Field
This disclosure relates to audio signal processing.
Background
Active noise cancellation (ANC, also called active noise reduction) is a technology that actively reduces acoustic noise in the air by generating a waveform that is an inverse form of the noise wave (e.g., having the same level and an inverted phase), also called an “antiphase” or “anti-noise” waveform. An ANC system generally uses one or more microphones to pick up an external noise reference signal, generates an anti-noise waveform from the noise reference signal, and reproduces the anti-noise waveform through one or more loudspeakers. This anti-noise waveform interferes destructively with the original noise wave to reduce the level of the noise that reaches the ear of the user.
Active noise cancellation techniques may be applied to personal communications device, such as cellular telephones, and sound reproduction devices, such as headphones, to reduce acoustic noise from the surrounding environment. In such applications, the use of an ANC technique may reduce the level of background noise that reaches the ear by up to twenty decibels while delivering useful sound signals, such as music and far-end voices. In headphones for communications applications, for example, the equipment usually has a microphone and a loudspeaker, where the microphone is used to capture the user's voice for transmission and the loudspeaker is used to reproduce the received signal. In such case, the microphone may be mounted on a boom or on an earcup and/or the loudspeaker may be mounted in an earcup or earplug.
A method of producing an antinoise signal according to a general configuration includes producing the antinoise signal during a first time interval by applying a digital filter to a reference noise signal in a filtering domain having a first sampling rate. This method includes producing the antinoise signal during a second time interval subsequent to the first time interval by applying the digital filter to the reference noise signal in the filtering domain. During said first time interval, the digital filter has a first filter state, and during the second time interval, the digital filter has a second filter state different than the first filter state. This method includes calculating the second filter state in an adaptation domain having a second sampling rate that is lower than the first sampling rate, based on information from the reference noise signal and information from an error signal. Computer-readable media having tangible features that store machine-executable instructions for such a method are also disclosed herein.
An apparatus for producing an antinoise signal according to a general configuration includes means for producing the antinoise signal during a first time interval by applying a digital filter to a reference noise signal in a filtering domain having a first sampling rate. This apparatus includes means for producing the antinoise signal during a second time interval subsequent to the first time interval by applying the digital filter to the reference noise signal in the filtering domain. During said first time interval, the digital filter has a first filter state, and during the second time interval, the digital filter has a second filter state different than the first filter state. This method includes means for calculating the second filter state in an adaptation domain having a second sampling rate that is lower than the first sampling rate, based on information from the reference noise signal and information from an error signal.
An apparatus for producing an antinoise signal according to a general configuration includes a digital filter configured to produce the antinoise signal during a first time interval by filtering a reference noise signal, according to a first filter state, in a filtering domain having a first sampling rate. This apparatus also includes a control block configured to calculate, in an adaptation domain having a second sampling rate that is lower than the first sampling rate, a second filter state based on information from the reference noise signal and information from an error signal, wherein the second filter state is different than the first filter state. In this apparatus, the digital filter is configured to produce the antinoise signal during a second time interval subsequent to the first time interval by filtering the reference noise signal in the filtering domain according to the second filter state.
An apparatus for producing an antinoise signal according to another general configuration includes an integrated circuit configured to produce the antinoise signal during a first time interval by filtering a reference noise signal, according to a first filter state, in a filtering domain having a first sampling rate. This apparatus also includes a computer-readable medium having tangible structures that store machine-executable instructions which when executed by at least one processor cause the at least one processor to calculate, in an adaptation domain having a second sampling rate that is lower than the first sampling rate, a second filter state based on information from the reference noise signal and information from an error signal, wherein the second filter state is different than the first filter state. In this apparatus, the integrated circuit is configured to produce the antinoise signal during a second time interval subsequent to the first time interval by filtering the reference noise signal in the filtering domain according to the second filter state.
The principles described herein may be applied, for example, to a headset or other communications or sound reproduction device that is configured to perform an ANC operation.
Unless expressly limited by its context, the term “signal” is used herein to indicate any of its ordinary meanings, including a state of a memory location (or set of memory locations) as expressed on a wire, bus, or other transmission medium. Unless expressly limited by its context, the term “generating” is used herein to indicate any of its ordinary meanings, such as computing or otherwise producing. Unless expressly limited by its context, the term “calculating” is used herein to indicate any of its ordinary meanings, such as computing, evaluating, smoothing, and/or selecting from a plurality of values. Unless expressly limited by its context, the term “obtaining” is used to indicate any of its ordinary meanings, such as calculating, deriving, receiving (e.g., from an external device), and/or retrieving (e.g., from an array of storage elements). Where the term “comprising” is used in the present description and claims, it does not exclude other elements or operations. The term “based on” (as in “A is based on B”) is used to indicate any of its ordinary meanings, including the cases (i) “based on at least” (e.g., “A is based on at least B”) and, if appropriate in the particular context, (ii) “equal to” (e.g., “A is equal to B”). Similarly, the term “in response to” is used to indicate any of its ordinary meanings, including “in response to at least.”
Unless indicated otherwise, any disclosure of an operation of an apparatus having a particular feature is also expressly intended to disclose a method having an analogous feature (and vice versa), and any disclosure of an operation of an apparatus according to a particular configuration is also expressly intended to disclose a method according to an analogous configuration (and vice versa). The term “configuration” may be used in reference to a method, apparatus, and/or system as indicated by its particular context. The terms “method,” “process,” “procedure,” and “technique” are used generically and interchangeably unless otherwise indicated by the particular context. The terms “apparatus” and “device” are also used generically and interchangeably unless otherwise indicated by the particular context. The terms “element” and “module” are typically used to indicate a portion of a greater configuration. Any incorporation by reference of a portion of a document shall also be understood to incorporate definitions of terms or variables that are referenced within the portion, where such definitions appear elsewhere in the document, as well as any figures referenced in the incorporated portion.
An ANC apparatus usually has a microphone arranged to capture a reference acoustic noise signal from the environment and/or a microphone arranged to capture an acoustic error signal after the noise cancellation. In either case, the ANC apparatus uses the microphone input to estimate the noise at that location and produces an antinoise signal which is a modified version of the estimated noise. The modification typically includes filtering with phase inversion and may also include gain amplification.
As described above, an ANC apparatus may be configured to use one or more microphones (e.g., reference microphone MR10) to pick up acoustic noise from the background. Another type of ANC system uses a microphone (possibly in addition to a reference microphone) to pick up an error signal after the noise reduction. An ANC filter in a feedback arrangement is typically configured to inverse the phase of the error signal and may also be configured to integrate the error signal, equalize the frequency response, and/or to match or minimize the delay.
