1. Field of the Invention
This invention relates to multi-well modular templates, in general, and systems, apparatus, devices, and methods of well and multi-well modular template alignment, in particular.
2. Description of the Related Art
A multi-well template provides a structure that facilitates drilling operations from a single subsea location. Through use of the multi-well template, all well trees can be located within the structure, and production points can be reached by directional drilling through the respective wells.
Conventional multi-well subsea templates typically require a crane barge or other large support vessel for installation. Multi-well templates have also been limited in size due to structural integrity considerations and deployment equipment limitations.
Smaller well templates have been developed having, for example, nine well funnels. These templates are much easier to deploy and position as they can be deployed using a semi-submersible parked at a fixed location. The need for additional wells provided by the larger structures can, however, outweigh ease of deployment provided by the smaller templates.
Accordingly, recognized by the inventors is the need for a subsea template system which provides for the number well of a larger structures, but only requires the deployment equipment and associated resources of the smaller template structures.
The inventors have also recognized that two or more smaller templates can potentially be utilized form a larger template system. Recognized that to do so, however, would require a robust method to properly position and space the templates in relation to each other. This is particularly true in scenarios where the wells/templates may not be at the same height and/or where the seafloor is not level at the deployment location.
Accordingly, recognized by the inventors is the need for a system and apparatus and/or a spacer device for providing proper spacing and alignment of multiple multi-well templates and associated wells, along with the need for robust methods of employing an apparatus or device for providing/performing proper positioning and spacing between the templates.
In view of the foregoing, various embodiments of the present invention advantageously provide a system and apparatus and/or device for providing proper spacing and alignment of multiple multi-well templates and their associated wells. Various embodiments of the present invention also provide a robust methods of employing an apparatus or device for providing/performing proper positioning and spacing.
An example of a subsea multi-well drilling template system providing proper spacing and alignment of multiple multi-well templates and their associated wells, according to an embodiment of the present invention, includes a plurality of multi-well modular templates. Each modular template includes a plurality of well funnels connected to form a unitary template structure. A center well funnel of each template has a bore sized to slidably land about and circumscribe a low-pressure housing of a prior completed well to secure the modular template. Additionally, in an exemplary configuration, the well is upside down in relation to the other wells and has a centering ring to help guide the modular template over the well axis.
A second one of the well funnels, positioned along a perimeter of the unitary template structure, has a bore sized to slidably receive and circumscribe a low-pressure housing of a second well. The second well funnel also has a centering ring, but on the upper face of the well, to help guide the low-pressure housing of a second well into the bore.
A spacer device is used to precisely set the spacing and alignment of a third well in relation to the center well of the first modular template which will become the center well of a second multi-well modular template. The second multi-well modular template, typically of the same configuration as the first template, is landed upon/about the third well in a precise position and orientation in relation to the first multi-well modular template.
The spacer device is configured to connect to the second well of the first modular template to provide a positive reference for identifying the location where the third well should be drilled. The spacer device includes a main body having a bore sized to slidably receive and connect to outer surface portions of a low-pressure housing of the second well, a guide funnel having a bore sized to slidably receive a low-pressure housing of the third well, and an elongate spacing arm connected to and extending between the main body and the guide funnel. The spacer device can also include, among other components, an alignment frame configured to engage one or both of the guide arms during operational deployment of the spacer device about the low-pressure housing of the second well. The alignment frame has a pair of guide arms designed to angularly align the elongate spacing arm and the guide funnel to be in line with the well funnels associated with the first and the second wells/and/or one or both of the wells, themselves.
As noted above, various embodiments of the present invention also include methods of spacing and angularly aligning multiple multi-well modular drilling templates or one or more wells associated therewith. An example of such method includes providing first and second multi-well modular drilling templates, as described above. Each drilling template can include a central well funnel for connecting to a low-pressure wellhead housing of a well. At least one of the templates can include a pair of guide arms.
The method also includes providing a multi-well modular drilling template spacer device. The spacer device includes a main body having a bore sized to slidably receive and connect to outer surface portions of a low-pressure housing of a second well extending through one of a plurality of well funnels of a multi-well modular template connected to a low-pressure housing of a first well. The spacer device also includes a guide funnel having a bore sized to slidably receive a low-pressure housing of a third well and an elongate spacing arm connected to and extending between the main body and the guide funnel. The spacer device can also include an alignment frame having a pair of guide arms designed to angularly align the elongate spacing arm and the guide funnel to be in line with the well funnels associated with the first and/or the second wells.
The method further includes angularly orienting the spacer device when connecting the spacer device to the low-pressure housing of the second well so that the position of the guide funnel identifies a proper spacing and alignment of the third well. The step of angularly orienting the spacer device can include connecting the main body of the spacer device to the second well. This step of connecting can include the steps of engaging at least one of the pair of guide arms with one of a pair of acutely angled guide arm contact beams of the alignment frame connected to the elongate spacing arm to cause a simultaneously angular rotation of the spacer device about the low-pressure housing of the second well when landing the main body about the low-pressure housing of the second well.
