Field of the Invention
The methods and systems disclosed herein generally relate to the field of interacting oscillators, and more specifically the field of interacting or coupled Yo-Yos in a series.
Description of the Related Art
The first Yo-Yo patent was filed on 1866 by Haven & Hettrich U.S. Pat. No. 59,745. Since then there have been almost 250 patents for different realizations. Most of the patents cover Yo-Yo's of different shape and ornaments. In the prior art the toy has been referred as disc, incroyable, bandalore, return top, and emigrette. The standard Yo-Yo consists of two parallel discs connected by an axle at their center. One end of the string is connected to the axle between the discs. The other end of the string is held by the user's hand. When up and down motion of the hand is initiated the string is wrapped or unwrapped around the axle. The string tension force and the weight of the two discs cause the rotational and translational motion of Yo-Yo. The total energy of the Yo-Yo can be separated in rotational kinetic energy, translational kinetic energy and potential energy. Rotational energy in particular helps to preserve the rotational plane of the Yo-Yo. A skilled operator knows how to enhance and control the rotational motion around the axle and avoid the precession around the vertical axis. It is the latest that can cause the Yo-Yo to stop eventually.
The modifications introduced to date on conventional Yo-Yos can be separated into three groups: In the first group are included aesthetic modifications of Yo-Yo disks shapes, different ornaments attached to them and any other addition that doesn't have an effect on Yo-Yo operation. In this group can also be included electronics, light effects and their interplay with rotational motion. In the second group are included the modifications that improve the Yo-Yo stability via rotational-favored shapes, weight distribution and the like. In the third group can be included the modifications that aim to add new functions and operating modes. The addition of bearing rings at axle-string contact, string separators for multiple return and the like can be included within this group. However, these mentioned developments are mere modifications and extensions of the same basic Yo-Yo apparatus long in existence.
Therefore, there exists a need for a system and method for Yo-Yos with structural enhancements impacting the function and physical motion of a Yo-Yo, and a plurality of Yo-Yos operating in conjunction with one another.
Provided herein are methods and systems of Yo-Yos comprising a first Yo-Yo having a first disk, a second disk, third disk, and a fourth disk, the first, second, third and fourth disks being spaced apart from one another by a first axle segment, a second axle segment and a third axle segment; a second Yo-Yo having a first disk and a second disk separated by a central axle segment, the second Yo-Yo is spaced apart from the first Yo-Yo; a first string having a first end and a second end, the first end coupled to the first axle segment of the first Yo-Yo and the second end is coupled to the third axle segment, wherein a portion of the first string between the first end and the second end is configured to be held by a user; and a second string having a first end and second end, the first end of the second string is coupled to the second axle segment of the first Yo-Yo and the second end of the second string is coupled to the central axle segment of the second Yo-Yo, wherein the first string and the second string are coupled to first and second Yo-Yos so that the first and second Yo-Yos may rotate to cause linear and angular movement.
In embodiments, the first string may be wrapped around the first axle segment and the third axle segment, and the first end of the second string may be wrapped around the second axle segment of the first Yo-Yo and the second end of the second string is wrapped around the central axle segment of the second Yo-Yo.
In embodiments, the movement of the first and second Yo-Yos may occur simultaneously.
In embodiments, a length of the first and second strings may be equal.
In embodiments, a length of the first string may be greater than the second string.
In embodiments, a weight of the first and second Yo-Yos may be equal.
In embodiments, the weight of the first Yo-Yo may be greater than the second Yo-Yo.
In embodiments, the acceleration and rotational velocity of the first, and second Yo-Yos may be different.