It is typically desirable to configure the ANC filter (e.g., filter F10, filter F20) to generate an antinoise signal SY10 that is matched with the acoustic noise in amplitude and opposite to the acoustic noise in phase. Signal processing operations such as time delay, gain amplification, and equalization or lowpass filtering may be performed to achieve optimal noise cancellation. It may be desirable to configure the ANC filter to high-pass filter the signal (e.g., to attenuate high-amplitude, low-frequency acoustic signals). Additionally or alternatively, it may be desirable to configure the ANC filter to low-pass filter the signal (e.g., such that the ANC effect diminishes with frequency at high frequencies). Because the antinoise signal should be available by the time the acoustic noise travels from the microphone to the actuator (i.e., loudspeaker LS10), the processing delay caused by the ANC filter should not exceed a very short time (typically about thirty to sixty microseconds).
Filter F10 includes a digital filter, such that ANC apparatus A10 will typically be configured to perform analog-to-digital conversion on the signal produced by reference microphone MR10 to produce reference noise signal SX10 in digital form. Similarly, filter F20 includes a digital filter, such that ANC apparatus A20 will typically be configured to perform analog-to-digital conversion on the signal produced by error microphone ME10 to produce error signal SE10 in digital form. Examples of other preprocessing operations that may be performed by the ANC apparatus upstream of the ANC filter in the analog and/or digital domain include spectral shaping (e.g., low-pass, high-pass, and/or band-pass filtering), echo cancellation (e.g., on error signal SE10), impedance matching, and gain control. For example, the ANC apparatus (e.g., apparatus A10) may be configured to perform a high-pass filtering operation (e.g., having a cutoff frequency of 50, 100, or 200 Hz) on the signal upstream of the ANC filter.
The ANC apparatus will typically also include a digital-to-analog converter (DAC) arranged to convert antinoise signal SY10 to analog form upstream of loudspeaker LS10. As noted below, it may also be desirable for the ANC apparatus to mix a desired sound signal with the antinoise signal (in either the analog or digital domain) to produce an audio output signal for reproduction by loudspeaker LS10. Examples of such desired sound signals include a received (i.e. far-end) voice communications signal, a music or other multimedia signal, and a sidetone signal.
An ANC filter may be configured to have a filter state that is fixed over time or, alternatively, a filter state that is adaptable over time. An adaptive ANC filtering operation can typically achieve better performance over an expected range of operating conditions than a fixed ANC filtering operation. In comparison to a fixed ANC approach, for example, an adaptive ANC approach can typically achieve better noise cancellation results by responding to changes in the ambient noise and/or in the acoustic path.
The plurality of component filters of filter F50 may differ from one another in terms of one or more response characteristics, such as gain, low-frequency cutoff frequency, low-frequency rolloff profile, high-frequency cutoff frequency, and/or high-frequency rolloff profile. Each of the component filters F15a and F15b may be implemented as an FIR filter, as an IIR filter, or as a series of two or more FIR and/or IIR filters. Although two selectable component filters are shown in the example of
It may be desirable to implement an ANC filter, such as filter F10 or F20, such that one or more of the filter coefficients have values that may change over time (i.e., are adaptable).
In an implementation of ANC filter F70 that includes an IIR filter, one or more (possibly all) of the feedforward filter coefficients and/or one or more (possibly all) of the feedback filter coefficients may be adaptable. Feedback ANC filter AF20 may be implemented as an adaptable filter according to the same principles discussed above with reference to
An ANC apparatus that includes an instance of adaptable filter F70 may be configured such that the latency introduced by the filter is adjustable (e.g., according to the current state of selection signal SS10). For example, filter F70 may be configured such that the number of delay stages is variable according to the state of selection signal SS10. In one such example, the number of delay stages is reduced by setting the values of the highest-order filter coefficients to zero. Such adjustable latency may be desirable especially for feedforward ANC designs (e.g., implementations of apparatus A10).
It is expressly noted that feedforward ANC filter F10 may also be configured as an implementation of two or more among component-selectable filter F50, gain-selectable filter F60, and coefficient value-selectable filter F70, and that feedback ANC filter F20 may be configured according to the same principles.
It may be desirable to configure the ANC apparatus to generate state selection signal SS10 based on information from reference noise signal SX10 and/or information from error signal SE10.
It may be desirable to configure control block CB30 to generate state selection signal SS10 according to an implementation of a least-mean-squares (LMS) algorithm, which class includes filtered-reference (“filtered-X”) LMS, filtered-error (“filtered-E”) LMS, filtered-U LMS, and variants thereof (e.g., subband LMS, step size normalized LMS, etc.). For a case in which ANC filter F12 is an FIR implementation of adaptable filter F70, it may be desirable to configure control block CB30 to generate state selection signal SS10 to indicate an updated value for each of one or more of the filter coefficients according to an implementation of a filtered-X or filtered-E LMS algorithm. For a case in which ANC filter F12 is an IIR implementation of adaptable filter F70, it may be desirable to configure control block CB30 to generate state selection signal SS10 to indicate an updated value for each of one or more of the filter coefficients according to an implementation of the filtered-U LMS algorithm.
B(z)=b0+b1z−1+b2z−2+ . . .
A(z)=a1z−1+a2z−2+ . . .
W(z)=w0+w1z−1+w2z−2+ . . .
V(z)=v1z−1+v2z−2+ . . .
Filter F100 may be arranged to perform a feed-forward ANC operation (i.e., as an implementation of ANC filter F10) or a feedback ANC operation (i.e., as an implementation of ANC filter F20).
It is noted that feedforward filter FF10 may be implemented as an FIR filter by setting A(z) to zero (i.e., by setting each of the feedback coefficient values a of A(z) to zero). Similarly, feedback filter FB10 may be implemented as an FIR filter by setting V(z) to zero (i.e., by setting each of the feedback coefficient values v of V(z) to zero).
Either or both of feed-forward filter FF10 and feedback filter FB10 may be implemented to have fixed filter coefficients. In a fixed ANC approach, a feed-forward IIR filter and a feedback IIR filter form a full feedback IIR-type structure (e.g., a filter topology that includes a feedback loop formed by a feed-forward filter and a feedback filter, each of which may be an IIR filter).
An algorithm for operating control block CB32 to generate updated values for filter coefficients of filter F110 may be derived by applying principles of the filtered-U LMS methodology to the structure of filter F110. Such an algorithm may be derived in two steps: a first step that derives the coefficient values without considering S(z), and a second step in which the derived coefficient values are convolved by S(z).
