Systems, methods and devices for prosthetic heart valve with single valve leaflet

Information

  • Patent Grant
  • 12029647
  • Patent Number
    12,029,647
  • Date Filed
    Tuesday, March 6, 2018
    6 years ago
  • Date Issued
    Tuesday, July 9, 2024
    4 months ago
Abstract
Devices and methods for supplementing and/or replacing native cardiac valve functionality, e.g., the mitral valve with a single prosthetic leaflet. An exemplary device is directed to dysfunctional mitral valves. In some cases, the entire device, including the single prosthetic leaflet, will be arranged entirely above the dysfunctional mitral valves and, therefore, disposed entirely within the left atrium. In other cases, the valve support and/or single prosthetic leaflet may extend a distance into the annulus between the left atrium and left ventricle. In some cases, the device will not physically interact with the native leaflets. In other cases, the device may physically interact with the native leaflets.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable


INCORPORATION BY REFERENCE

All references, including but not limited to publications, patent applications and patents mentioned in this specification are hereby incorporated by reference to the same extent and with the same effect as if each reference was specifically and individually indicated to be incorporated by reference.


BACKGROUND OF THE INVENTION
Field of the Invention

The invention relates to supplementing and/or replacing native heart valve leaflet function.


Description of the Related Art

The human heart comprises four chambers and four heart valves that assist in the forward (antegrade) flow of blood through the heart. The chambers include the left atrium, left ventricle, right atrium and left ventricle. The four heart valves include the mitral valve, the tricuspid valve, the aortic valve and the pulmonary valve.


The mitral valve is located between the left atrium and left ventricle and helps control the flow of blood from the left atrium to the left ventricle by acting as a one-way valve to prevent backflow into the left atrium. Similarly, the tricuspid valve is located between the right atrium and the right ventricle, while the aortic valve and the pulmonary valve are semilunar valves located in arteries flowing blood away from the heart. The valves are all one-way valves, with leaflets that open to allow forward (antegrade) blood flow. The normally functioning valve leaflets close under the pressure exerted by reverse blood to prevent backflow (retrograde) of the blood into the chamber it just flowed out of.


Native heart valves may be, or become, dysfunctional for a variety of reasons and/or conditions including but not limited to disease, trauma, congenital malformations, and aging. These types of conditions may cause the valve structure to either fail to properly open (stenotic failure) and/or fail to close properly (regurgitant).


Mitral valve regurgitation is a specific problem resulting from a dysfunctional mitral valve. Mitral regurgitation results from the mitral valve allowing at least some retrograde blood flow back into the left atrium from the left ventricle. This backflow of blood places a burden on the left ventricle with a volume load that may lead to a series of left ventricular compensatory adaptations and adjustments, including remodeling of the ventricular chamber size and shape, that vary considerably during the prolonged clinical course of mitral regurgitation.


A similar problem may occur when the tricuspid valve weakens or begins to fail. The tricuspid valve separates the right atrium and right ventricle. Tricuspid regurgitation, also known as tricuspid insufficiency, occurs when the tricuspid valve doesn't properly close, causing blood to flow back up into the right atrium when the right ventricle contracts. Various embodiments of the present invention discussed herein may apply to mitral valve and/or tricuspid valve regurgitation.


Native heart valves generally, e.g., mitral valves, therefore, may require functional repair and/or assistance, including a partial or complete replacement. Such intervention may take several forms including open heart surgery or open heart implantation of a replacement heart valve. See e.g., U.S. Pat. No. 4,106,129 (Carpentier), for a procedure that is highly invasive, fraught with patient risks, and requiring not only an extended hospitalization but also a highly painful recovery period.


Less invasive methods and devices for replacing a dysfunctional heart valve are also known and involve percutaneous access and catheter-facilitated delivery of the replacement valve. Most of these solutions involve a replacement heart valve attached to a structural support such as a stent, commonly known in the art, or other form of wire network designed to expand upon release from a delivery catheter. See, e.g., U.S. Pat. No. 3,657,744 (Ersek); U.S. Pat. No. 5,411,552 (Andersen). The self-expansion variants of the supporting stent assist in positioning the valve, and holding the expanded device in position, within the subject heart chamber or vessel. This self-expanded form also presents problems when, as is often the case, the device is not properly positioned in the first positioning attempt and, therefore, must be recaptured and positionally adjusted. This recapturing process in the case of a fully, or even partially, expanded device requires re-collapsing the device to a point that allows the operator to retract the collapsed device back into a delivery sheath or catheter, adjust the inbound position for the device and then re-expand to the proper position by redeploying the positionally adjusted device distally out of the delivery sheath or catheter. Collapsing the already expanded device is difficult because the expanded stent or wire network is generally designed to achieve the expanded state which also resists contractive or collapsing forces.


Besides the open heart surgical approach discussed above, gaining access to the valve of interest is achieved percutaneously via one of at least the following known access and delivery routes: femoral access, venous access, trans-apical, trans-aortic, trans-septal, trans-atrial, retrograde from the aorta delivery techniques.


Generally, the art is focused on systems and methods that, using one of the above-described known access routes, allow a partial delivery of the collapsed valve device, wherein one end of the device is released from a delivery sheath or catheter and expanded for an initial positioning followed by full release and expansion when proper positioning is achieved. See, e.g., U.S. Pat. No. 8,852,271 (Murray, III); U.S. Pat. No. 8,747,459 (Nguyen); U.S. Pat. No. 8,814,931 (Wang); U.S. Pat. No. 9,402,720 (Richter); U.S. Pat. No. 8,986,372 (Murray, III); and U.S. Pat. No. 9,277,991 (Salahieh); and U.S. Pat. Pub. Nos. 2015/0272731 (Racchini); and 2016/0235531 (Ciobanu).


However, known delivery systems, devices and methods still suffer from significant flaws in delivery methodology including, inter alia, positioning and recapture capability and efficiency.


In addition, known “replacement” heart valves are intended for full replacement of the native heart valve. Therefore, these replacement heart valves physically engage the annular throat and/or valve leaflets, thereby eliminating all remaining functionality of the native valve and making the patient completely reliant on the replacement valve. Generally speaking, it is a preferred solution that maintains and/or retains the native function of a heart valve, thus supplementation of the valve is preferred rather than full replacement. Obviously, there will be cases when native valve has either lost virtually complete functionality before the interventional implantation procedure, or the native valve continues to lose functionality after the implantation procedure. The preferred solution is delivery and implantation of a valve device that will function both as an adjunctive and/or supplementary functional valve as well as be fully capable of replacing the native function of a valve that has lost most or all of its functionality. However, the inventive solutions described infra will apply generally to all types and forms of heart valve devices, unless otherwise specified.


Further, known solutions for, e.g., the mitral valve replacement systems, devices and methods require 2-chamber solutions, i.e., there is involvement and engagement of the implanted replacement valve device in the left atrium and the left ventricle. Generally, these solutions include a radially expanding stent in the left atrium, with anchoring or tethering (disposed downward through the native annulus or annular throat) connected from the stent device down through the annular throat, with the sub-annular surface within the left ventricle, the left ventricular chordae tendineae and even into the left ventricle wall surface(s). See, e.g., the MitraClip® marketed by the Abbott Group and currently the only US approved repair device. With the MitraClip® a catheter containing the MitraClip® is inserted into the femoral vein. The device enters the heart through the inferior vena cava to the right atrium and delivered trans-septally. The MitraClip® passes through the annulus into the left ventricle and sits below the leaflets, clipping the leaflets to decrease regurgitation.


Such 2-chamber and native annular solutions are unnecessary bulky and therefore more difficult to deliver and to position/recapture/reposition from a strictly structural perspective. Further, the 2-chamber solutions present difficulties in terms of making the ventricular anchoring and/or tethering connections required to hold position. Moreover, these solutions interfere with the native valve functionality as described above because the device portions that are disposed within the left ventricle must be routed through the native annulus and/or annular throat and native mitral valve, thereby disrupting any remaining coaptation capability of the native leaflets. In addition, the 2-chamber solutions generally require an invasive anchoring of some of the native tissue, resulting in unnecessary trauma and potential complication.


It will be further recognized that the 2-chamber mitral valve solutions require sub-annular and/or ventricular engagement with anchors, tethers and the like precisely because the atrial portion of the device fails to adequately anchor itself to the atrial chamber and/or upper portion of the annulus. Again, some of the embodiments, or portions thereof, described herein are readily applicable to single or 2-chamber solutions, unless otherwise indicated.


Finally, known prosthetic cardiac valves consist of two or three leaflets that are arranged to act as a one-way valve, permitting fluid flow therethrough in the antegrade direction while preventing retrograde flow. The mitral valve is located retrosternally at the fourth costal cartilage, consisting of an anterior and posterior leaflet, chordae tendinae, papillary muscles, ventricular wall and annulus connected to the atria. Each leaflet is supported by chordae tendinae that are attached to papillary muscles which become taut with each ventricular contraction preserving valvular competence. Both the anterior and posterior leaflets of the valve are attached via primary, secondary and tertiary chordae to both the antero-lateral and posterio-medial papillary muscles. A disruption in either papillary muscle in the setting of myocardial injury, can result in dysfunction of either the anterior or posterior leaflet of the mitral valve. Other mechanisms may result in failure of one, or both of the mitral leaflets. In the case of a single leaflet failure, the regurgitation may take the form of a non-central, eccentric jet of blood back into the left atrium. Other leaflet failures may comprise a more centralized regurgitation jet. Known prosthetic valve replacements generally comprise leaflets which are arranged to mimic the native valve structure, which may over time become susceptible to similar regurgitation outcomes.


Various embodiments of the present invention address these, inter alia, issues.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1A illustrates a side view of one embodiment of the present invention.



FIG. 1B illustrates a bottom cutaway view of one embodiment of the present invention.



FIG. 2A illustrates a cutaway bottom view of one embodiment of the present invention.



FIG. 2B illustrates a cutaway bottom view of one embodiment of the present invention.



FIG. 2C illustrates a cutaway bottom view of one embodiment of the present invention.



