jun. 1988). |
Cummins: JetSort® “Time for a Change—JetSort® vs. Brandt X,” (Form 023-1330), 1 page (Jun. 1988). |
Cummins: JetSort® “Time for a Change—No Coins Sorted After 3:00 or on Saturday,” (Form 023-1327), 1 page (Aug. 1988). |
Cummins: JetSort®, “What do all these Banks have in Common . . . ?”, JetSort, CA-130XL coin wrapper, CA-118 coin wrapper, CA-4000 JetCount, (13C1203), 3 pages (Aug. 1982) |
Cummins: JetSort® 700-01/CA-118 Coin Wrapper, Cummins Automated Money Systems (AMS) Case Study—University State Bank, “Cummins Money Processing System Boosts Teller Service at University State Bank,” (Form 13C1192), 2 pages (Mar. 1982) |
Cumrnins: JetSort® 700-01, Cummins Automated Money Systems (AMS) Case Study—First State Bank of Oregon, “JetSort® Gives Bank Coin Service Edge,” (Form 13C1196), 2 pages (Apr. 1982). |
Cummins: JetSort® 700-01 Coin Sorter/Counter, Operating Instructions, 14 pages (1982). |
Cummins: JetSort® 701, Cummins Automated Money Systems (AMS) Case Study—Conveneo Vending, “High Speed Coin Sorter increases coin processing power at Conveneo Vending,” (Form 13C1226), 2 pages (Jul. 1983). |
Cummins: JetSort Models 701 and 750 , “State-of-the-art coin processing comes of age,” 2 pages (Feb. 1984). |
Cummins: JetSort® Model CA-750 Coin Processor (Item No. 50-152), 1 page (Jul. 1984). |
Cummins: JetSort® Model CA-750 Coin Sorter/Counter and CA-4050 JetCount currency counter, “Money Processing Made Easy,” (Form 13C1221) 2 pages (Jun. 1983). |
Cummins: JetSort® Model 1701 with JetStops, Operating Instructions Manual (Form 022-1329-00), 16 pages (1984). |
Cummins: JetSort® Model 1760 brochure, (Form 023-1262-00), 2 pages (Jul. 1985). |
Cummins: JetSort® Models 1770 and 3000, Communication Package specification and operating instructions, 10 pages (uncertain, possibly Nov. 1985). |
Cummins: JetSort® Model 1770, “JetSort® Speed and Accuracy, Now with Communications!”, (Form 023-1272) 1 page (Oct. 1986). |
Cummins: JetSort® 2000 861165 High Speed Coin Sorter/Counter (Form 023-1488), 2 pages (Oct. 2000). |
Cummins: JetSort® 3000 Series High Speed Coin Sorter (Form 023-1468 Rev 1), 2 pages (Feb. 1995). |
Cummins: JetSort® 3000 Series Options, “Talking JetSort 3000,” (Form 023-1338-00), 1 page (between Feb. 1989-Feb. 1989). |
Cummins: JetSort® 3000, “3,000 Coins per Minute!,” (Form 023-1312), 1 page (date unknown, est. 1987). |
Cummins: JetSort® 3200, Enhanced electronics for the JetSort® 3200 (Form 023-1350), 1 page (Apr. 1987). |
De La Rue: CDS 500 Cash Deponier System, 6 pages (date unknown, p. 5 has date May 1994, p. 6 has date Dec. 1992) (German). |
De La Rue: CDS 5700 and CDS 5800 Cash Deponier System (German) and translation, 7 pages (date unknown, prior to Aug. 13, 1996). |
Diebold: Merchant MicroBranch, “Merchant MicroBranch Combines ATM After-Hour Depository Rolled-Coin Dispenser,” Bank Technology News, 1 page (Nov. 1997). |
Fa. GBS-Geldbearbeitungssysteme: GBS9401SB Technical Specification, 24 pages (date unknown, prior to Nov. 10, 2010). |
Frisco Bay: Commercial Kiosk, “Provide self-service solutions for your business customers,” 4 pages (date unknown, prior to Mar. 2, 2011, p. 4 has date 1996). |
Glory: AMT Automated Merchant Teller, 4 pages (date unknown, prior to Jan. 15, 2001). |