In the first step of the derivation, θ=[B, A, W, V] are filter coefficients:
where Nf, Mf are the orders of the feed-forward filter numerator and denominator, respectively, and Nb, Mb are the orders of the feedback filter numerator and denominator, respectively. We assume that the derivatives of past outputs with respect to the current coefficients are zero:
In the second step of the derivation, the coefficient values derived above are convolved with s(k), the time-domain version of the acoustic path S(z) between loudspeaker LS10 and error microphone ME10:
where μb, μa, μw, μv are individual step parameters to control the LMS adaptation operations.
It may be desirable to modify the adaptation operations derived above by using one or more methods that may improve the LMS convergence performance Examples of such algorithms include subband LMS and various step size normalized LMS techniques.
A fully adaptive structure as shown in
One such simplification can be realized by setting the feedback (denominator) coefficients A(z) of feed-forward filter FF10 and the feedback (denominator) coefficients V(z) of feedback IIR filter FB10 to zero, which configures feed-forward filter FF10 and feedback filter FB10 as FIR filters. Such a structure may be more suitable for a feed-forward arrangement.
Another simplification may be realized by setting the feedforward (numerator) coefficients W(z) and the feedback (denominator) coefficients V(z) of feedback filter FB10 to zero.
bi←bi+μx′(k)e(k), for all bi in B(z)
ai←ai+μy′(k−1)e(k), for all ai in A(z)
where x′ and y′ denote the results of applying the transfer function Sest(z) to the signals SX10 and SY10, respectively.
In a feedback arrangement, W(z)/(1−V(z)) may be expected to converge to S(z). However, the adaptation may make these functions diverge. In practice, an estimate Sest(z) that is calculated offline may not be accurate. It may be desirable to configure the adaptation to minimize the residual error signal such that a noise reduction goal may still be achieved (e.g., in a minimum mean square error (MMSE) sense).
It may be desirable to configure any of the implementations of ANC apparatus A10 or A20 described herein (e.g., apparatus A40) to mix antinoise signal SY20 with a desired sound signal SD10 to produce an audio output signal S010 for reproduction by loudspeaker LS10. In one such example, desired sound signal SD10 is a reproduced audio signal, such as a far-end voice communications signal (e.g., a telephone call) or a multimedia signal (e.g., a music signal, which may be received via broadcast or decoded from a stored file). In another such example, desired sound signal SD10 is a sidetone signal that carries the user's own voice.
bi←bi+μx′(k)e(k), for all bi in B(z)
where x′ denotes the results of applying the transfer function Sest(z) to the signal SX10.
It may be desirable to implement ANC filter structure FS30 as described above to include adaptation of Sest(z).
It may be difficult to implement a full adaptation of the filter coefficient values of an IIR filter without divergence. Consequently, it may be desirable to perform a more limited adaptation of filter structure FS10. For example, both of filters FF10 and FB10 may be realized as an implementation of component-selectable filter F50, or one may be realized as an implementation of filter F50 and the other may be fixed. Another alternative is to implement filters FF10 and FB10 with fixed coefficient values and update the filter gain only. In such case, it may be desirable to implement a simplified ANC algorithm for gain and phase adaptation.
Gain update calculator UC10 as shown in
In this operation, M denotes the number of subbands, K denotes the number of samples per frame (for a frame length of, e.g., ten or twenty milliseconds), and m denotes a subband index. An estimate of the secondary acoustic path S(z) is not needed for this adaptation. A gain update may be performed at each sample k according to an expression such as G(k)=G(k−1)+□Σm=0M-1μmem(k)qm(k).
Energy estimates Pm for each subband may be updated at each sample according to expressions such as the following:
Pm,e(k)=αPm,e(k−1)+(1−α)em2(k);
Pm,q(k)=αPm,q(k−1)+(1−α)qm2(k).
Ratios of the energy estimates may be used to determine when to change the sign of the parameter μm in each subband, according to an expression such as the following:
μm=−μm, if [Pm,e(k)/Pm,q(k)]>[Pm,e(k−K)/Pm,q(k−K)].
Each of the above gain and energy estimate updates may be repeated at each sample k or at some less frequent time interval (e.g., once per frame). Such an algorithm is based on the assumption that within each subband of the secondary path S(z), changes occur only in gain and phase, such that these changes may be compensated by updating the gain G. It may be desirable to configure the adaptive algorithm to operate only on an ANC-related spectrum region (e.g., about 200-2000 Hz).
Although this gain adaptation algorithm is not filtered-X LMS, the theoretical value of μm may be derived from filtered-X LMS. In practice, both μm (which may differ from one subband to another) and the number of subbands M may be experimentally selected.
Filter stability is not an issue in fixed-coefficient structures (e.g., filter F105 as shown in
It may be desirable to configure the adaptation to use a small step size (μ) to update the filter coefficient values (e.g., to ensure better error residue value and IIR filter stability). Selecting different μ values for the feedforward (numerator) and feedback (denominator) coefficient values may also help to maintain IIR filter stability. For example, it may be desirable to select a μ value for each filter denominator that is about one-tenth of the μ value for the corresponding filter numerator.
It may be desirable to configure the control block (e.g., control blocks CB10, CB20, CB30, and CB32) to check the filter stability for each adaptation update before the filter coefficient values are sent to the ANC filter via the state selection signal. In the s-domain, based on the Lienard-Chipart criterion, the filter is stable if and only if
As noted above, the delay required by an ANC apparatus to process the input noise signal and generate a corresponding antinoise signal should not exceed a very short time Implementations of ANC apparatus for small mobile devices, such as handsets and headsets, typically require a very short processing delay or latency (e.g., about thirty to sixty microseconds) for the ANC operation to be effective. This delay requirement puts a great constraint on the possible processing and implementation method of the ANC system. While the signal processing operations typically used in an ANC apparatus are straightforward and well defined, it may be difficult to implement these operations while meeting the delay constraint.
Due to the delay constraint, most of the commercial ANC implementations for consumer electronic devices are based on analog signal processing. Because analog circuits may be implemented to have very short processing delays, an ANC operation is typically implemented for a small device (e.g., a headset or handset) using analog signal processing circuits. Many commercial and/or military devices that include short-delay, nonadaptive analog ANC processing are currently in use.
While an analog ANC implementation may exhibit good performance, each application typically requires a custom analog design, resulting in a very poor generalization capability. It may be difficult to implement an analog signal processing circuit to be configurable or adaptable. In contrast, digital signal processing typically has very good generalization capability, and it is typically comparatively easy to implement an adaptive processing operation using digital signal processing.