FIG. 3 illustrates a side view of one embodiment of the present invention.



FIG. 4 illustrates a side view of one embodiment of the present invention.



FIG. 5 illustrates a side view of one embodiment of the present invention.



FIG. 6 illustrates a side view of one embodiment of the present invention.



FIG. 7 illustrates a side view of one embodiment of the present invention.



FIG. 8 illustrates a bottom perspective view of one embodiment of the present invention.



FIG. 9 illustrates a bottom view of one embodiment of the present invention.



FIG. 10 illustrates a side view of one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1A and 1B provides an exemplary expanded prosthetic valve device 100 adapted for implantation within a heart chamber, e.g., the left atrium. An anchoring portion 102 is shown with a wire, e.g., a stent, construction that may be open, or at least partially open, when expanded within an exemplary left atrium. Anchoring portion 102 may be hollow and may provide a flow channel, shown in dashed lines at 103 in FIG. 1A, therethrough for blood flowing into the open wire construction of the anchoring portion 102 from the left pulmonary veins L into the left atrium where the device 100 is expanded and positioned for implantation. A lower section of anchoring portion 102, that is the section of the anchoring portion 102 that is located below the incoming blood flow points at the left pulmonary veins L, may be covered by fabric and/or tissue, either on the luminal side, the abluminal side, or on both the luminal and abluminal sides of the anchoring portion 102 to help channel the incoming blood flow into the flow channel 103 and to prevent paravalvular leakage.


The flow channel in FIGS. 1A and 1B terminates at a lower edge 104 of the anchoring portion with an exemplary prosthetic leaflet 106 hingedly attached thereto. As seen in FIG. 1B, the lower edge 104 may comprise a generally circular profile, though other shapes are within the scope of the present invention. Particularly, the undeformed expanded profile of the anchoring portion 102 and, in some cases, of the lower edge 104, may differ from a deformed expanded profile of anchoring portion 102 and lower edge 104 when the device 100 expands against atrial walls and the upper surface of the annulus. The embodiment illustrated in FIG. 1B comprises a single support wire, though a thicker configuration, e.g., a sewing ring, may also be provided. As the skilled artisan will readily recognize, lower edge 104 comprises a structure that allows a hinged or flexing connection with the single prosthetic leaflet 106.


As shown in FIGS. 2A and 2B, a single prosthetic leaflet 106 may comprise a perimeter 108 and a leaflet attachment zone 110 located along a portion of the perimeter 108. Thus, leaflet 106 may be connected with the lower edge 104 of the anchoring structure 102 or may be a separate structure that is attached or connected with the lower edge 104 of anchoring portion 102. Perimeter 108 in these leaflets 106 comprise a width, and in some cases a thickness, that may be formed of a material that differs from the material of the inner region 105 to facilitate attachment to the lower edge 104 of anchoring portion 102. In some embodiments, leaflet 106 may comprise a single material throughout as in FIG. 2C, wherein the perimeter 108 (shown in dashed lines) may comprise the same material as the inner region 105, though perimeter 108 may comprise a reinforced, e.g., double layer or folded layer of material.


In addition, the leaflet 106 may comprise a circular or a geometric, e.g., hexagonal, outer profile, see e.g. FIGS. 2A and 2B. These are simply exemplary shapes, all other shapes are within the scope of the present invention, so long as the leaflet 106 covers the opening defined by the lower edge 104 of the anchoring portion 102. Accordingly, lower edge 104 may be shaped with a variety of shapes, e.g., circular, semi-circular, when either expanded and deformed or expanded and undeformed. Any shape for lower edge 104 of the anchoring portion 102 is within the scope of the present invention, so long as the leaflet 106 is sized and shaped to cover the opening defined by lower edge 104.


The attachment mechanism between the valve leaflet 106 and support structure's leaflet attachment zone 110 may be seen with exemplary connection methods, and leaflet 106 structures, in FIGS. 2A-2C. FIG. 2 illustrates a series of connecting points which may be sutures or some other equivalent connective structure and that covers part of the outer surface of an exemplary circular valve leaflet such that the valve leaflet may swing open and closed using the connecting points as a hinge point. FIG. 3 illustrates an exemplary hexagonal valve leaflet with a series of connecting points within a leaflet attachment zone along one side of the hexagonal valve leaflet. Other shapes besides the circular and hexagonal valve leaflets shown here, e.g., oval, square, rectangle, pentagon, octagon, polygon, etc., are now readily recognized by the skilled artisan and within the scope of the present invention. Moreover, the connecting points within the leaflet attachment zone 110 may comprise a structure that consists of one or more unbroken connectors, including but not limited to adhesive or gluing, continuous stitching, integrally forming the valve leaflet 106 with the anchoring structure 102, preferably with the lower edge 104 thereof, and/or clamping the valve along the leaflet attachment zone 110 to the anchoring structure, again preferably with the lower edge 104 thereof.


The prosthetic valve leaflet 106 thus acts like a hinged door in that it may rotate or swing between a closed position and an open position relative to the lower edge 104 of anchoring portion 102 with a portion of the leaflet 106 secured to a portion of the lower edge 104 of the anchoring portion 102 along the leaflet attachment zone 110 by, e.g., a plurality of sutures or the equivalent.


The closed position results in a temporary engagement and sealing of an outer portion of the upper surface of the valve leaflet against the bottom surface of the lower edge 104 of the structure 102, the prosthetic valve leaflet 106 being of a size and shape to cover the opening defined by lower edge 104 of anchoring portion 102, thereby preventing retrograde blood flow therethrough. The open position disengages the upper surface of the valve leaflet 106 from the bottom surface of the lower edge 104 to allow blood to flow therethrough.


A preferred positioning within the left atrium may comprise positioning at least a portion of the bottom surface of the anchoring structure 102 on at least a portion of the upper annular surface of the left atrium as in FIG. 1A. However, in other embodiments, the prosthetic leaflet 106 may be positioned above, or spaced away from, the native valve leaflets so that physical interference does not occur between the prosthetic valve leaflet 106 and the native leaflets and to maintain the remaining functionality of the native leaflets. In this case, device 100 will function to supplement the native leaflet functionality and, if and when needed, will begin to take over progressively more functionality as the native leaflets deteriorate. Eventually, the device 100 will function to replace all, or virtually all of the native leaflet functionality. The result is a device 100 that adapts to progressively assume the functionality of the native leaflets as they deteriorate, from supplementation through full replacement.


Thus, in certain embodiments, the valve leaflet 106 may be elevated or spaced above the native annular surface so that at least a portion of the valve leaflet 106 in the opened position is also elevated or spaced above at least the upper annular surface. In other cases at least a portion of the valve leaflet 106 in the open position may be disposed above the native valve leaflets so as to not physically interfere with them, or minimize physical interaction therewith. In these embodiments, the prosthetic leaflet may serve at least a supplementary function to the native leaflet function.


In other cases, a support for the prosthetic leaflet may be disposed within the native annulus or annular throat, effectively pinning the native leaflets and requiring the inventive valve leaflet to completely replace the native leaflet function.


In the embodiments with the support structure and valve leaflets are elevated or spaced above at least the native leaflets and/or the upper annular surface, the prosthetic leaflet will open in response to increased fluid pressure in the left atrium and allow blood to flow down to the spaced away native leaflets which also open, enabling blood flow to the left ventricle. The native leaflets will then close to the extent possible in response to increased fluid pressure in the left ventricle and, in response to the regurgitation pressure in the space between the native leaflets and the prosthetic leaflet, the prosthetic leaflet will then close, preventing retrograde blood flow into the left atrium.


In the event of eventual complete native leaflet failure, the prosthetic leaflet will completely handle and manage the blood flow between the left atrium and ventricle.


It is part of the present invention to orient the prosthetic leaflet 106 opening and leaflet attachment zone 110 to optimize the supplemental and/or replacement function, for example and without limitation in the case where a single native leaflet is dysfunctional and a result is an eccentric, non-central regurgitation jet. The new valve leaflet 106 may be oriented, e.g., so that the eccentric regurgitation jet is focused at the bottom surface of a distal end (away from the leaflet attachment zone 110) of the valve leaflet 106, in the middle of the valve leaflet (as measured relative to the distal end and the leaflet attachment zone 110), or closer to the leaflet attachment zone 110, or at points between the distal end and midpoint, or between the midpoint and the leaflet attachment zone 110 in order to maximize closure efficiency of the prosthetic leaflet 106.


In addition, the exit flow direction and/or position may be affected by the positioning/orientation of the leaflet attachment zone 110 as well as the degree to which the valve leaflet 106 is allowed to open, so as to direct the blood flow to an optimal location on the native valve leaflets. A fully opened prosthetic valve leaflet 106 may comprise opening to a position that is approximately 90 degrees from its closed position. Opening positions for the prosthetic valve leaflet 106 of less than 90 degrees from the closed position will channel the blood flow in a direction along the length of the opened leaflet 106 toward a target on the native leaflets. Thus, as seen in FIG. 1A, leaflet 106 may be fully opened to approximately a 45 degree angle relative to its closed position against lower edge 104 of the anchoring structure 102. This configuration will direct the incoming blood flow 103 generally along the same direction as the open position of the leaflet 106. Therefore, not only is the opening angle of the leaflet 106 important, but so is the orientation of the anchoring structure 102 on expansion which will dictate the location of the leaflet attachment zone 110 which, in turn, dictates the location of the opening leaflet 106 and resultant blood flow therealong. Another variable relative to locating the blood flow along the opened leaflet 106 is the distance of the distal end of the opened leaflet 106 from the target region in the native leaflets. It will be obvious now that, in order to optimize delivery location targeting of the blood flow moving across the opened leaflet 106, that the following parameters will require systemic optimization: the maximum opened angle at the open position for the prosthetic valve leaflet 106; the orientation of the distal end of the prosthetic valve leaflet 106 when the device 100 is expanded; and the distance, height or spacing of the distal end of the prosthetic valve leaflet 106 from the targeted location on the native valve leaflets. Optimization of this system allows consistent targeting of an area of the native valve leaflets for the blood flow moving through the prosthetic valve device 100.