Provided herein are methods and systems of of-Yo-Yos comprising a first Yo-Yo having a first disk, a second disk, third disk, and a fourth disk, the first, second, third and fourth disks being spaced apart from one another by a first axle segment, a second axle segment and a third axle segment; a second Yo-Yo having a first disk, second disk, and a third disk separated by a first axle segment, and a second axle segment, wherein the second Yo-Yo is spaced apart from the first Yo-Yo; a first string having a first end and a second end, the first end of the first string is coupled to the first axle segment of the first Yo-Yo and the second end is coupled to the first axle segment of the second Yo-Yo; a second string having a first end and second end, the first end of the second string is coupled to the third axle segment of the first Yo-Yo and the second end of the second string is coupled to the second axle segment of the second Yo-Yo; and a third string having a first end and second end, the first end of the third string is coupled to the second axle segment of the first Yo-Yo and the second end of the third string is a free end adapted to be held by a user.
Provided herein are methods and systems of Yo-Yos comprising a first Yo-Yo having a first disk, a second disk, third disk, and a fourth disk, the first, second, third and fourth disks being spaced apart from one another by a first axle segment, a second axle segment and a third axle segment; a second Yo-Yo having a first disk, a second disk, third disk, and a fourth disk, the first, second, third and fourth disks being spaced apart from one another by a first axle segment, a second axle segment and a third axle segment, the second Yo-Yo is spaced apart from the first Yo-Yo; a third Yo-Yo having a first disk and a second disk separated by a central axle segment, the third Yo-Yo is spaced apart from the second Yo-Yo; a first string having a first end and a second end, the first end coupled to the first axle segment of the first Yo-Yo and the second end is coupled to the first axle segment of the second Yo-Yo; a second string having a first end and a second end, the first end coupled to the third axle segment of the first Yo-Yo and the second end is coupled to the third axle segment of the second Yo-Yo; a third string having a first end and a second end, the first end coupled to the second axle segment of the first Yo-Yo and the second end is a free end configured to be held by a user; and a fourth string having a first end and a second end, the first end of the fourth string coupled to the central axle segment of the third Yo-Yo and the second end of the fourth string is coupled to the second axle segment of the second Yo-Yo.
Provided herein are methods and systems of Yo-Yo comprising a first disk, a second disk, third disk, and a fourth disk, the first, second, third and fourth disks being spaced apart from one another by a first axle segment, a second axle segment and a third axle segment; a hollow cylindrical axle extending from the first disk to the fourth disk; and a string adapted to extend through an opening on the surface of the first axle segment extending though the hollow cylindrical axel through an opening on the surface of the third axle segment.
These and other systems, methods, objects, features, and advantages of the present disclosure will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.
The disclosure and the following detailed description of certain embodiments thereof may be understood by reference to the following figures:
In embodiments of the present invention methods and systems of improved Yo-Yo function are presented, including but not limited to an embodiment of at least two strongly coupled Yo-Yos. An operator through his hand's upward and downward motion, may control the motion of the second Yo-Yo through the first. The string that connects the two Yo-Yos may be wrapped or unwrapped on both ends simultaneously.
In embodiments, the methods and systems of the present invention may consist of multiple Yo-Yos in series, connected through strings that may be wound or unwound in the same or opposite directions around the Yo-Yo axles and may strongly affect the motion of each other. In one operating mode, the Yo-Yos may be prevented from rotating independently. However, for limited time intervals different Yo-Yos in the system may be adjusted to rotate independently, and a Yo-Yo in the system may be set to rotate in a “sleeping mode”. The system described herein, through designing and controlling the rotational motion of its different Yo-Yos, may provide extra stability. By balancing the length and the winding speed of multiple return strings, the Yo-Yos precession around the vertical axis may be minimized.
In embodiments, multi return strings between Yo-Yos may be used. In another embodiment of the present invention, the coupling between Yo-Yos may be obtained through multi return strings and simple strings, and the mass distribution along the Yo-Yo axles may be modified via disks of different weights and/or by using single strings to connect the adjacent Yo-Yos. Yo-Yos in the system described herein may have a modular structure. The system also can be put together with modular pieces to provide different operating modes when is set in motion. The system may also operate as a mechanical filter. The driving oscillatory motion with a frequency that is provided by the ups and downs of the operator hand may be transferred sequentially to the coupled resonators or oscillators, which are the coupled Yo-Yos. The frequencies that coincide with the intrinsic frequencies of the coupled Yo-Yos or the so-called eigen-frequencies are accepted and therefore, can be transferred. These physical rotational oscillatory eigen-frequencies depend on Yo-Yos moment of inertia, their frictions with the strings and string tensions. The rest of the frequencies are rejected. In other words only some particular up and down frequencies of the operator hand can set and keep the system of the Yo-Yos in motion. Any other hand frequency that is higher or lower cannot. A skilled operator knows exactly the “bandwidths” around the Yo-Yo system rotational and oscillatory physical eigen-frequencies.