In comparison to an equivalent analog signal processing circuit, a digital signal processing operation typically has a much larger processing delay, which may reduce the effectiveness of an ANC operation for small dimensions. An adaptive ANC apparatus as described above (e.g., apparatus A12, A14, A16, A22, A30, A40, A50, or A60) may be implemented, for example, such that both of the ANC filtering and the filter adaptation are performed in software (e.g., as respective sets of instructions executing on a processor, such as a DSP). Alternatively, such an adaptive ANC apparatus may be implemented by combining hardware that is configured to filter an input noise signal to generate a corresponding antinoise signal (e.g., a pulse-code modulation (PCM)-domain coder-decoder or “codec”) with a DSP that is configured to execute an adaptive algorithm in software. However, the operations of converting an analog signal to a PCM digital signal for processing and converting the processed signal back to analog introduce a delay that is typically too large for optimal ANC operation. Typical bit widths for a PCM digital signal include eight, twelve, and sixteen bits, and typical PCM sampling rates for audio communications applications include eight, eleven, twelve, sixteen, thirty-two, and forty-eight kilohertz. At sampling rates of eight, sixteen, and forty-eight kHz, each sample has a duration of about 125, 62.5, and 21 microseconds, respectively. Application of such an apparatus would be limited, as a substantial processing delay could be expected, and the ANC performance would typically be limited to cancelling repetitive noise.
As noted above, it may be desirable for an ANC application to obtain a filtering latency on the order of ten microseconds. To obtain such a low latency in a digital domain, it may be desirable to avoid conversion to a PCM domain by performing the ANC filtering in a pulse density modulation (PDM) domain. A PDM-domain signal typically has a low resolution (e.g., a bit width of one, two, or four bits) and a very high sampling rate (e.g., on the order of 100 kHz, 1 MHz, or even 10 MHz). For example, it may be desirable for the PDM sampling rate to be eight, sixteen, thirty-two, or sixty-four times the Nyquist rate. For an audio signal whose highest frequency component is 4 kHz (i.e., a Nyquist rate of 8 kHz), an oversampling rate of 64 yields a PDM sampling rate of 512 kHz. For an audio signal whose highest frequency component is 8 kHz (i.e., a Nyquist rate of 16 kHz), an oversampling rate of 64 yields a PDM sampling rate of 1 MHz. For a Nyquist rate of 48 kHz, an oversampling rate of 256 yields a PDM sampling rate of 12.288 MHz.
A PDM-domain digital ANC apparatus may be implemented to introduce a minimal system delay (e.g., about twenty to thirty microseconds). Such a technique may be used to implement a high-performance ANC operation. For example, such an apparatus may be arranged to apply signal processing operations directly to the low-resolution over-sampled signals from an analog-to-PDM analog-to-digital converter (ADC) and to send the result directly to a PDM-to-analog digital-to-analog converter (DAC).
It may be desirable to implement PDM DAC PDA10 as an analog low-pass filter arranged to convert antinoise signal SY10 from the PDM domain to the analog domain. For a case in which the input to PDM DAC PDA10 is wider than one bit, it may be desirable for PDM DAC PDA10 first to reduce the signal width to one bit (e.g., to include an instance of PDM converter PD30 as described below). It may be desirable to implement PDM ADC PAD10 as a sigma-delta modulator AD10 (also called a “delta-sigma modulator”). Any sigma-delta modulator that is deemed suitable for the particular application may be used.
For first-order operation, integrator IN10 may be configured to perform one level of integration. Integrator IN10 may also be configured to perform multiple levels of integration for higher-order operation. For example,
Due to the very high sampling frequency, it may be desirable to implement PDM-domain ANC filters FP10 and FP20 in digital hardware (e.g., a fixed configuration of logic gates, such as an FPGA or ASIC) rather than in software (e.g., instructions executed by a processor, such as a DSP). For applications that involve high computational complexity (e.g., as measured in millions of instructions per second or MIPS) and/or high power consumption, implementation of a PDM-domain algorithm in software (e.g., for execution by a processor, such as a DSP) is typically uneconomical, and a custom digital hardware implementation may be preferred.
An ANC filtering technique that adapts the ANC filter dynamically can typically achieve a higher noise reduction effect than a fixed ANC filtering technique. However, one potential disadvantage of implementing an adaptive algorithm in digital hardware is that such an implementation may require a relatively high complexity. An adaptive ANC algorithm, for example, typically requires much more computational complexity than a non-adaptive ANC algorithm. Consequently, PDM-domain ANC implementations are generally limited to fixed filtering (i.e., nonadaptive) approaches. One reason for this practice is the high cost of implementing an adaptive signal processing algorithm in digital hardware.
It may be desirable to implement an ANC operation using a combination of PDM-domain filtering and a PCM-domain adaptive algorithm. As discussed above, ANC filtering in a PDM domain may be implemented using digital hardware, which may provide a minimal delay (latency) and/or optimal ANC operation. Such PDM-domain processing may be combined with an implementation of an adaptive ANC algorithm in a PCM domain using software (e.g., instructions for execution by a processor, such as a DSP), as the adaptive algorithm may be less sensitive to delay or latency incurred by converting a signal to the PCM domain. These hybrid adaptive ANC principles may be used to implement an adaptive ANC apparatus that has one or more of the following features: minimum processing delay (e.g., due to PDM-domain filtering), adaptive operation (e.g., due to adaptive algorithm in a PCM domain), a much lower cost of implementation (e.g., due to much lower cost of implementing an adaptive algorithm in the PCM domain than in hardware, and/or ability to execute the adaptive algorithm on a DSP, which is available in most communications devices).
An adaptive ANC method is disclosed that may be implemented at a low hardware cost. This method includes performing high-speed, low-latency filtering in a high-sampling-rate or “oversampled” domain (e.g., a PDM domain). Such filtering may be most easily implemented in hardware. The method also includes performing low-speed, high-latency adaptation of the filter in a low-sampling-rate domain (e.g., a PCM domain). Such adaptation may be most easily implemented in software (e.g., for execution by a DSP). The method may be implemented such that the filtering hardware and the adaptation routine share the same input source (e.g., reference noise signal SX10 and/or error signal SE10).
It may be desirable for the sampling rate of the high-sampling-rate domain to be at least twice (e.g., at least four, eight, sixteen, 32, 64, 128, or 256 times) the sampling rate of the low-sampling-rate domain. The ratio of the high sampling rate to the low sampling rate is also called the “oversampling rate” or OSR. Alternatively or additionally, the two digital domains may be configured such that the bit width of a signal in the low-sampling-rate domain is greater than (e.g., at least two, four, eight, or sixteen times) the bit width of a signal in the high-sampling-rate domain.