FIG. 3 illustrates an alternate embodiment for a prosthetic valve device 200 that is similar to the prosthetic valve device 100 discussed above in certain respects. Accordingly, the anchoring structure 202 has the same or similar features and characteristics as the anchoring structure 102 of device 100, e.g., a collapsible and expandable structure that may comprise a stent-like structure with open cells.


The valve support structure 204, as illustrated in FIG. 3 comprises two basic elements arranged on opposing sides of a lower opening 201 defined by the anchoring structure 202. A first fixed base side 212 that may be more stiff than, or of similar stiffness to, the structure comprising the dome and extends a distance D away from the lower opening 201 and may comprise an expanded and collapsed configurations. Positioned across the lower opening 201 from the first fixed base side 212 of valve support 204 is a moveable, rotatable valve member 214 that is connected to, or operatively engaged with, or attached to, or integrally formed with, a second fixed base side 216 that may be of similar stiffness, or different stiffness, as the first fixed base side 212 and may also comprise expanded and collapsed configurations. The rotatable valve member 214 may be formed of a tissue or fabric that is less stiff than the second fixed base side 216 and may comprise sizes and shapes as describe above regarding the prosthetic valve of FIG. 1A.


In either case, there may be a region or point of flexion 218 comprising a decreased stiffness and/or increased flexibility that allows the rotatable valve 214 to move upward to engage the first fixed base side 212 when the valve 214 is in a closed position and to move downward away from the first fixed base side 212 when the valve member 214 is in an open position. Fluid flow force generated by blood flow from the left atrium will be sufficient to push the rotatable valve member 214 to an open position as shown in FIG. 4, thereby enabling fluid communication of the atrial blood with the left ventricle. When the atrial to ventricular blood flow is complete and regurgitation forces are present, those forces cause the valve member 214 to rotate up and close against the first fixed base side 212, preventing regurgitant blood from flowing into the interior of the anchoring structure 202.


In a preferred embodiment, the rotatable valve member 214 may be biased in the closed position, pressed with a predetermined amount of biasing force against the first fixed base side 212, so that the closed position for valve member 214 is the biased position. This requires that the blood flow from the atrium exert sufficient force to overcome the biasing force of the valve member 214 against first fixed base side 212 to cause the valve member 214 to rotate into an open position. The valve member 214 may, when closed and as shown, overlap with the inner edge of the first fixed base side 212, so that the upper (upstream) side U of valve member 214 engages the inner edge I of the first fixed base side 212 in the closed position. Alternatively, the distal end 220 of valve member 214 may fit against the distal end 220 of the first base fixed side 212 to provide a generally sealed closure.


The device of FIG. 3 may be positioned within the left atrium so that the first and second sides of the base 212, 216 rest upon the upper annular surface with the prosthetic rotatable leaflet 214 positioned over the annulus as in FIG. 4 so that the distal end 220 of leaflet 214 may extend into the annulus when in an open position. Alternatively, the distance D of extension of the first and second sides of the base 212, 216 may be used to locate and/or position the device 200 slightly within the annulus, with the first and second sides 212, 216 of the base extending downward (downstream) into the annulus as in FIG. 5.


As described in connection with device 100 above, the location of blood flow through device 200 and across rotatable leaflet 214 may be optimized as a system by configuring the degree of angle of maximum opening for leaflet 214, the rotational location of the leaflet 214, specifically the end of the leaflet located away from the point of flexion 218, and the distance or spacing of the end of the leaflet located furthermost from the point of flexion 218 when opened in the open position, i.e., maximum degree of opening. In addition, system elements that may be optimized for locating the blood flow onto native leaflets comprise the distance of extension of the first base side 212 over the annulus. In some cases, the first base side 212 may not extend over the annulus, instead the distal end 222 of the first base side 212 may be coextensive with an edge of the annulus, see e.g., FIG. 4. In other cases, the distal end 222 of the first base side 212 may extend a distance beyond the annular edge and, therefore, over the annulus the same distance.


Further, a modified embodiment of the device 200 of FIG. 3 may locate the prosthetic rotatable leaflet 214 at a position that is located above the native annular surface, i.e., in a super annular position, that does not result in any physical touching of the native valve leaflets. Thus, as shown in FIG. 6, device 300 comprises an anchoring support 302 and a valve support 330. The valve support comprises an inflow end 332 and an outflow end 334 and defines a flow channel therebetween. A first base side 336 may be attached along the flow channel of the valve support 330 and a prosthetic leaflet 338 attached at a position along the flow channel of the valve support 330 that enables engagement of the first base side 336 by the prosthetic leaflet 338 when in a closed position. Thus, the prosthetic leaflet 338 and first base side 336 may be positioned and spaced above the upper annular surface at exemplary position A, though it is understood that the prosthetic leaflet 338 and first base side 336 may be positioned at any point along the flow channel of the valve support 330. Stated differently, the prosthetic leaflet 338 and first base side 336 may be positioned at any point between the inflow and outflow ends 332, 334 of the valve support 330 including, but not limited to, a location that is coplanar with the upper annular surface.


It is understood that first base side 336 may comprise a very small lip structure to stop the upward rotation of the valve 338 and achieve the closed position to prevent regurgitation. The lip structure may surround valve support 338 to form a temporary seal between lip structure/first base side 336 and the closed prosthetic leaflet 338.


Valve support 330 may be a cylindrical structure as illustrated or may comprise a section of a cone, with increasing distance between the cone sides moving from the inflow end to the outflow end of the valve support 330. Alternatively, the valve support 330 may comprise a conical section with decreasing distance between the cone sides moving from the inflow end 332 to the outflow end 334 of the valve support 330. Other configurations for the valve support 330 may present themselves to the skilled artisan, each being within the scope of the present invention.


Alternatively, as in FIG. 7, the valve support 330, prosthetic leaflet 338 and fixed first side 336 may be positioned as extended downstream into the native annulus as indicated by position B. The length of extension of the valve support 330 relative to the lower opening of the anchoring structure 302 into the native annulus, dictates the position of the prosthetic valve leaflet 338 relative to the native leaflets. In some embodiments, the valve support 330 terminates at a point above the native leaflets, while in other cases the valve support 330 may extend to and perhaps beyond the native leaflets within the annulus, thereby pinning the native leaflets against the annulus. In all cases, the location of the prosthetic leaflet 338 and fixed first side 336 may be positioned at any point within the valve support 330 between the inflow end 332 and the outflow end 334.


Valve support 330 in FIGS. 6 and 7 may comprise a separate structure that is mechanically connected with the lower opening of the anchoring structure 302.


Alternatively, and preferably, the anchoring structure 302 comprises an expandable and collapsible transition section 340 whereby the anchoring structure turns radially inwardly to form the valve support 330. In this latter case, the valve support 330, transition section 340, and anchoring structure 302 comprise a unitary structure that may comprise different characteristics in each of the valve support 330, transition section 340 and anchoring structure 302. For example, stent cell sizes and/or arrangements may differ between the afore-mentioned device elements 330, 340 and/or 302. But, in this embodiment, the unitary construction allows the device of FIG. 6, in some cases, to be turned inside out, by pulling the valve support 330 outwardly and radially away from the anchoring structure. For illustrative purposes, such a turned-out device when expanded would resemble that shown in FIG. 7. This capability is highly advantageous during transition of the collapsed device through a delivery catheter to the heart chamber as the collapsed turned-out device of, e.g., FIG. 7, comprises only two layers as opposed to the non-turned-out device of FIG. 6 which, in the region of the valve support 330 comprises four layers and is, therefore, two layers thicker.


In some cases, the device of FIG. 7 is desired in the expanded configuration to position the valve support 330 within the annulus. In other cases, the device of FIG. 6 is desired for positioning the valve support 330 radially within the anchoring support 302 and for allowing location of the prosthetic valve 338 at, or above, the annular surface.


If the device of FIG. 6 is turned-out as shown in FIG. 7 for example, to facilitate delivery, the device 300 will be reconfigured after release from the distal end of the delivery catheter by pulling the valve support 330 radially back into the anchoring support 302 interior space to achieve the structure of the exemplary device of FIG. 6.


Thus, in the unitary structure case, the embodiment of FIG. 6 comprises the inflow end 332 of the valve support 330 is located at a position that is radially within the interior of anchoring structure 302 and the transition section 340 forms the outflow end 334 of the valve support 302, wherein the inflow end 332 of valve support 330 is spaced radially inward and away from the transition section 340. In FIG. 7, the inflow end 332 of the valve support 330 is defined by and substantially coextensive with the transition section 340, with the outflow end 334 of the valve support 330 extending radially outwardly away from the transition section 340.


Turning now to FIGS. 8-10, a two-door valved device 400 is illustrated and comprising an anchoring section 402 similar to the device 100, 200, 300 described above. Valve support section 404 comprises a first valve flap 406 and a second valve flap 408 that open and close against a lower opening 410 defined by anchoring section 402 and adapted to hingedly engage first and second valve flaps 406, 408.


Each of the first and second valve flaps 406, 408 may comprise a relatively stiff or rigid outer frame 412 in the general shape of a half circle, or other curvilinear form, and comprise a material on the inner portion 414 of the outer frame, e.g., tissue or fabric or other material with a central straight or linear section 411 connecting the two ends of the half-circle-shaped outer frame 412. At least one flexion, or hinging, region 416 is provided to bias the first and second valve flaps 406, 408 in the closed position (as shown) and to allow opening of the first and second valve flaps 406, 408 when the biasing force is overcome by blood flow pressure force as described above.


In this embodiment, the first and second valve flaps 406, 408 may comprise a sealing engagement together at the central straight or linear section 411 of the outer frame 412. This may be a total or partial seal and may be supplemented by a biocompatible and flexible gasket or liner 420 on one or both of the central straight or linear section 411 of the outer frame 412 to ensure sealing when the flaps close together.