In embodiments of the present invention, an apparatus and system of multiple Yo-Yos may be connected by either a single or return strings that are wrapped around the axels of the said Yo-Yo's. The system of the multiple Yo-Yos, as described herein, may be set for a particular choice of Yo-Yo masses and string lengths and also a particular up and down frequency relative to the operator's hand, and may be tuned to determine a particular desired motion. In one embodiment, a Yo-Yo may consist of a system of two Yo-Yos. The first may be a standard Yo-Yo with a single string connected to its axel. The other end of the said string may be connected to the central axel segment of the second Yo-Yo. This central axel segment may be confined by two central string separators. The string may be wound or unwound at both ends. The second Yo-Yo may be an unconventional Yo-Yo that has at least two more string separators compared to a standard Yo-Yo to accommodate a return string that is held by the finger of the operator. To have a long lasting tuned motion, the two side lengths of the return string in this embodiment may be the same. The positioning of the string connecting points to the Yo-Yo axel are also symmetric towards the symmetry plane that passes through the center and perpendicular to the Yo-Yo axle. The system of three Yo-Yos in series may require at least two unconventional Yo-Yos with multiple string separators and a standard Yo-Yo. A balancing technique may be provided via a return string that connects the two non-standard Yo-Yos. The technique may provide a long lasting and balanced motion.
Additional details of the mechanism are shown in
In embodiments, another device for balancing the two lengths of the return string may be a simple ring that can be of any material and be lightweight.
In embodiments, similar principles as previously disclosed herein may be applied on more complicated Yo-Yo systems. For example,
In another embodiment, symmetric and asymmetric parts may be used to avoid the use of return strings without compromising the operation of the system may comprise the system of interacting Yo-Yos. The symmetry here is defined by the symmetry plane perpendicular at the center to the Yo-Yo axle.
In another embodiment, an additional Yo-Yo may be added to create a system of three interacting Yo-Yos via simple strings.
In the above described embodiments, the Yo-Yos are illustrated to be coupled to various axles segments of adjacent Yo-Yos. It should be noted that in other embodiments, different variations of coupling the Yo-Yos may be used. For example, in embodiment, one Yo-Yo may be coupled to a first side axle segment and in another embodiment, the same Yo-Yo may be coupled a second side axle segment rather than the first.
In embodiments, the yo-yo embodiments described herein may contain or be in communication with at least one sensor, which will hereinafter be referred to as sensors. Sensors, and the locations of such sensors, may vary based on the particular parameter being detected. Sensor types used in the yo-yo and/or associated with the yo-yo may include, but are not limited to, off-the-shelf sensors, accelerometer, magnetometer, gyroscope, microphone, light monitor, tension monitor, strain gauge, or some other type of gauge, monitor or sensor, including wearable devices. The sensors may be in communication with a software application, for example through a wireless communication means, including but not limited to Bluetooth, near field communication, or some other means. The software application may operate on a mobile device, including but not limited to a smart phone, laptop computer, tablet computer, or some other type of mobile device. The software application may receive data from the sensors associated with a Yo-Yo and store and present data visualizations of the performance of the Yo-Yo, including but not limited to the number of repetitions a user achieves, the speed of operation, or some other type of data related to the performance of the Yo-Yo. Such data may be shared, for example through social media platforms, and competitions with other users initiated and recorded, such as competitions for the length of uninterrupted use, speed of Yo-Yo operation, or some other criterion.