In the particular examples illustrated herein, the low-sampling-rate domain is implemented as a PCM domain and the high-sampling-rate domain is implemented as a PDM domain. As noted above, typical PCM sampling rates for audio communications applications include eight, eleven, twelve, sixteen, thirty-two, and forty-eight kilohertz, and typical OSRs include 4, 8, 16, 32, 64, 128, and 256, and all forty-two combinations of these parameters are expressly contemplated and hereby disclosed. However, it is also expressly contemplated and hereby disclosed that these examples are merely illustrative and not limiting. For example, the method may be implemented such that both of the low-sampling-rate domain (e.g., in which adaptation is performed in software) and the high-sampling-rate domain (e.g., in which filtering is performed in hardware) are PCM domains.
It may be desirable to design the filter coefficient values in a low-sampling-rate domain and to upsample them at the OSR to obtain filter coefficient values for the oversampled clock domain. In such case, a separate copy of the filter may be running in each clock domain.
While high-speed filtering is important for ANC performance, adaptation of the ANC filter may typically be performed at a much lower rate (e.g., without high-frequency updates or a very short latency). For example, the latency for ANC adaptation (i.e., the interval between filter state updates) may be on the order of ten milliseconds (e.g., 10, 20, or 50 milliseconds). Such adaptation may be implemented in a PCM domain to be performed in software (e.g., for execution by a DSP). It may be more cost-effective to implement an adaptive algorithm in software (e.g., for execution by a generic DSP) than to implement a complex hardware solution for such slow processing. Additionally, a software implementation of an adaptive algorithm is typically much more flexible than a hardware implementation.
Apparatus AP112 also includes a PCM converter PC10 that is configured to convert reference noise signal SX10 from the PDM domain to a PCM domain, and a PDM converter PD10 that is configured to convert state selection signal SS10 from the PCM domain to the PDM domain. For example, PCM converter PC10 may be implemented to include a decimator, and PDM converter PD10 may be implemented to include an upsampler (e.g., an interpolator). Conversion between the PCM and PDM domains typically incurs a substantial delay or latency. Such conversion processes may include operations, such as lowpass filtering, downsampling, and/or signal conditioning filtering, that may generate a large delay or latency. For a case in which state selection signal SS10 indicates only a selection among component filters (e.g., of an implementation of component-selectable filter F50) or a gain update (e.g., for an implementation of gain-selectable filter F60), it is possible that upsampling of state selection signal SS10 to the PDM domain (i.e., PDM converter PD10) may be omitted.
Apparatus AP130 also includes an instance of PDM DAC PDA10 that is arranged to convert antinoise signal SY10 from the PDM domain to the analog domain, an instance PC10a of PCM converter PC10 that is arranged to convert reference noise signal SX10 from the analog domain to the PCM domain, and an instance PC10b of PCM converter PC10 that is arranged to convert error signal SE10 from the analog domain to the PCM domain. Apparatus AP130 also includes an instance of control block CB30 that is arranged to generate state selection signal SS10a based on information from reference noise signal SX10 and information from error signal SE10 in the PCM domain, an instance of control block CB20 that is arranged to generate state selection signal SS10b based on information from error signal SE10 in the PCM domain, an instance PD10a of PDM converter PD10 that is arranged to convert state selection signal SS10a from the PCM domain to the PDM domain, and an instance PD10b of PDM converter PD10 that is arranged to convert state selection signal SS10b from the PCM domain to the PDM domain.
Apparatus AP140 also includes an instance of PDM DAC PDA10 that is arranged to convert antinoise signal SY10 from the PDM domain to the analog domain, an instance PC10a of PCM converter PC10 that is arranged to convert reference noise signal SX10 from the analog domain to the PCM domain, and an instance PC10b of PCM converter PC10 that is arranged to convert error signal SE10 from the analog domain to the PCM domain. Apparatus AP130 also includes an instance of control block CB32 that is arranged to generate state selection signals SS10ff and SS10fb, based on information from reference noise signal SX10 and information from error signal SE10 in the PCM domain. Apparatus AP140 also includes an instance PD10a of PDM converter PD10 that is arranged to convert state selection signal SS10ff from the PCM domain to the PDM domain, and an instance PD10b of PDM converter PD10 that is arranged to convert state selection signal SS10fb from the PCM domain to the PDM domain.
The dotted box in each of
There may be differences between the fixed ANC structure and the DSP regarding the transfer functions of the analog-to-digital conversion, digital-to-analog conversion, microphone preamplifier, and loudspeaker amplifier. It may be desirable to configure the codec (e.g., the FPGA) to convert the audio signals (e.g., signals x, y, a, e) from the OSR (e.g., PDM) domain to the adaptation (e.g., PCM) domain, and to route the PCM audio input and output signals from the fixed ANC structure directly to the DSP over an I2S (Inter-IC Sound, Philips, June 1996) interface. In such case, it may be desirable to configure the DSP I2S in slave mode.
The DSP CPU10 may be configured to transmit state selection signal SS10 (e.g., updated filter coefficient values) to the fixed codec (e.g., FPGA) via a UART (Universal Asynchronous Receive and Transmission) or I2C interface. (“Fixed codec” means that adaptation of the filter coefficients is not performed within the codec.) It may be desirable to configure apparatus AP200 such that the update values carried by state selection signal SS10 are stored in memory blocks or “buffers” within the FPGA.
A PDM-domain filter (e.g., filter FP10, FP20, FP12, FP22, FFP12, FBP12) may produce an output that has a bit width which is greater than that of its input. In such case, it may be desirable to reduce the bit width of the signal produced by the filter. For example, it may be desirable to convert the signal produced by the filter to a one-bit-wide digital signal upstream of the audio output stage (e.g., loudspeaker LS10 or its driving circuit).
An instance of PDM converter PD20 may be implemented within the PDM-domain filter, within PDM DAC PDA10, and/or between these two stages. It is noted that the PDM-domain filter may also be implemented to include a cascade of two or more filtering stages (each receiving a one-bit-wide signal and producing a signal having a bit width greater than one, with at least one stage being selectably configurable according to state selection signal SS10) alternating with respective converter stages (each configured to convert its input to a one-bit-wide signal).