An alternate embodiment shown in FIG. 10 may comprise the first and second valve flaps 406, 408 comprising a sail feature 422 attached at one end to the first and second valve flaps 406, 408 and free to move at the opposing end and comprising material having a generally downwardly curving profile, when engaged by blood flow from below, may catch upwardly flowing fluid, similar to the way sails catching wind, to flex and aid in generating upward force to close the flaps 406, 408 more efficiently and quickly to prevent regurgitation.


Moreover, it is contemplated that any prosthetic valve devices described herein, including for example the anchoring portions as described herein, as well as the prosthetic valve leaflets or prosthetic valve flaps and/or valve support structures as described herein may comprise a releasable amount of a therapeutic agent thereon for localized application to the heart chamber tissue and/or to the native valves, annulus or other structure. Further, the therapeutic agent disposed in or on the prosthetic device may target blood vessels, bodily conduits, or specific organs contacted by the circulatory system to treat, and/or prevent, a bodily disorder and/or accelerate a desired bodily response, e.g., and without limitation endotheliazation.


For the purposes of the present invention, the following terms and definitions apply:


“Bodily disorder” refers to any condition that adversely affects the function of the body.


The term “treatment” includes prevention, reduction, delay, stabilization, and/or elimination of a bodily disorder, e.g., a failing cardiac valve or a vascular disorder. In certain embodiments, treatment comprises repairing damage cause by the bodily, e.g., valvular or vascular, disorder and/or intervention of same, including but not limited to mechanical intervention.


A “therapeutic agent” comprises any substance capable of exerting an effect including, but not limited to therapeutic, prophylactic or diagnostic. Thus, therapeutic agents may comprise anti-inflammatories, anti-infectives, analgesics, anti-proliferatives, and the like including but not limited to antirestenosis drugs and therapeutic agents that accelerate endothelial coverage and endotheliazation, including but certainly not limited to a therapy stent marketed by OrbusNeich™ that is designed to repair vessel injury and regenerate the endothelium, to foster vessel healing achieved by accelerating endothelial coverage and controlling neo-intimal proliferation with a combination of endothelial progenitor cell capture and a sirolimus drug elution.


Therapeutic agent as used and defined herein further comprises mammalian stem cells. Therapeutic agent as used herein further includes other drugs, genetic materials and biological materials. The genetic materials mean DNA or RNA, including, without limitation, of DNA/RNA encoding a useful protein, intended to be inserted into a human body including viral vectors and non-viral vectors. Viral vectors include adenoviruses, gutted adenoviruses, adeno-associated virus, retroviruses, alpha virus, lentiviruses, herpes simplex virus, ex vivo modified cells (e.g., stem cells, fibroblasts, myoblasts, satellite cells, pericytes, cardiomyocytes, skeletal myocytes, macrophage), replication competent viruses, and hybrid vectors. Non-viral vectors include artificial chromosomes and mini-chromosomes, plasmid DNA vectors, cationic polymers, graft copolymers, neutral polymers PVP, SP1017, lipids or lipoplexes, nanoparticles and microparticles with and without targeting sequences such as the protein transduction domain (PTD). The biological materials include cells, yeasts, bacteria, proteins, peptides, cytokines and hormones. Examples for peptides and proteins include growth factors (FGF, FGF-1, FGF-2, VEGF, Endotherial Mitogenic Growth Factors, and epidermal growth factors, transforming growth factor .alpha. and .beta., platelet derived endothelial growth factor, platelet derived growth factor, tumor necrosis factor .alpha., hepatocyte growth factor and insulin like growth factor), transcription factors, proteinkinases, CD inhibitors, thymidine kinase, and bone morphogenic proteins. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules.


Therapeutic agents further include cells that may be of human origin (autologous or allogeneic) or from an animal source (xenogeneic), genetically engineered, if desired, to deliver proteins of interest at the transplant site. Cells within the definition of therapeutic agents herein further include whole bone marrow, bone marrow derived mono-nuclear cells, progenitor cells (e.g., endothelial progenitor cells) stem cells (e.g., mesenchymal, hematopoietic, neuronal), pluripotent stem cells, fibroblasts, macrophage, and satellite cells.


Therapeutic agent also includes non-genetic substances, such as: anti-thrombogenic agents such as heparin, heparin derivatives, and urokinase; anti-proliferative agents such as enoxaprin, angiopeptin, or monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid, amlodipine and doxazosin; anti-inflammatory agents such as glucocorticoids, betamethasone, dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine; antineoplastic/antiproliferative/anti-miotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, methotrexate, azathioprine, adriamycin and mutamycin; endostatin, angiostatin and thymidine kinase inhibitors, taxol and its analogs or derivatives; anesthetic agents such as lidocaine, bupivacaine, and ropivacaine; anti-coagulants such as heparin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, dipyridamole, protamine, hirudin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides; vascular cell growth promoters such as growth factors, Vascular Endothelial Growth Factors, growth factor receptors, transcriptional activators, and translational promoters; vascular cell growth inhibitors such as antiproliferative agents, growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; cholesterol-lowering agents; vasodilating agents; and agents which interfere with endogenous vasoactive mechanisms; anti-oxidants, such as probucol; antibiotic agents, such as penicillin, cefoxitin, oxacillin, tobranycin angiogenic substances, such as acidic and basic fibroblast growth factors, estrogen including estradiol (E2), estriol (E3) and 17-Beta Estradiol; and drugs for heart failure, such as digoxin, beta-blockers, angiotensin-converting enzyme, inhibitors including captopril and enalopril. The biologically active material can be used with (a) biologically non-active material(s) including a solvent, a carrier or an excipient, such as sucrose acetate isobutyrate, ethanol, n-methyl pyrolidone, dimethyl sulfoxide, benzyl benzoate and benzyl acetate.


Further, “therapeutic agent” includes, in particular in a preferred therapeutic method of the present invention comprising the administration of at least one therapeutic agent to a procedurally traumatized, e.g., by an angioplasty or atherectomy procedure, mammalian vessel to inhibit restenosis. Preferably, the therapeutic agent is a cytoskeletal inhibitor or a smooth muscle inhibitor, including, for example, taxol and functional analogs, equivalents or derivatives thereof such as taxotere, paclitaxel, Abraxane™, Coroxane™ or a cytochalasin, such as cytochalasin B, cytochalasin C, cytochalasin A, cytochalasin D, or analogs or derivatives thereof.


Additional specific examples of “therapeutic agents” that may be applied to a bodily lumen using various embodiments of the present invention comprise, without limitation: L-Arginine; Adipose Cells; Genetically altered cells, e.g., seeding of autologous endothelial cells transfected with the beta-galactosidase gene upon an injured arterial surface; Erythromycin; Penicillin: Heparin; Aspirin; Hydrocortisone; Dexamethasone; Forskolin; GP IIb-IIIa inhibitors; Cyclohexane; Rho Kinase Inhibitors; Rapamycin; Histamine; Nitroglycerin; Vitamin E; Vitamin C; Stem Cells; Growth Hormones; Hirudin; Hirulog; Argatroban; Vapirprost; Prostacyclin; Dextran; Erythropoietin; Endothelial Growth Factor; Epidermal Growth Factor; Core Binding Factor A; Vascular Endothelial Growth Factor; Fibroblast Growth Factors; Thrombin; Thrombin inhibitor; and Glucosamine, among many other therapeutic substances.


The therapeutic agent delivery system of the present invention, i.e., the prosthetic valve device, may be used to apply the therapeutic agent to any surface of cardiac chambers, e.g., the left atrium, as well as cardiac chambers in fluid or operative communication with the left atrium, e.g., the left ventricle and/or annulus located therebetween. In addition, the delivery system may be used to deliver an effective amount of therapeutic agent(s) to a body lumen in fluid and/or operative communication with the left atrium and related circulatory system. Such body lumens include, inter alia, blood vessels, urinary tract, coronary vasculature, esophagus, trachea, colon, and biliary tract. The therapeutic agent(s) may be coated to some, or all, of the prosthetic valve device as in known in the art to enable a time-release of the therapeutic agent(s) to the target(s) within the patient's body and may be provided so as to enable administration and delivery of an effective dose of the therapeutic agent(s) to the target(s).


Delivery of the agent(s) may be achieved through pressured contact of the therapeutic agent(s) on or in the prosthetic valve device as it expands against the cardiac chamber when positioned, similar to a coated expandable intravascular balloon or stent. The therapeutic agent(s) will then diffuse into the tissue. Alternatively, the therapeutic agent(s) may be swept into the blood flow with delivery to other non-cardiac chamber targets, e.g., tissues, organs, lumens, etc., including but not limited to the dysfunctioning native valve structure including leaflets.


The description of the invention and its applications as set forth herein is illustrative and is not intended to limit the scope of the invention. Features of various embodiments may be combined with other embodiments within the contemplation of this invention. Variations and modifications of the embodiments disclosed herein are possible, and practical alternatives to and equivalents of the various elements of the embodiments would be understood to those of ordinary skill in the art upon study of this patent document. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.