While only a few embodiments of the present disclosure have been shown and described, it will be obvious to those skilled in the art that many changes and modifications may be made thereunto without departing from the spirit and scope of the present disclosure as described in the following claims. All patent applications and patents, both foreign and domestic, and all other publications referenced herein are incorporated herein in their entireties to the full extent permitted by law.
The methods and systems described herein may be deployed in part or in whole through a machine that executes computer software, program codes, and/or instructions on a processor. The processor may be part of a server, client, network infrastructure, mobile computing platform, stationary computing platform, or other computing platform. A processor may be any kind of computational or processing device capable of executing program instructions, codes, binary instructions and the like. The processor may be or include a signal processor, digital processor, embedded processor, microprocessor or any variant such as a co-processor (math co-processor, graphic co-processor, communication co-processor and the like) and the like that may directly or indirectly facilitate execution of program code or program instructions stored thereon. In addition, the processor may enable execution of multiple programs, threads, and codes. The threads may be executed simultaneously to enhance the performance of the processor and to facilitate simultaneous operations of the application. By way of implementation, methods, program codes, program instructions and the like described herein may be implemented in one or more thread. The thread may spawn other threads that may have assigned priorities associated with them; the processor may execute these threads based on priority or any other order based on instructions provided in the program code. The processor may include memory that stores methods, codes, instructions and programs as described herein and elsewhere. The processor may access a storage medium through an interface that may store methods, codes, and instructions as described herein and elsewhere. The storage medium associated with the processor for storing methods, programs, codes, program instructions or other type of instructions capable of being executed by the computing or processing device may include but may not be limited to one or more of a CD-ROM, DVD, memory, hard disk, flash drive, RAM, ROM, cache and the like.
A processor may include one or more cores that may enhance speed and performance of a multiprocessor. In embodiments, the process may be a dual core processor, quad core processors, other chip-level multiprocessor and the like that combine two or more independent cores (called a die).
The methods and systems described herein may be deployed in part or in whole through a machine that executes computer software on a server, client, firewall, gateway, hub, router, or other such computer and/or networking hardware. The software program may be associated with a server that may include a file server, print server, domain server, internet server, intranet server and other variants such as secondary server, host server, distributed server and the like. The server may include one or more of memories, processors, computer readable transitory and/or non-transitory media, storage media, ports (physical and virtual), communication devices, and interfaces capable of accessing other servers, clients, machines, and devices through a wired or a wireless medium, and the like. The methods, programs or codes as described herein and elsewhere may be executed by the server. In addition, other devices required for execution of methods as described in this application may be considered as a part of the infrastructure associated with the server.
The server may provide an interface to other devices including, without limitation, clients, other servers, printers, database servers, print servers, file servers, communication servers, distributed servers and the like. Additionally, this coupling and/or connection may facilitate remote execution of program across the network. The networking of some or all of these devices may facilitate parallel processing of a program or method at one or more location without deviating from the scope of the disclosure. In addition, all the devices attached to the server through an interface may include at least one storage medium capable of storing methods, programs, code and/or instructions. A central repository may provide program instructions to be executed on different devices. In this implementation, the remote repository may act as a storage medium for program code, instructions, and programs.
The software program may be associated with a client that may include a file client, print client, domain client, internet client, intranet client and other variants such as secondary client, host client, distributed client and the like. The client may include one or more of memories, processors, computer readable transitory and/or non-transitory media, storage media, ports (physical and virtual), communication devices, and interfaces capable of accessing other clients, servers, machines, and devices through a wired or a wireless medium, and the like. The methods, programs or codes as described herein and elsewhere may be executed by the client. In addition, other devices required for execution of methods as described in this application may be considered as a part of the infrastructure associated with the client.