An audible audio discontinuity may occur if the coefficient update rate is too low (i.e., if the interval between filter state updates is too long). It may be desirable to implement proper audio ramping within the fixed ANC structure. In one such example, the adaptable ANC filter (e.g., filter F12, F22, F40, FF12, FB12, F110, FG10, FG20, FP12, FP22, FP40, FFP12, FBP12, or FP110) is implemented to include two copies running in parallel, with one copy providing the output while the other is being updated. For example, after buffering of the updated filter coefficient values is done, the input signal is fed to the second filter copy and the audio is ramped (e.g., according to proper ramping time constants) to the second filter copy. Such ramping may be performed, for example, by mixing the outputs of the two filter copies and fading from one output to the other. When the ramping operation is completed, the coefficient values of the first filter copy may be updated. Updating filter coefficient values at the output zero crossing point may also reduce audio distortion caused by discontinuity.
As noted above, it may be desirable to configure any of the implementations of ANC apparatus A10 or A20 described herein (e.g., apparatus AP10, AP20, AP112, AP114, AP116, AP122, AP130, AP140) to mix antinoise signal SY20 with a desired sound signal SD10 to produce an audio output signal S010 for reproduction by loudspeaker LS10.
A system including an implementation of apparatus A10 or A20 may be configured to use antinoise signal SY10 (or audio output signal S010) to drive a loudspeaker directly. Alternatively, it may be desirable to implement such an apparatus to include an audio output stage that is configured to drive the loudspeaker. For example, such an audio output stage may be configured to amplify the audio signal, to provide impedance matching and/or gain control, and/or to perform any other desired audio processing operation. In such case, it may be desirable for the secondary acoustic path estimate Sest(z) to include the response of the audio output stage.
It may be desirable to implement the adaptive ANC algorithm to process reference noise signal SX10 as a multichannel signal, in which each channel is based on a signal from a different microphone. Multichannel ANC processing may be used, for example, to support noise suppression at higher frequencies, to distinguish sound sources from one another (e.g., based on direction and/or distance), and/or to attenuate nonstationary noise. Such an implementation of control block CB10, CB30, CB32, CB34, or CB36 may be configured to execute a multichannel adaptive algorithm (e.g., a multichannel LMS algorithm, such as a multichannel FXLMS or FELMS algorithm)
In a device that includes an ANC apparatus as described herein, it may be desirable to use reference noise signal SX10 and/or error signal SE10 for other audio processing operations as well, such as noise reduction. In addition to gain adaptation as described above, for example, the subband reference noise and/or error signal spectrum may also be used by other algorithms to enhance voice and/or music, such as frequency-domain equalization, multiband dynamic range control, equalization of a reproduced audio signal based on an ambient noise estimate, etc. It is also noted that any of apparatus AP112, AP114, AP116, AP122, AP130, and AP140 may also be implemented to include direct conversion of reference noise signal SX10 and/or error signal SE10 from analog to the PCM domain (e.g., in place of PDM-to-PCM conversion via PCM converter PC10). Such an implementation may be desirable, for example, in an integration with another apparatus in which such analog-to-PCM conversion is already available.
In an ANC system that includes an error microphone (e.g., a feedback ANC system), it may be desirable for the error microphone to be disposed within the acoustic field generated by the loudspeaker. For example, it may be desirable for the error microphone to be disposed with the loudspeaker within the earcup of a headphone. It may also be desirable for the error microphone to be acoustically insulated from the environmental noise.
An earpiece or other headset having one or more microphones is one kind of portable communications device that may include an implementation of an ANC apparatus as described herein. Such a headset may be wired or wireless. For example, a wireless headset may be configured to support half- or full-duplex telephony via communication with a telephone device such as a cellular telephone handset (e.g., using a version of the Bluetooth™ protocol as promulgated by the Bluetooth Special Interest Group, Inc., Bellevue, Wash.).
Typically each microphone of array R100 is mounted within the device behind one or more small holes in the housing that serve as an acoustic port.
A headset may also include a securing device, such as ear hook Z30, which is typically detachable from the headset. An external ear hook may be reversible, for example, to allow the user to configure the headset for use on either ear. Alternatively, the earphone of a headset may be designed as an internal securing device (e.g., an earplug) which may include a removable earpiece to allow different users to use an earpiece of different size (e.g., diameter) for better fit to the outer portion of the particular user's ear canal. The earphone of a headset may also include a microphone arranged to pick up an acoustic error signal (e.g., error microphone ME10).
The foregoing presentation of the described configurations is provided to enable any person skilled in the art to make or use the methods and other structures disclosed herein. The flowcharts, block diagrams, state diagrams, and other structures shown and described herein are examples only, and other variants of these structures are also within the scope of the disclosure. Various modifications to these configurations are possible, and the generic principles presented herein may be applied to other configurations as well. Thus, the present disclosure is not intended to be limited to the configurations shown above but rather is to be accorded the widest scope consistent with the principles and novel features disclosed in any fashion herein, including in the attached claims as filed, which form a part of the original disclosure.
Those of skill in the art will understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, and symbols that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Important design requirements for implementation of a configuration as disclosed herein may include minimizing processing delay and/or computational complexity (typically measured in millions of instructions per second or MIPS), especially for computation-intensive applications, such as playback of compressed audio or audiovisual information (e.g., a file or stream encoded according to a compression format, such as one of the examples identified herein) or applications for voice communications at higher sampling rates (e.g., for wideband communications).
The various elements of an implementation of an apparatus as disclosed herein (e.g., apparatus A10, A12, A14, A16, A20, A22, A30, A40, A50, A60, AP10, AP20, AP112, AP114, AP116, AP122, AP130, AP140, AP200) may be embodied in any combination of hardware, software, and/or firmware that is deemed suitable for the intended application. For example, such elements may be fabricated as electronic and/or optical devices residing, for example, on the same chip or among two or more chips in a chipset. One example of such a device is a fixed or programmable array of logic elements, such as transistors or logic gates, and any of these elements may be implemented as one or more such arrays. Any two or more, or even all, of these elements may be implemented within the same array or arrays. Such an array or arrays may be implemented within one or more chips (for example, within a chipset including two or more chips). It is also noted that within each of apparatus A12, A14, A16, A22, A30, and A40, the combination of the ANC filter and the associated control block(s) is itself an ANC apparatus. Likewise, within each of apparatus AP10 and AP20, the combination of the ANC filter and the associated converters is itself an ANC apparatus. Likewise, within each of apparatus AP112, AP114, AP116, AP122, AP130, and AP140, the combination of the ANC filter and the associated control block(s) and converters is itself an ANC apparatus.