Claims
  • 1. A prosthetic mitral valve device adapted to anchor within a left atrium of a heart for supplementing and/or replacing function of dysfunctional native mitral valve leaflets disposed within an annulus located between the left atrium and a left ventricle of the heart, the device comprising: an expandable anchoring structure defining a lower opening;a first base side comprising a lower surface and operatively engaged with the expandable anchoring structure at the lower opening; anda second base side operatively engaged with the expandable anchoring structure at the lower opening and comprising a single prosthetic leaflet comprising an upper surface; wherein: the upper surface of the single prosthetic leaflet is adapted to directly engage the lower surface of the first base side in a closed position to cover the lower opening to prevent retrograde blood flow, resulting from the dysfunctional native mitral valve leaflets, through the lower opening; andthe single prosthetic leaflet is adapted to rotate away from the first base side in an open position to allow blood to flow through the lower opening.
  • 2. The device of claim 1, wherein, when the device is anchored within the left atrium, the first base side and the second base side are positioned on an upper annular surface within the left atrium and the single prosthetic leaflet is positioned over the annulus.
  • 3. The device of claim 1, wherein the first base side and the second base side extend a distance away from the lower opening of the anchoring structure.
  • 4. The device of claim 3, wherein the first base side and the second base side are adapted to fit within the annulus.
  • 5. The device of claim 1, wherein the device, when anchored within the left atrium, is adapted to supplement function of dysfunctional native mitral valve leaflets.
  • 6. The device of claim 5, wherein the device does not physically interact with the native mitral valve leaflets.
  • 7. The device of claim 1, wherein the device, when anchored within the left atrium, is adapted to replace function of dysfunctional native mitral valve leaflets.
  • 8. The device of claim 7, wherein the device does not physically interact with the native mitral valve leaflets.
  • 9. The device of claim 5, wherein the device is adapted to progressively take over functionality from the dysfunctional native leaflets.
  • 10. The device of claim 1, wherein the expandable anchoring structure comprises open cell stent construction.
  • 11. The device of claim 1, wherein the single prosthetic leaflet is biased to the closed position.
  • 12. The device of claim 1, wherein the single prosthetic leaflet comprises a flexion point adapted to allow the single prosthetic leaflet to move between the open position and the closed position.
  • 13. The device of claim 4, wherein the first base side and second base side are adapted to locate and position the device within the annulus and left atrium.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 62/468,112, filed Mar. 7, 2017, and titled SYSTEMS, METHODS AND DEVICES FOR PROSTHETIC HEART VALVE WITH SINGLE VALVE LEAFLET, the entire contents of which are incorporated herein by reference.