Glory: CRS-8000 Cash Redemption System, 2 pages (1996). |
Hamilton: Hamilton's Express Banking Center, In Less Space Than a Branch Manager's Desk, 4 pages.(date unknown, prior to Jan. 15, 2001). |
Intellectual Australia Pty. Ltd.: Microbank, “From down under: Microbank,” “hand-held smart card terminal that combines smart card functions and telephone banking,” 2 pages (Feb. 1996). |
ISH Electronic: ISH 12005/500 Coin Counter (with translation), 4 pages (date unknown, prior to Aug. 1996). |
ISH Electronic: ISH 12005/501 Self-Service Unit (with translation), 4 pages (date unknown, prior to Aug. 1996). |
Namsys, Inc.: Namsys Express, Making currency management . . . more profitable, 2 pages (date unknown, prior to Jan. 15, 2001). |
NGZ Geldzahlmaschinengesellschaft: NGZ 2100 Automated Coin Depository, 4 pages (date unknown, prior to Sep. 1996). |
Perconta: Contomat Coin Settlement Machine for Customer Self Service, 2 pages (date unknown, prior to Apr. 2003). |
Prema GmbH: Prema 405 (RE) Self Service Coin Deposit Facility, 2 pages (date unknown, prior to Apr. 2003). |
Reis Eurosystems: CRS 6501/CRS 6510 Cash Receipt Systems for Self-Service Area, 3 pages (date unknown, prior to Aug. 13, 1996, maybe Feb. 1995). |
Reis Eurosystems: CRS 6520/ CRS 6525 Standard-Class Coin Deposit Systems, 1 page (date unknown, to prior to Apr. 2003). |
Reis Eurosystems: CS 3510 Disc-Sorter, 1 page (date unknown, prior to Apr. 2003). |
Royal Bank: Hemeon, Jade, “Royal's Burlington drive-in bank provides customers 24-hour tellers,” The Toronto Star, 1 page (Aug. 21, 1991). |
Royal Bank: Leitch, Carolyn, “High-Tech Bank Counts Coins,” The Globe and Mail, 2 pages (Sep. 19, 1991). |
Royal Bank: Oxby, Murray, “Royal Bank Opens ‘Super Branch,’” The Gazette Montreal, 2 pages (Sep. 14, 1991). |
Royal Bank: SuperBranch, “Experience the Ultimate in Convenience Banking,” 2 pages (Feb. 1992). |
Scan Coin: International Report, 49 pages (Apr. 1987). |
Scan Coin: Money Processing Systems, 8 pages (date unknown, prior to Apr. 2003). |
Scan Coin: World, 2 pages (Feb. 1988). |
Scan Coin: CDS Cash Deposit System, 6 pages (date unknown, prior to Apr. 2003) [SC 0369]. |
Scan Coin: CDS Coin Deposit System—Technical Referens Manual, 47 pages (1989). |
Scan Coin: CDS 600 User's Manual, 14 pages (date unknown, prior to Apr. 2003). |
Scan Coin: CDS 600 & CDS 640 Cash Deposit System—Technical Manual, 45 pages (date unknown, prior to Apr. 2003). |
Scan Coin: CDS MK 1 Coin Deposit System—Technical Manual, 32 pages (1991). |
Scan Coin: SC 102 Value Counter Technical Manual, 28 pages (date unknown, prior to Apr. 2003). |
Pay by Touch: Secure ID News, “Piggly Wiggly Extends Biometric Payments Throughout the Southeast U.S.,” 2 pages, (Dec. 14, 2005). |
ESD, Inc: Smartrac Card System, “Coinless laundry makes quarters obsolete; Smartrac Card System really makes a change in laundry industry,” Business Wire, 2 pages (Feb. 23, 1996). |
Meece, Mickey: Article “Development Bank of Singapore Gets Cobranding Edge with Smart Cards,” American Banker, New York, NY, vol. 159, Iss. 195, p. 37, 2 pages (Oct. 10, 1994). |
Scan Coin: Coin Sachet System brochure, 4 pages (last page marked “© Scan Coin / Jun. 2007”). |
Number | Date | Country | |
---|---|---|---|
62078245 | Nov 2014 | US |