One or more elements of the various implementations of the apparatus disclosed herein may also be implemented in whole or in part as one or more sets of instructions arranged to execute on one or more fixed or programmable arrays of logic elements, such as microprocessors, embedded processors, IP cores, digital signal processors, FPGAs (field-programmable gate arrays), ASSPs (application-specific standard products), and ASICs (application-specific integrated circuits). Any of the various elements of an implementation of an apparatus as disclosed herein may also be embodied as one or more computers (e.g., machines including one or more arrays programmed to execute one or more sets or sequences of instructions, also called “processors”), and any two or more, or even all, of these elements may be implemented within the same such computer or computers.
Those of skill will appreciate that the various illustrative modules, logical blocks, circuits, and operations described in connection with the configurations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. Such modules, logical blocks, circuits, and operations may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an ASIC or ASSP, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to produce the configuration as disclosed herein. For example, such a configuration may be implemented at least in part as a hard-wired circuit, as a circuit configuration fabricated into an application-specific integrated circuit, or as a firmware program loaded into non-volatile storage or a software program loaded from or into a data storage medium as machine-readable code, such code being instructions executable by an array of logic elements such as a general purpose processor or other digital signal processing unit. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. A software module may reside in RAM (random-access memory), ROM (read-only memory), nonvolatile RAM (NVRAM) such as flash RAM, erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An illustrative storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
It is noted that the various operations disclosed herein may be performed by a array of logic elements such as a processor, and that the various elements of an apparatus as described herein may be implemented as modules designed to execute on such an array. As used herein, the term “module” or “sub-module” can refer to any method, apparatus, device, unit or computer-readable data storage medium that includes computer instructions (e.g., logical expressions) in software, hardware or firmware form. It is to be understood that multiple modules or systems can be combined into one module or system and one module or system can be separated into multiple modules or systems to perform the same functions. When implemented in software or other computer-executable instructions, the elements of a process are essentially the code segments to perform the related tasks, such as with routines, programs, objects, components, data structures, and the like. The term “software” should be understood to include source code, assembly language code, machine code, binary code, firmware, macrocode, microcode, any one or more sets or sequences of instructions executable by an array of logic elements, and any combination of such examples. The program or code segments can be stored in a processor readable medium or transmitted by a computer data signal embodied in a carrier wave over a transmission medium or communication link.
The implementations of methods, schemes, and techniques disclosed herein may also be tangibly embodied (for example, in one or more computer-readable media as listed herein) as one or more sets of instructions readable and/or executable by a machine including an array of logic elements (e.g., a processor, microprocessor, microcontroller, or other finite state machine). The term “computer-readable medium” may include any medium that can store or transfer information, including volatile, nonvolatile, removable and non-removable media. Examples of a computer-readable medium include an electronic circuit, a semiconductor memory device, a ROM, a flash memory, an erasable ROM (EROM), a floppy diskette or other magnetic storage, a CD-ROM/DVD or other optical storage, a hard disk, a fiber optic medium, a radio frequency (RF) link, or any other medium which can be used to store the desired information and which can be accessed. The computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic, RF links, etc. The code segments may be downloaded via computer networks such as the Internet or an intranet. In any case, the scope of the present disclosure should not be construed as limited by such embodiments.
Each of the tasks of the methods described herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. In a typical application of an implementation of a method as disclosed herein, an array of logic elements (e.g., logic gates) is configured to perform one, more than one, or even all of the various tasks of the method. One or more (possibly all) of the tasks may also be implemented as code (e.g., one or more sets of instructions), embodied in a computer program product (e.g., one or more data storage media such as disks, flash or other nonvolatile memory cards, semiconductor memory chips, etc.), that is readable and/or executable by a machine (e.g., a computer) including an array of logic elements (e.g., a processor, microprocessor, microcontroller, or other finite state machine). The tasks of an implementation of a method as disclosed herein may also be performed by more than one such array or machine. In these or other implementations, the tasks may be performed within a device for wireless communications such as a cellular telephone or other device having such communications capability. Such a device may be configured to communicate with circuit-switched and/or packet-switched networks (e.g., using one or more protocols such as VOIP). For example, such a device may include RF circuitry configured to receive and/or transmit encoded frames.
It is expressly disclosed that the various operations disclosed herein may be performed by a portable communications device such as a handset, headset, or portable digital assistant (PDA), and that the various apparatus described herein may be included with such a device. A typical real-time (e.g., online) application is a telephone conversation conducted using such a mobile device.
In one or more exemplary embodiments, the operations described herein may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, such operations may be stored on or transmitted over a computer-readable medium as one or more instructions or code. The term “computer-readable media” includes both computer storage media and communication media, including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise an array of storage elements, such as semiconductor memory (which may include without limitation dynamic or static RAM, ROM, EEPROM, and/or flash RAM), or ferroelectric, magnetoresistive, ovonic, polymeric, or phase-change memory; CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code, in the form of instructions or data structures, in tangible structures that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and/or microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technology such as infrared, radio, and/or microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray Disc™ (Blu-Ray Disc Association, Universal City, Calif.), where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
An acoustic signal processing apparatus as described herein may be incorporated into an electronic device that accepts speech input in order to control certain operations, or may otherwise benefit from separation of desired noises from background noises, such as communications devices. Many applications may benefit from enhancing or separating clear desired sound from background sounds originating from multiple directions. Such applications may include human-machine interfaces in electronic or computing devices which incorporate capabilities such as voice recognition and detection, speech enhancement and separation, voice-activated control, and the like. It may be desirable to implement such an acoustic signal processing apparatus to be suitable in devices that only provide limited processing capabilities.
The elements of the various implementations of the modules, elements, and devices described herein may be fabricated as electronic and/or optical devices residing, for example, on the same chip or among two or more chips in a chipset. One example of such a device is a fixed or programmable array of logic elements, such as transistors or gates. One or more elements of the various implementations of the apparatus described herein may also be implemented in whole or in part as one or more sets of instructions arranged to execute on one or more fixed or programmable arrays of logic elements such as microprocessors, embedded processors, IP cores, digital signal processors, FPGAs, ASSPs, and ASICs.
It is possible for one or more elements of an implementation of an apparatus as described herein to be used to perform tasks or execute other sets of instructions that are not directly related to an operation of the apparatus, such as a task relating to another operation of a device or system in which the apparatus is embedded. It is also possible for one or more elements of an implementation of such an apparatus to have structure in common (e.g., a processor used to execute portions of code corresponding to different elements at different times, a set of instructions executed to perform tasks corresponding to different elements at different times, or an arrangement of electronic and/or optical devices performing operations for different elements at different times).