US Referenced Citations (709)
Number Name Date Kind
4424833 Spector Jan 1984 A
4503569 Dotter Mar 1985 A
4733665 Palmaz Mar 1988 A
4878906 Lindemann Nov 1989 A
5190528 Fonger Mar 1993 A
5415667 Frater May 1995 A
5441483 Avitall Aug 1995 A
5693083 Baker Dec 1997 A
5693089 Inoue Dec 1997 A
5776188 Shepherd Jul 1998 A
5843090 Schuetz Dec 1998 A
5928258 Khan Jul 1999 A
5957949 Leonhardt Sep 1999 A
5968070 Bley Oct 1999 A
6123723 Konya Sep 2000 A
6152144 Lesh Nov 2000 A
6319280 Schoon Nov 2001 B1
6319281 Patel Nov 2001 B1
6371983 Lane Apr 2002 B1
6409758 Stobie Jun 2002 B2
6425916 Garrison Jul 2002 B1
6471718 Staehle Oct 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig Jan 2003 B2
6540782 Snyders Apr 2003 B1
6589275 Ivancev Jul 2003 B1
6702826 Liddicoat Mar 2004 B2
6738655 Sen May 2004 B1
6790231 Liddicoat Sep 2004 B2
6790237 Stinson Sep 2004 B2
6821297 Snyders Nov 2004 B2
6830585 Artof Dec 2004 B1
6840957 Dimatteo Jan 2005 B2
6875231 Anduiza Apr 2005 B2
7011671 Welch Mar 2006 B2
7041132 Quijano May 2006 B2
7044966 Svanidze May 2006 B2
7125420 Rourke Oct 2006 B2
7153324 Case Dec 2006 B2
7276077 Zadno-Azizi Oct 2007 B2
7364588 Mathis Apr 2008 B2
7381220 Macoviak Jun 2008 B2
7442204 Schwammenthal Oct 2008 B2
7445631 Salahieh Nov 2008 B2
7455689 Johnson Nov 2008 B2
7510572 Gabbay Mar 2009 B2
7524331 Birdsall Apr 2009 B2
7611534 Kapadia Nov 2009 B2
7704277 Zakay Apr 2010 B2
7749266 Forster Jul 2010 B2
7758491 Buckner Jul 2010 B2
7780723 Taylor Aug 2010 B2
7789909 Andersen Sep 2010 B2
7935144 Robin May 2011 B2
7959672 Salahieh Jun 2011 B2
7967853 Eidenschink Jun 2011 B2
7998196 Mathison Aug 2011 B2
8012201 Lashinski Sep 2011 B2
8016877 Seguin Sep 2011 B2
8021420 Dolan Sep 2011 B2
D648854 Braido Nov 2011 S
8052592 Goldfarb Nov 2011 B2
8057493 Goldfarb Nov 2011 B2
8070802 Lamphere Dec 2011 B2
8083793 Lane Dec 2011 B2
D653341 Braido Jan 2012 S
D653342 Braido Jan 2012 S
8092524 Nugent Jan 2012 B2
8142492 Forster Mar 2012 B2
8147541 Forster Apr 2012 B2
D660433 Braido May 2012 S
D660967 Braido May 2012 S
8167932 Bourang May 2012 B2
8236049 Rowe Aug 2012 B2
8246677 Ryan Aug 2012 B2
8252051 Chau Aug 2012 B2
8287538 Brenzel et al. Oct 2012 B2
8308798 Pintor Nov 2012 B2
8348998 Pintor Jan 2013 B2
8348999 Kheradvar Jan 2013 B2
8366768 Zhang Feb 2013 B2
8398708 Meiri Mar 2013 B2
8409275 Matheny Apr 2013 B2
8414645 Dwork Apr 2013 B2
8439970 Jimenez May 2013 B2
8465541 Dwork Jun 2013 B2
8491650 Wiemeyer Jul 2013 B2
8512400 Tran Aug 2013 B2
8518106 Duffy Aug 2013 B2
8535373 Stacchino Sep 2013 B2
8562673 Yeung Oct 2013 B2
8568472 Marchand Oct 2013 B2
8579963 Tabor Nov 2013 B2
8579964 Lane Nov 2013 B2
8603159 Seguin Dec 2013 B2
8623075 Murray, III Jan 2014 B2
8636764 Miles Jan 2014 B2
8641757 Pintor Feb 2014 B2
8657870 Turovskiy Feb 2014 B2
8663318 Ho Mar 2014 B2
8679176 Matheny Mar 2014 B2
8721715 Wang May 2014 B2
8740976 Tran Jun 2014 B2
8747459 Nguyen Jun 2014 B2
8747461 Centola Jun 2014 B2
8764793 Lee Jul 2014 B2
8764820 Dehdashtian Jul 2014 B2
8778020 Gregg Jul 2014 B2
8790396 Bergheim Jul 2014 B2
8795354 Benichou Aug 2014 B2
8795357 Yohanan Aug 2014 B2
8805466 Salahieh Aug 2014 B2
8814931 Wang Aug 2014 B2
8828043 Chambers Sep 2014 B2
8828051 Javois Sep 2014 B2
8845711 Miles Sep 2014 B2
8845722 Gabbay Sep 2014 B2
8852271 Murray, III Oct 2014 B2
8852272 Gross Oct 2014 B2
8870949 Rowe Oct 2014 B2
8876897 Kheradvar Nov 2014 B2
8906022 Krinke et al. Dec 2014 B2
8926692 Dwork Jan 2015 B2
8956402 Cohn Feb 2015 B2
8956405 Wang Feb 2015 B2
8961518 Kyle et al. Feb 2015 B2
8986372 Murry, III Mar 2015 B2
8986374 Cao Mar 2015 B2
8986375 Garde Mar 2015 B2
8998980 Shipley Apr 2015 B2
8998982 Richter Apr 2015 B2
9005273 Salahieh Apr 2015 B2
9011527 Li Apr 2015 B2
D730520 Braido May 2015 S
D730521 Braido May 2015 S
9023101 Krahbichler May 2015 B2
9050188 Schweich, Jr. Jun 2015 B2
9060855 Tuval Jun 2015 B2
9060857 Nguyen Jun 2015 B2
9060858 Thornton Jun 2015 B2
9061119 Le Jun 2015 B2
9066800 Clague Jun 2015 B2
9072603 Tuval Jul 2015 B2
9101471 Kleinschrodt Aug 2015 B2
9119717 Wang Sep 2015 B2
9132008 Dwork Sep 2015 B2
9132009 Hacohen Sep 2015 B2
9138313 Mcguckin, Jr. Sep 2015 B2
9144493 Carr Sep 2015 B2
9144494 Murray Sep 2015 B2
9155619 Liu Oct 2015 B2
9161835 Rankin Oct 2015 B2
9173737 Hill Nov 2015 B2
9226820 Braido Jan 2016 B2
9232996 Sun Jan 2016 B2
9248016 Oba Feb 2016 B2
9259315 Zhou Feb 2016 B2
9271856 Duffy Mar 2016 B2
9277993 Gamarra Mar 2016 B2
9289289 Rolando Mar 2016 B2
9289292 Anderl Mar 2016 B2
9295547 Costello Mar 2016 B2
9295549 Braido Mar 2016 B2
9301836 Buchbinder Apr 2016 B2
9301839 Stante Apr 2016 B2
9320597 Savage Apr 2016 B2
9320599 Salahieh Apr 2016 B2
9326853 Olson May 2016 B2
9326854 Casley May 2016 B2
9333075 Biadillah May 2016 B2
9345572 Cerf May 2016 B2
9351831 Braido May 2016 B2
9358108 Bortlein Jun 2016 B2
9364325 Alon Jun 2016 B2
9364637 Rothstein Jun 2016 B2
9370422 Wang Jun 2016 B2
9387106 Stante Jul 2016 B2
9402720 Richter Aug 2016 B2
9414910 Lim Aug 2016 B2
9414917 Young Aug 2016 B2
9427316 Schweich, Jr. Aug 2016 B2
9439795 Wang Sep 2016 B2
9480560 Quadri Nov 2016 B2
9498370 Kyle et al. Nov 2016 B2
9522062 Tuval Dec 2016 B2
9566152 Schweich, Jr. Feb 2017 B2
9730791 Ratz Aug 2017 B2
9737400 Fish Aug 2017 B2
9737401 Conklin Aug 2017 B2
9750604 Naor Sep 2017 B2
9763780 Morriss Sep 2017 B2
9795477 Tran Oct 2017 B2
9801711 Gainor Oct 2017 B2
9827093 Cartledge Nov 2017 B2
9839517 Centola et al. Dec 2017 B2
9839765 Morris Dec 2017 B2
9861477 Backus Jan 2018 B2
9872765 Zeng Jan 2018 B2
9968443 Bruchman May 2018 B2
10004601 Tuval Jun 2018 B2
10016274 Tabor Jul 2018 B2
10016275 Nyuli Jul 2018 B2
10022132 Wlodarski et al. Jul 2018 B2
10034750 Morriss Jul 2018 B2
10039642 Hillukka Aug 2018 B2
10182907 Lapeyre Jan 2019 B2
10195023 Wrobel Feb 2019 B2
10245145 Mantanus Apr 2019 B2
10258464 Delaloye Apr 2019 B2
10299917 Morriss May 2019 B2
10321990 Braido Jun 2019 B2
10327892 O'Connor Jun 2019 B2
10327893 Maiorano Jun 2019 B2
10350065 Quadri Jul 2019 B2
10357360 Hariton Jul 2019 B2
10368982 Weber Aug 2019 B2
10383725 Chambers Aug 2019 B2
10405974 Hayes Sep 2019 B2
10433961 Mclean Oct 2019 B2
10470880 Braido Nov 2019 B2
10492907 Duffy Dec 2019 B2
10500041 Valdez Dec 2019 B2
10512537 Corbett Dec 2019 B2
10512538 Alkhatib Dec 2019 B2
10517726 Chau Dec 2019 B2
10524902 Gründeman Jan 2020 B2
10555809 Hastings Feb 2020 B2
10561495 Chambers Feb 2020 B2
10595992 Chambers Mar 2020 B2
10610362 Quadri Apr 2020 B2
10653523 Chambers May 2020 B2
10667909 Richter Jun 2020 B2
10702379 Garde Jul 2020 B2
10702380 Morriss Jul 2020 B2
10751169 Chambers Aug 2020 B2
10751170 Richter Aug 2020 B2
10751172 Para Aug 2020 B2
10758342 Chau Sep 2020 B2
10779968 Giasolli Sep 2020 B2
10828152 Chambers Nov 2020 B2
10874513 Chambers Dec 2020 B2
10945835 Morriss Mar 2021 B2
10973630 Torrianni Apr 2021 B2
10980636 Delaloye Apr 2021 B2
11000000 Diedering May 2021 B2
11007053 Braido May 2021 B2
11013599 Subramanian May 2021 B2
11026782 Chambers Jun 2021 B2
11033275 Franano et al. Jun 2021 B2
11045202 Amplatz Jun 2021 B2
11065113 Backus Jul 2021 B2
11065116 Tegels Jul 2021 B2
11065138 Schreck Jul 2021 B2
11147666 Braido Oct 2021 B2
11154398 Straubinger Oct 2021 B2
11197754 Saffari Dec 2021 B2
11207176 Delaloye Dec 2021 B2
11278399 Liu Mar 2022 B2
11278406 Straubinger Mar 2022 B2
11351028 Peterson Jun 2022 B2
11389293 Torrianni Jul 2022 B2
11413141 Morin Aug 2022 B2
11419716 Braido Aug 2022 B2
11452628 Diedering Sep 2022 B2
20010005787 Oz Jun 2001 A1
20020072710 Stewart Jun 2002 A1
20020161377 Rabkin Oct 2002 A1
20030083730 Stinson May 2003 A1
20030199971 Tower Oct 2003 A1
20030225445 Derus Dec 2003 A1
20030233141 Israel Dec 2003 A1
20040073286 Armstrong Apr 2004 A1
20040088041 Stanford May 2004 A1
20040138745 Macoviak Jul 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040243107 Macoviak Dec 2004 A1
20050004641 Pappu Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050096739 Cao May 2005 A1
20050113861 Corcoran May 2005 A1
20050137622 Griffin Jun 2005 A1
20050197694 Pai Sep 2005 A1
20050273160 Lashinski Dec 2005 A1
20060142847 Shaknovich Jun 2006 A1
20060184226 Austin Aug 2006 A1
20060224183 Freudenthal Oct 2006 A1
20060229708 Powell Oct 2006 A1
20060271173 Delgado, III Nov 2006 A1
20060276874 Wilson Dec 2006 A1
20070173930 Sogard Jul 2007 A1
20070233223 Styrc Oct 2007 A1
20070238979 Huynh Oct 2007 A1
20070239254 Chia Oct 2007 A1
20070239271 Nguyen Oct 2007 A1
20070270931 Leanna Nov 2007 A1
20070275027 Wen et al. Nov 2007 A1
20070293942 Mirzaee Dec 2007 A1
20080039928 Peacock Feb 2008 A1
20080082166 Styrc Apr 2008 A1
20080262592 Jordan Oct 2008 A1
20080269877 Jenson Oct 2008 A1
20080275540 Wen Nov 2008 A1
20080281398 Koss Nov 2008 A1
20080288042 Purdy Nov 2008 A1
20080288055 Paul, Jr. Nov 2008 A1
20090076585 Hendriksen Mar 2009 A1