The client may provide an interface to other devices including, without limitation, servers, other clients, printers, database servers, print servers, file servers, communication servers, distributed servers and the like. Additionally, this coupling and/or connection may facilitate remote execution of program across the network. The networking of some or all of these devices may facilitate parallel processing of a program or method at one or more location without deviating from the scope of the disclosure. In addition, all the devices attached to the client through an interface may include at least one storage medium capable of storing methods, programs, applications, code and/or instructions. A central repository may provide program instructions to be executed on different devices. In this implementation, the remote repository may act as a storage medium for program code, instructions, and programs.
The methods and systems described herein may be deployed in part or in whole through network infrastructures. The network infrastructure may include elements such as computing devices, servers, routers, hubs, firewalls, clients, personal computers, communication devices, routing devices and other active and passive devices, modules and/or components as known in the art. The computing and/or non-computing device(s) associated with the network infrastructure may include, apart from other components, a storage medium such as flash memory, buffer, stack, RAM, ROM and the like. The processes, methods, program codes, instructions described herein and elsewhere may be executed by one or more of the network infrastructural elements.
The methods, program codes, and instructions described herein and elsewhere may be implemented on a cellular network having multiple cells. The cellular network may either be frequency division multiple access (FDMA) network or code division multiple access (CDMA) network. The cellular network may include mobile devices, cell sites, base stations, repeaters, antennas, towers, and the like.
The methods, programs codes, and instructions described herein and elsewhere may be implemented on or through mobile devices. The mobile devices may include navigation devices, cell phones, mobile phones, mobile personal digital assistants, laptops, palmtops, netbooks, pagers, electronic books readers, music players and the like. These devices may include, apart from other components, a storage medium such as a flash memory, buffer, RAM, ROM and one or more computing devices. The computing devices associated with mobile devices may be enabled to execute program codes, methods, and instructions stored thereon. Alternatively, the mobile devices may be configured to execute instructions in collaboration with other devices. The mobile devices may communicate with base stations interfaced with servers and configured to execute program codes. The mobile devices may communicate on a peer to peer network, mesh network, or other communications network. The program code may be stored on the storage medium associated with the server and executed by a computing device embedded within the server. The base station may include a computing device and a storage medium. The storage device may store program codes and instructions executed by the computing devices associated with the base station.
The computer software, program codes, and/or instructions may be stored and/or accessed on machine readable transitory and/or non-transitory media that may include: computer components, devices, and recording media that retain digital data used for computing for some interval of time; semiconductor storage known as random access memory (RAM); mass storage typically for more permanent storage, such as optical discs, forms of magnetic storage like hard disks, tapes, drums, cards and other types; processor registers, cache memory, volatile memory, non-volatile memory; optical storage such as CD, DVD; removable media such as flash memory (e.g. USB sticks or keys), floppy disks, magnetic tape, paper tape, punch cards, standalone RAM disks, Zip drives, removable mass storage, off-line, and the like; other computer memory such as dynamic memory, static memory, read/write storage, mutable storage, read only, random access, sequential access, location addressable, file addressable, content addressable, network attached storage, storage area network, bar codes, magnetic ink, and the like.
The methods and systems described herein may transform physical and/or or intangible items from one state to another. The methods and systems described herein may also transform data representing physical and/or intangible items from one state to another.
The elements described and depicted herein, including in flow charts and block diagrams throughout the figures, imply logical boundaries between the elements. However, according to software or hardware engineering practices, the depicted elements and the functions thereof may be implemented on machines through computer executable transitory and/or non-transitory media having a processor capable of executing program instructions stored thereon as a monolithic software structure, as standalone software modules, or as modules that employ external routines, code, services, and so forth, or any combination of these, and all such implementations may be within the scope of the present disclosure. Examples of such machines may include, but may not be limited to, personal digital assistants, laptops, personal computers, mobile phones, other handheld computing devices, medical equipment, wired or wireless communication devices, transducers, chips, calculators, satellites, tablet PCs, electronic books, gadgets, electronic devices, devices having artificial intelligence, computing devices, networking equipment, servers, routers and the like. Furthermore, the elements depicted in the flow chart and block diagrams or any other logical component may be implemented on a machine capable of executing program instructions. Thus, while the foregoing drawings and descriptions set forth functional aspects of the disclosed systems, no particular arrangement of software for implementing these functional aspects should be inferred from these descriptions unless explicitly stated or otherwise clear from the context. Similarly, it will be appreciated that the various steps identified and described above may be varied, and that the order of steps may be adapted to particular applications of the techniques disclosed herein. All such variations and modifications are intended to fall within the scope of this disclosure. As such, the depiction and/or description of an order for various steps should not be understood to require a particular order of execution for those steps, unless required by a particular application, or explicitly stated or otherwise clear from the context.