This patent application is a continuation application of U.S. patent application Ser. No. 14/270,096, entitled “SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR ADAPTIVE ACTIVE NOISE CANCELLATION,” filed May 5, 2014, which is a continuation of and claims priority to U.S. Pat. No. 8,737,636, entitled “SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR ADAPTIVE ACTIVE NOISE CANCELLATION,” granted May 27, 2014, which claims priority to U.S. Provisional Pat. Appl. No. 61/224,616, entitled “SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR ADAPTIVE ACTIVE NOISE CANCELLATION,” filed Jul. 10, 2009; to U.S. Provisional Pat. Appl. No. 61/228,108, entitled “SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR ADAPTIVE ACTIVE NOISE CANCELLATION,” filed Jul. 23, 2009; and to U.S. Provisional Pat. Appl. No. 61/359,977, entitled “SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR ADAPTIVE ACTIVE NOISE CANCELLATION,” filed Jun. 30, 2010. The present application for patent claims priority to U.S. Provisional Pat. Appl. No. 61/224,616, entitled “SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR ADAPTIVE ACTIVE NOISE CANCELLATION,” filed Jul. 10, 2009 and assigned to the assignee hereof. The present application for patent also claims priority to U.S. Provisional Pat. Appl. No. 61/228,108, entitled “SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR ADAPTIVE ACTIVE NOISE CANCELLATION,” filed Jul. 23, 2009 and assigned to the assignee hereof. The present application for patent also claims priority to U.S. Provisional Pat. Appl. No. 61/359,977, entitled “SYSTEMS, METHODS, APPARATUS, AND COMPUTER-READABLE MEDIA FOR ADAPTIVE ACTIVE NOISE CANCELLATION,” filed Jun. 30, 2010 and assigned to the assignee hereof.
Number | Name | Date | Kind |
---|---|---|---|
5337366 | Eguchi et al. | Aug 1994 | A |
5388080 | Feintuch et al. | Feb 1995 | A |
5444786 | Raviv | Aug 1995 | A |
5852667 | Pan et al. | Dec 1998 | A |
6728380 | Zhu et al. | Apr 2004 | B1 |
7522877 | Avellan et al. | Apr 2009 | B1 |
8073151 | Joho et al. | Dec 2011 | B2 |
8090114 | Burge et al. | Jan 2012 | B2 |
8315405 | Bakalos et al. | Nov 2012 | B2 |
8345888 | Carreras et al. | Jan 2013 | B2 |
8611553 | Bakalos | Dec 2013 | B2 |
8737636 | Park et al. | May 2014 | B2 |
8908876 | Magrath | Dec 2014 | B2 |
20010053229 | Azizi et al. | Dec 2001 | A1 |
20030228019 | Eichler | Dec 2003 | A1 |
20050074129 | Fan | Apr 2005 | A1 |
20050075870 | Chamberlain | Apr 2005 | A1 |
20050251389 | Zangi | Nov 2005 | A1 |
20060188107 | Inoue et al. | Aug 2006 | A1 |
20060251266 | Saunders et al. | Nov 2006 | A1 |
20070223755 | Salvetti et al. | Sep 2007 | A1 |
20080159549 | Copley et al. | Jul 2008 | A1 |
20080310645 | Itabashi | Dec 2008 | A1 |
20090041260 | Jorgensen et al. | Feb 2009 | A1 |
20090074199 | Kierstein | Mar 2009 | A1 |
20090220101 | Bachmann | Sep 2009 | A1 |
20090262951 | Togawa et al. | Oct 2009 | A1 |
20100061564 | Clemow et al. | Mar 2010 | A1 |
20100105447 | Sibbald et al. | Apr 2010 | A1 |
20100166199 | Seydoux | Jul 2010 | A1 |
20100266137 | Sibbald et al. | Oct 2010 | A1 |
20100310086 | Magrath | Dec 2010 | A1 |
20110158419 | Theverapperuma et al. | Jun 2011 | A1 |
20110286606 | Al-Naimi et al. | Nov 2011 | A1 |
20140233750 | Park et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
0560364 | Sep 1993 | EP |
1397024 | Mar 2004 | EP |
5176211 | Jul 1993 | JP |
07253791 | Oct 1995 | JP |
2005257720 | Sep 2005 | JP |
2009510503 | Mar 2009 | JP |
522665 | Mar 2003 | TW |
564654 | Dec 2003 | TW |
569183 | Jan 2004 | TW |
I220816 | Sep 2004 | TW |
I232032 | May 2005 | TW |
WO-02093774 | Nov 2002 | WO |
WO-2009081193 | Jul 2009 | WO |
Entry |
---|
Davari P., “Designing an Active Noise Reduction Headphone”, M.Sc. Thesis, Mazandaran Univ., Jun. 9, 2008. 71 pp. |
International Preliminary Report on Patentability—PCT/US2010/041633, The International Bureau of WIPO—Geneva, Switzerland, Jan. 18, 2012. |
International Search Report and Written Opinion—PCT/US2010/041633, International Search Authority—European Patent Office—Oct. 25, 2010. |
Kim, I.S., et al., Constraint filtered-x and filterd-u least-mean-square algorithms for the active control of noise in ducts. J. Acoust. Soc. Am. 95(6), Jun. 1994, pp. 3379-3389. |
Kuo, S.M., et al., Active Noise Control: A Tutorial Review. Proc. IEEE, vol. 87, No. 6, Jun. 1999, pp. 943-973. |
Kuo, S.M., et al., Review of DSP Algorithms for Active Noise Control. Proc. 2000 IEEE Intl. Conf. on Control App., Anchorage, AK, Sep. 25-27, 2000, pp. 243-248. |
Manikandan, S. Literature survey of active noise control systems. Academic Open Internet Journal (www-dot-acadjournal-dot-com), vol. 17, 2006, 11 pp. |
“Mosquera, C., et al., Adaptive IIR filters for active noise control. Sixth Intl. Congress on Sound and Vibration, Copenhagen, DK, Jul. 5-8, 1999, pp. 1571-1582.” |
Noor, et al., “Improved, Low Complexity Noise Cancellation Technique for Speech Signals”, Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia. 2009. pp. 272-278. |
Taiwan Search Report—TW099122904—TIPO—Oct. 24, 2013. |
Number | Date | Country | |
---|---|---|---|
20160267900 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61224616 | Jul 2009 | US | |
61228108 | Jul 2009 | US | |
61359977 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14270096 | May 2014 | US |
Child | 15162311 | US | |
Parent | 12833780 | Jul 2010 | US |
Child | 14270096 | US |