20090082840 Rusk Mar 2009 A1
20090099640 Weng Apr 2009 A1
20090099647 Glimsdale Apr 2009 A1
20090125096 Chu May 2009 A1
20090143852 Chambers Jun 2009 A1
20090171447 Von Segesser Jul 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090248134 Dierking Oct 2009 A1
20090270967 Fleming, III Oct 2009 A1
20090276039 Meretei Nov 2009 A1
20090281609 Benichou Nov 2009 A1
20100021726 Jo Jan 2010 A1
20100057192 Celermajer Mar 2010 A1
20100069948 Veznedaroglu Mar 2010 A1
20100168839 Braido Jul 2010 A1
20100174355 Boyle Jul 2010 A1
20100217260 Aramayo Aug 2010 A1
20100217261 Watson Aug 2010 A1
20100217262 Stevenson Aug 2010 A1
20100217263 Tukulj-Popovic Aug 2010 A1
20100217264 Odom Aug 2010 A1
20100217265 Chen Aug 2010 A1
20100217266 Helevirta Aug 2010 A1
20100217267 Bergin Aug 2010 A1
20100217268 Bloebaum Aug 2010 A1
20100217269 Landes Aug 2010 A1
20100256749 Tran Oct 2010 A1
20100262157 Silver Oct 2010 A1
20110022151 Shin Jan 2011 A1
20110046712 Melsheimer Feb 2011 A1
20110082539 Suri Apr 2011 A1
20110082540 Forster Apr 2011 A1
20110208293 Tabor Aug 2011 A1
20110218585 Krinke et al. Sep 2011 A1
20110251676 Sweeney Oct 2011 A1
20110301702 Rust Dec 2011 A1
20110319988 Schankereli Dec 2011 A1
20110319991 Hariton Dec 2011 A1
20120016468 Robin Jan 2012 A1
20120035719 Forster Feb 2012 A1
20120078356 Fish Mar 2012 A1
20120083875 Johnson Apr 2012 A1
20120095551 Navia Apr 2012 A1
20120101567 Jansen Apr 2012 A1
20120101571 Thambar Apr 2012 A1
20120109079 Asleson May 2012 A1
20120197193 Krolik et al. Aug 2012 A1
20120197390 Alkhatib Aug 2012 A1
20120209375 Madrid Aug 2012 A1
20120226130 De Graff Sep 2012 A1
20120303048 Manasse Nov 2012 A1
20120323313 Seguin Dec 2012 A1
20130023852 Drasler Jan 2013 A1
20130060329 Agnew Mar 2013 A1
20130066419 Gregg Mar 2013 A1
20130079872 Gallagher Mar 2013 A1
20130096671 Iobbi Apr 2013 A1
20130123911 Chalekian May 2013 A1
20130138138 Clark May 2013 A1
20130150956 Yohanan Jun 2013 A1
20130184811 Rowe Jul 2013 A1
20130190861 Chau Jul 2013 A1
20130204311 Kunis Aug 2013 A1
20130204360 Gainor Aug 2013 A1
20130231736 Essinger Sep 2013 A1
20130238089 Lichtenstein Sep 2013 A1
20130297010 Bishop Nov 2013 A1
20130297012 Willard Nov 2013 A1
20130304197 Buchbinder Nov 2013 A1
20130310917 Richter Nov 2013 A1
20130310923 Kheradvar Nov 2013 A1
20130317598 Rowe Nov 2013 A1
20130331933 Alkhatib Dec 2013 A1
20140005768 Thomas Jan 2014 A1
20140005773 Wheatley Jan 2014 A1
20140005778 Buchbinder Jan 2014 A1
20140012371 Li Jan 2014 A1
20140018841 Peiffer Jan 2014 A1
20140018906 Rafiee Jan 2014 A1
20140031928 Murphy Jan 2014 A1
20140031951 Costello Jan 2014 A1
20140039613 Navia Feb 2014 A1
20140046433 Kovalsky Feb 2014 A1
20140046436 Kheradvar Feb 2014 A1
20140052238 Wang Feb 2014 A1
20140052241 Harks Feb 2014 A1
20140057730 Steinhauser Feb 2014 A1
20140057731 Stephens Feb 2014 A1
20140057732 Gilbert Feb 2014 A1
20140057733 Yamamoto Feb 2014 A1
20140057734 Lu Feb 2014 A1
20140057735 Yu Feb 2014 A1
20140057736 Burnett Feb 2014 A1
20140057737 Solheim Feb 2014 A1
20140057738 Albertsen Feb 2014 A1
20140057739 Stites Feb 2014 A1
20140067050 Costello Mar 2014 A1
20140074151 Tischler Mar 2014 A1
20140081308 Wondka Mar 2014 A1
20140081375 Bardill et al. Mar 2014 A1
20140088696 Figulla Mar 2014 A1
20140114340 Zhou Apr 2014 A1
20140128963 Quill May 2014 A1
20140134322 Larsen May 2014 A1
20140135817 Tischler May 2014 A1
20140135907 Gallagher May 2014 A1
20140142612 Li May 2014 A1
20140142680 Laske May 2014 A1
20140142688 Duffy May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172076 Jonsson Jun 2014 A1
20140172083 Bruchman Jun 2014 A1
20140180397 Gerberding Jun 2014 A1
20140180401 Quill Jun 2014 A1
20140188157 Clark Jul 2014 A1
20140194979 Seguin Jul 2014 A1
20140222140 Schreck Aug 2014 A1
20140228944 Paniagua Aug 2014 A1
20140236288 Lambrecht Aug 2014 A1
20140243954 Shannon Aug 2014 A1
20140243967 Salahieh Aug 2014 A1
20140243969 Venkatasubramanian Aug 2014 A1
20140249564 Daly Sep 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140257467 Lane Sep 2014 A1
20140276395 Wilson Sep 2014 A1
20140277074 Kaplan Sep 2014 A1
20140277119 Akpinar Sep 2014 A1
20140277388 Skemp Sep 2014 A1
20140277389 Braido Sep 2014 A1
20140277408 Folan Sep 2014 A1
20140277411 Börtlein Sep 2014 A1
20140277417 Schraut Sep 2014 A1
20140277422 Ratz Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140277425 Dakin Sep 2014 A1
20140277426 Dakin Sep 2014 A1
20140288634 Shalev Sep 2014 A1
20140288639 Gainor Sep 2014 A1
20140296909 Heipl Oct 2014 A1
20140296969 Tegels Oct 2014 A1
20140296970 Ekvall Oct 2014 A1
20140296975 Tegels Oct 2014 A1
20140309727 Lamelas et al. Oct 2014 A1
20140330366 Dehdashtian Nov 2014 A1
20140330368 Gloss Nov 2014 A1
20140330369 Matheny Nov 2014 A1
20140330370 Matheny Nov 2014 A1
20140331475 Duffy Nov 2014 A1
20140343665 Straubinger Nov 2014 A1
20140343669 Lane Nov 2014 A1
20140343670 Bakis Nov 2014 A1
20140371844 Dale Dec 2014 A1
20140379020 Campbell Dec 2014 A1
20150005857 Kern Jan 2015 A1
20150018933 Yang Jan 2015 A1
20150025621 Costello Jan 2015 A1
20150025625 Rylski Jan 2015 A1
20150039081 Costello Feb 2015 A1
20150039083 Rafiee Feb 2015 A1
20150066138 Alexander Mar 2015 A1
20150066141 Braido Mar 2015 A1
20150073548 Matheny Mar 2015 A1
20150088251 May-Newman Mar 2015 A1
20150094802 Buchbinder Apr 2015 A1
20150094804 Bonhoeffer Apr 2015 A1
20150112428 Daly Apr 2015 A1
20150112430 Creaven Apr 2015 A1
20150119974 Rothstein Apr 2015 A1
20150119978 Tegels Apr 2015 A1
20150119980 Beith Apr 2015 A1
20150119982 Quill Apr 2015 A1
20150127032 Lentz May 2015 A1
20150127093 Hosmer May 2015 A1
20150127097 Neumann May 2015 A1
20150127100 Braido May 2015 A1
20150134054 Morrissey May 2015 A1
20150142103 Vidlund May 2015 A1
20150142104 Braido May 2015 A1
20150148731 Mcnamara May 2015 A1
20150150678 Brecker Jun 2015 A1
20150157455 Hoang Jun 2015 A1
20150157458 Thambar Jun 2015 A1
20150173770 Warner Jun 2015 A1
20150173897 Raanani Jun 2015 A1
20150173898 Drasler Jun 2015 A1
20150173899 Braido Jun 2015 A1
20150196300 Tischler Jul 2015 A1
20150196390 Ma Jul 2015 A1
20150196393 Vidlund Jul 2015 A1
20150209140 Bell Jul 2015 A1
20150209143 Duffy Jul 2015 A1
20150223729 Balachandran Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150223934 Vidlund Aug 2015 A1
20150230921 Chau Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238313 Spence Aug 2015 A1
20150257879 Bortlein Sep 2015 A1
20150257880 Bortlein Sep 2015 A1
20150257881 Bortlein Sep 2015 A1
20150257882 Bortlein Sep 2015 A1
20150265402 Centola Sep 2015 A1
20150265404 Rankin Sep 2015 A1
20150272730 Melnick Oct 2015 A1
20150272731 Racchini Oct 2015 A1
20150272738 Sievers Oct 2015 A1
20150282931 Brunnett Oct 2015 A1
20150282958 Centola Oct 2015 A1
20150289972 Yang Oct 2015 A1
20150289974 Matheny Oct 2015 A1
20150289977 Kovalsky Oct 2015 A1
20150290007 Aggerholm Oct 2015 A1
20150297346 Duffy Oct 2015 A1
20150297381 Essinger Oct 2015 A1
20150305860 Wang Oct 2015 A1
20150305861 Annest Oct 2015 A1
20150313710 Eberhardt Nov 2015 A1
20150313712 Carpentier Nov 2015 A1
20150320552 Letac Nov 2015 A1
20150320556 Levi Nov 2015 A1
20150327995 Morin Nov 2015 A1
20150327996 Fahim Nov 2015 A1
20150327999 Board Nov 2015 A1
20150328000 Ratz et al. Nov 2015 A1
20150335422 Straka Nov 2015 A1
20150342718 Weber Dec 2015 A1
20150342734 Braido Dec 2015 A1
20150351735 Keranen Dec 2015 A1
20150351904 Cooper Dec 2015 A1
20150351905 Benson Dec 2015 A1
20150359628 Keranen Dec 2015 A1
20150359629 Ganesan Dec 2015 A1
20150366665 Lombardi Dec 2015 A1
20150366667 Bailey Dec 2015 A1
20150366690 Lumauig Dec 2015 A1
20150374490 Alkhatib Dec 2015 A1
20150374906 Forsell Dec 2015 A1
20160000559 Chen Jan 2016 A1
20160000562 Siegel Jan 2016 A1
20160008128 Squara Jan 2016 A1
20160008131 Christianson Jan 2016 A1
20160015512 Zhang Jan 2016 A1
20160015515 Lashinski Jan 2016 A1
20160022417 Karapetian Jan 2016 A1
20160022418 Salahieh Jan 2016 A1
20160030165 Mitra Feb 2016 A1
20160030168 Spenser Feb 2016 A1
20160030169 Shahriari Feb 2016 A1
20160030170 Alkhatib Feb 2016 A1
20160030171 Quijano Feb 2016 A1
20160030173 Cai Feb 2016 A1
20160030175 Madjarov Feb 2016 A1
20160038283 Divekar Feb 2016 A1
20160045306 Agrawal Feb 2016 A1
20160045308 Macoviak Feb 2016 A1
20160045309 Valdez Feb 2016 A1
20160045310 Alkhatib Feb 2016 A1
20160045311 Mccann Feb 2016 A1
20160051358 Sutton Feb 2016 A1
20160051362 Cooper Feb 2016 A1
20160051364 Cunningham Feb 2016 A1
20160066922 Bridgeman Mar 2016 A1
20160067038 Park Mar 2016 A1
20160067041 Alkhatib Mar 2016 A1
20160074161 Bennett Mar 2016 A1
20160074164 Naor Mar 2016 A1
20160074165 Spence Mar 2016 A1
20160081799 Leo Mar 2016 A1
20160089234 Gifford, III Mar 2016 A1
20160089235 Yellin Mar 2016 A1
20160089236 Kovalsky Mar 2016 A1
20160095700 Righini Apr 2016 A1
20160095701 Dale Apr 2016 A1