The methods and/or processes described above, and steps thereof, may be realized in hardware, software or any combination of hardware and software suitable for a particular application. The hardware may include a dedicated computing device or specific computing device or particular aspect or component of a specific computing device. The processes may be realized in one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors or other programmable device, along with internal and/or external memory. The processes may also, or instead, be embodied in an application specific integrated circuit, a programmable gate array, programmable array logic, or any other device or combination of devices that may be configured to process electronic signals. It will further be appreciated that one or more of the processes may be realized as a computer executable code capable of being executed on a machine readable medium.
The computer executable code may be created using a structured programming language such as C, an object oriented programming language such as C++, or any other high-level or low-level programming language (including assembly languages, hardware description languages, and database programming languages and technologies) that may be stored, compiled or interpreted to run on one of the above devices, as well as heterogeneous combinations of processors, processor architectures, or combinations of different hardware and software, or any other machine capable of executing program instructions.
Thus, in one aspect, each method described above and combinations thereof may be embodied in computer executable code that, when executing on one or more computing devices, performs the steps thereof. In another aspect, the methods may be embodied in systems that perform the steps thereof, and may be distributed across devices in a number of ways, or all of the functionality may be integrated into a dedicated, standalone device or other hardware. In another aspect, the means for performing the steps associated with the processes described above may include any of the hardware and/or software described above. All such permutations and combinations are intended to fall within the scope of the present disclosure.
While the disclosure has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present disclosure is not to be limited by the foregoing examples, but is to be understood in the broadest sense allowable by law.
The present application claims priority to the following provisional application, which is hereby incorporated by reference in its entirety: Prov. Appl. 62/255,445, filed Nov. 14, 2015, entitled Systems of Strongly Coupled Yo-Yos.
Number | Name | Date | Kind |
---|---|---|---|
1281832 | Post | Oct 1918 | A |
1311534 | Seymour | Jul 1919 | A |
1780385 | Guyot | Nov 1930 | A |
1854876 | Anzalone | Apr 1932 | A |
2380301 | Gavriles | Jul 1945 | A |
3175326 | Isaacson | Mar 1965 | A |
3228140 | White | Jan 1966 | A |
3899849 | Witiak | Aug 1975 | A |
3936974 | House | Feb 1976 | A |
4290225 | MacCarthy | Sep 1981 | A |
4318243 | MacCarthy | Mar 1982 | A |
4602783 | Foland | Jul 1986 | A |
5470269 | Ambroz | Nov 1995 | A |
D365372 | Churchman | Dec 1995 | S |
5628667 | Levi | May 1997 | A |
6110004 | McKinley | Aug 2000 | A |
6220920 | Baier | Apr 2001 | B1 |
6406082 | Telfer | Jun 2002 | B1 |
7419417 | VanKuiken | Sep 2008 | B1 |
20070099534 | Alas | May 2007 | A1 |
20130045658 | Amaral | Feb 2013 | A1 |
20150075299 | Riess | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
201537385 | Aug 2010 | CN |
201537385 | Aug 2010 | CN |
20000000168 | Jan 2000 | KR |
Entry |
---|
English machine translation of CN-201537385-U (Year: 2019). |
English machine translation of KR-20000000168-U (Year: 2019). |
PCT/US2016/046708, “Application Serial No. PCT/US2016/046708, International Search Report and Written Opinion dated Oct. 26, 2016”, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20170136374 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
62255445 | Nov 2015 | US |