20160095702 Gainor Apr 2016 A1
20160095703 Thomas Apr 2016 A1
20160095704 Whitman Apr 2016 A1
20160100844 Li Apr 2016 A1
20160100939 Armstrong Apr 2016 A1
20160100941 Czyscon Apr 2016 A1
20160100942 Morrissey Apr 2016 A1
20160106539 Buchbinder Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160113766 Ganesan Apr 2016 A1
20160113767 Miller Apr 2016 A1
20160113768 Ganesan Apr 2016 A1
20160120642 Shaolian May 2016 A1
20160120643 Kupumbati May 2016 A1
20160120646 Dwork May 2016 A1
20160135951 Salahieh May 2016 A1
20160136412 Mckinnon May 2016 A1
20160143730 Kheradvar May 2016 A1
20160143731 Backus May 2016 A1
20160143734 Shaolian May 2016 A1
20160151155 Lutter Jun 2016 A1
20160157998 Bruchman Jun 2016 A1
20160157999 Lane Jun 2016 A1
20160158001 Wallace Jun 2016 A1
20160158004 Kumar Jun 2016 A1
20160158007 Centola Jun 2016 A1
20160158011 De Canniere Jun 2016 A1
20160158013 Carpentier Jun 2016 A1
20160166381 Sugimoto Jun 2016 A1
20160166382 Nguyen Jun 2016 A1
20160166384 Olson Jun 2016 A1
20160175096 Dienno Jun 2016 A1
20160193044 Achiluzzi Jul 2016 A1
20160193045 Pollak Jul 2016 A1
20160193047 Delaloye Jul 2016 A1
20160199177 Spence Jul 2016 A1
20160199178 Venkatasubramanian Jul 2016 A1
20160199180 Zeng Jul 2016 A1
20160199182 Gorman, III Jul 2016 A1
20160213470 Ahlberg Jul 2016 A1
20160220363 Peter Aug 2016 A1
20160235525 Rothstein Aug 2016 A1
20160235530 Thomas Aug 2016 A1
20160235531 Ciobanu Aug 2016 A1
20160242905 Chambers Aug 2016 A1
20160250022 Braido Sep 2016 A1
20160256270 Folan Sep 2016 A1
20160262884 Lombardi Sep 2016 A1
20160270910 Birmingham Sep 2016 A1
20160270911 Ganesan Sep 2016 A1
20160278922 Braido Sep 2016 A1
20160296323 Wulfman Oct 2016 A1
20160296333 Balachandran Oct 2016 A1
20160302920 Al-Jilaihawi Oct 2016 A1
20160302921 Gosal Oct 2016 A1
20160302922 Keidar Oct 2016 A1
20160310268 Oba Oct 2016 A1
20160324640 Gifford, III Nov 2016 A1
20160324641 Solem Nov 2016 A1
20160331529 Marchand Nov 2016 A1
20160354203 Tuval et al. Dec 2016 A1
20160361161 Braido Dec 2016 A1
20160374790 Jacinto Dec 2016 A1
20160374801 Jimenez Dec 2016 A1
20160374802 Levi Dec 2016 A1
20160374803 Figulla Dec 2016 A1
20160374842 Havel Dec 2016 A1
20170079785 Li Mar 2017 A1
20170079787 Benson Mar 2017 A1
20170079790 Vidlund Mar 2017 A1
20170086973 Zeng Mar 2017 A1
20170100241 Modine Apr 2017 A1
20170105839 Subramanian Apr 2017 A1
20170165066 Rothstein Jun 2017 A1
20170172737 Kuetting Jun 2017 A1
20170252191 Pacetti Sep 2017 A1
20170348098 Rowe Dec 2017 A1
20170360570 Berndt et al. Dec 2017 A1
20180055629 Oba et al. Mar 2018 A1
20180092744 Von Oepen Apr 2018 A1
20180116848 Mchugo May 2018 A1
20180185184 Christakis Jul 2018 A1
20180193153 Brenzel et al. Jul 2018 A1
20180206983 Noe Jul 2018 A1
20180256329 Chambers Sep 2018 A1
20180296335 Miyashiro Oct 2018 A1
20180311039 Cohen Nov 2018 A1
20180325664 Gonda Nov 2018 A1
20180333102 Peterson et al. Nov 2018 A1
20180360602 Kumar Dec 2018 A1
20180369006 Zhang Dec 2018 A1
20190053898 Maimon et al. Feb 2019 A1
20190099265 Braido Apr 2019 A1
20190105088 Peterson et al. Apr 2019 A1
20190201192 Kruse Jul 2019 A1
20190224028 Finn Jul 2019 A1
20190247189 Dale Aug 2019 A1
20190321530 Cambronne Oct 2019 A1
20190365534 Kramer Dec 2019 A1
20190365538 Chambers Dec 2019 A1
20200000592 Lee Jan 2020 A1
20200030088 Vidlund Jan 2020 A1
20200030507 Higgins Jan 2020 A1
20200069423 Peterson Mar 2020 A1
20200069449 Diedering Mar 2020 A1
20200100897 Mclean Apr 2020 A1
20200113682 Chang Apr 2020 A1
20200113719 Desrosiers et al. Apr 2020 A1
20200129294 Hariton Apr 2020 A1
20200155306 Bonyuet May 2020 A1
20200163765 Christianson May 2020 A1
20200179111 Vidlund Jun 2020 A1
20200179115 Chambers Jun 2020 A1
20200188101 Chambers Jun 2020 A1
20200222179 Chambers Jul 2020 A1
20200253733 Subramanian Aug 2020 A1
20200261219 Kumar Aug 2020 A1
20200276013 Chambers Sep 2020 A1
20200315678 Mazzio et al. Oct 2020 A1
20200337765 Smith Oct 2020 A1
20200375733 Diedering Dec 2020 A1
20210236274 Benson Aug 2021 A1
20210236276 Diedering Aug 2021 A1
20210275297 Berndt Sep 2021 A1
20210275301 Kumar Sep 2021 A1
20210290383 Chambers Sep 2021 A1
20220338979 Benichou Oct 2022 A1
20230218397 Chambers et al. Jul 2023 A1
20230372089 Kumar Nov 2023 A1
Foreign Referenced Citations (125)
Number Date Country
2014203064 Jun 2015 AU
2015230879 Oct 2015 AU
2013201970 Mar 2016 AU
2926531 Apr 2015 CA
2982609 Nov 2016 CA
2820130 Sep 2006 CN
100413471 Aug 2008 CN
100444811 Dec 2008 CN
101953723 Jan 2011 CN
101953724 Jan 2011 CN
101953725 Jan 2011 CN
101953728 Jan 2011 CN
101953729 Jan 2011 CN
101961269 Feb 2011 CN
101961273 Feb 2011 CN
102036622 Apr 2011 CN
201870772 Jun 2011 CN
102805676 Dec 2012 CN
103190968 Jul 2013 CN
203290964 Nov 2013 CN
103431931 Dec 2013 CN
203379235 Jan 2014 CN
103598939 Feb 2014 CN
103610520 Mar 2014 CN
203619728 Jun 2014 CN
203677318 Jul 2014 CN
104287804 Jan 2015 CN
104352261 Feb 2015 CN
204133530 Feb 2015 CN
204181679 Mar 2015 CN
204246182 Apr 2015 CN
204318826 May 2015 CN
104688292 Jun 2015 CN
102985033 Aug 2015 CN
204581598 Aug 2015 CN
204581599 Aug 2015 CN
204683686 Oct 2015 CN
105596052 May 2016 CN
105615936 Jun 2016 CN
205286438 Jun 2016 CN
105873545 Aug 2016 CN
106102658 Nov 2016 CN
106456323 Feb 2017 CN
108348270 Jul 2018 CN
105792780 Nov 2018 CN
109561961 Apr 2019 CN
107157622 Dec 2019 CN
107252363 Apr 2020 CN
106913909 Sep 2020 CN
107007887 Oct 2020 CN
102010021345 Nov 2011 DE
102015004246 Oct 2016 DE
102015005933 Nov 2016 DE
102015005934 Nov 2016 DE
1365702 Dec 2003 EP
0856300 Dec 2004 EP
1039851 Jul 2005 EP
1401359 Aug 2009 EP
2258312 Sep 2012 EP
1919397 Jan 2013 EP
2382336 Mar 2013 EP
2596754 May 2013 EP
2640314 Sep 2013 EP
2081519 Apr 2014 EP
2732796 May 2014 EP
2651335 Oct 2014 EP
2856946 Apr 2015 EP
2470120 Dec 2015 EP
2967858 Jan 2016 EP
2 982 336 Feb 2016 EP
2982336 Feb 2016 EP
3000437 Mar 2016 EP
2237746 May 2016 EP
2991587 May 2016 EP
3337428 Jun 2018 EP
2967845 Aug 2018 EP
2120794 Mar 2019 EP
3389564 Feb 2020 EP
2437688 May 2020 EP
2982337 Aug 2020 EP
3043745 Oct 2020 EP
3490501 Oct 2020 EP
2950752 Jul 2022 EP
2810620 Sep 2022 EP
4174184 Oct 2008 JP
2015516217 Jun 2015 JP
2016067931 May 2016 JP
5995110 Sep 2016 JP
2016531722 Oct 2016 JP
2016504136 Mar 2017 JP
2017506988 Mar 2017 JP
2016520391 Apr 2017 JP
2016506794 Jul 2018 JP
2018535074 Dec 2019 JP
WO1995016476 Jun 1995 WO
WO2008051554 May 2008 WO
WO2009045331 Apr 2009 WO
WO2009127973 Oct 2009 WO
WO2014210299 Dec 2014 WO
WO2015004173 Jan 2015 WO
WO2015142834 Sep 2015 WO
WO2015152980 Oct 2015 WO
WO2015175524 Nov 2015 WO
WO2015176160 Nov 2015 WO
WO2015189307 Dec 2015 WO
WO2016016899 Feb 2016 WO
WO2016033170 Mar 2016 WO
WO2016077783 May 2016 WO
WO2016083551 Jun 2016 WO
WO2016100806 Jun 2016 WO
WO2016130524 Aug 2016 WO
WO2016130820 Aug 2016 WO
WO2016133950 Aug 2016 WO
WO2016112085 Sep 2016 WO
WO2016145250 Sep 2016 WO
WO2016150806 Sep 2016 WO
WO2016168609 Oct 2016 WO
WO2016191324 Dec 2016 WO
WO2016186909 Jan 2017 WO
WO2017061956 Apr 2017 WO
WO2017070322 Apr 2017 WO
WO2017151566 Sep 2017 WO
WO2017194504 Nov 2017 WO
WO2019006387 Jan 2019 WO
WO2019028264 Feb 2019 WO
Non-Patent Literature Citations (14)
Entry
Notification Concerning Transmittal of International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) and International Preliminary Report on Patentability, issued Sep. 10, 2019, for PCT Application No. PCT/US2018/021244, filed Mar. 7, 2018.
International Search Report and Written Opinion issued in related PCT application, mailed May 29, 2018.
Extended Search Report issued by the European Patent Office in Application No. 18764951.2, dated Oct. 26, 2020.
Australian Office Action in Application No. 2018231187, Oct. 11, 2019.
Canadian Office Action in Application No. 3,054,814, Oct. 22, 2020.
Canadian Office Action in Application No. 3,054,814, May 28, 2021.
Chinese Office Action and translation in Application No. 201880024605.0, Apr. 6, 2021.
European Office Action in Application No. 18764951.2, Mar. 11, 2020.
Indian Office Action in Application No. 201937034716, Jan. 20, 2022.
Japanese Office Action and translation in Application No. 2019-548635 Jan. 18, 2022.
Japanese Office Action and translation in Application No. 2019-548635 Sep. 13, 2022.
International Search Report and Written Opinion in Application No. PCT/US18/21244, May 29, 2018.
Reed Miller, Start-Up Spotlight: 4C Addresses Mitral Regurgitation with Unique ‘Dome’ Device, https://medtech.citeline.com/MT105076/StartUp-Spotlight-4C-Addresses-Mitral-Regurgitation-With-Unique-Dome-Device Published by Citeline on Jun. 29, 2017.
A Novel Transcatheter Mitral Valve Replacement System, Dr. Phillippe Genereux, MD, Jun. 14, 2017.
Related Publications (1)
Number Date Country
20180256329 A1 Sep 2018 US
Provisional Applications (1)
Number Date Country
62468112 Mar 2017 US