The method can also include extending drilling equipment through the bore of the guide funnel to drill a wellbore of the third well, and extending the low-pressure housing of the third well through the bore of the guide funnel to position the low-pressure housing of the third well in the wellbore of the third well.
The method can further include disconnecting the spacer device from the low-pressure housing of the second well after inserting the low-pressure housing of the third well through the bore of the guide funnel and into the wellbore of the third well; and connecting the second multi-well modular template to the low-pressure housing of the third well. According to the exemplary configuration, the second multi-well modular drilling template is advantageously in a precisely desired position and orientation in relation to the first multi-well modular drilling template.
So that the manner in which the features and advantages of the invention, as well as others which will become apparent, may be understood in more detail, a more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings, which form a part of this specification. It is to be noted, however, that the drawings illustrate only various embodiments of the invention and are therefore not to be considered limiting of the invention's scope as it may include other effective embodiments as well.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, which illustrate embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. Prime notation, if used, indicates similar elements in alternative embodiments.
Various embodiments of the present invention advantageously provide a system and apparatus and/or device for providing proper spacing and alignment of multiple multi-well templates and/or associated wells. Various embodiments of the present invention also provide robust methods of employing an apparatus or device for providing proper spacing and alignment multiple multi-well templates and/or associated wells.
The first multi-well modular template 31 of the system 30 includes a plurality of well funnels 40 interconnected to form a unitary template structure. One of the well funnels 41, typically located in the center of the structure, is oriented upside down as compared to the other well funnels 40, i.e., with a centering ring 39 on the bottom side in order to provide for connecting template 31 to the first well 43. The well funnels 41 has a center bore 45 sized to slidably land about and circumscribe a low-pressure housing 47 of a first well 43. A second well funnel 42, along with the remaining “other well funnels 40, has its centering ring 51 extending upwardly in order to receive well equipment and components. The second well funnel 42 shown positioned along a perimeter of the unitary template structure, has a bore sized to slidably receive and circumscribe a low-pressure housing of a second well 53.
The second multi-well modular template 32 similarly includes a plurality of well funnels 40 interconnected to form a unitary template structure. Similar or identical to the first template 31, the second template 32 includes a well funnel 41 configured for land about and circumscribe the low-pressure housing of a third well 55 after the location of the third well 55 has been marked by the spacer device 33 and, in an exemplary configuration, when the well 55 has been prepared. Note, the spacer device 33 can be connected to a fourth well (not shown) in order to space and align more than two drilling templates with each other according to one or more embodiments of the present invention.
Referring to
According to the illustrated configuration, the main body 61 has a reverse-funnel shape to provide for landing about and connecting to low-pressure housing of the well 53 (or other well extending through one of the funnels 42). The main body 61 includes an at least approximately cylindrical portion 71 having the bore 63 extending therethrough. The bore 63 and sized so that the inner diameter substantially matches the outer diameter of the low-pressure housing of the well 53. A centering ring portion 73 is connected to or integral with a lower end of the cylindrical portion 71. Referring also to
Referring again to
Referring to
Referring to
Referring primarily to
The guide funnel 65 also includes a centering ring portion 93 connected to an upper end of the cylindrical portion 91 having a substantially frustroconical shape to help guide the low-pressure housing of the well 55 (or other similar well) into alignment with a central axis of the guide funnel during operational insertion thereof when the low-pressure housing is off axis.
One or more support flanges 95 are connected to and at least partially circumscribe substantial outer surface portions of the cylindrical portion 91 of the guide funnel 65 and are connected to the elongate spacing arm 69 to provide torsional support during off-center engagement of the centering ring portion 93.
Referring to
Referring primarily to
According to the illustrated configuration, the alignment frame 111 is connected to one or more support beams 121, 122, connected to one or more flanges 123, 124, 125 or the center I-beam 126 collectively defining the elongate spacing arm 69. The alignment frame 111 can include a pair of parallel side beams 131, 132 connected to or integral with the one or more support beams 121, 122 and spaced apart so that a distance between outer surface portions 135, 136, of the parallel side beams 131, 132, is insubstantially less than a distance between inner surface portions 137, 138, of the guide arms 101, 102, of the multi-well modular template 31. In the exemplary configuration, when ideally positioned, there will be a preselected clearance of, e.g., ½ in, between the outer surface portions 135, 136 of the parallel side beams 131, 132 of the alignment frame 111 and the inner surface portions 137, 138 (see
The alignment frame 111 includes a bottom beam 141 oriented approximately parallel to the one or more support beams 121, 122, perpendicular to the pair of parallel side beams 131, 132, and configured to engage the subsea floor (
Referring to FIGS. 7 and 10-12, the alignment frame 111 includes a pair of guide arm contact beams 151, 152, each separately extending between one of the opposite ends of the bottom beam 141 and a lower end of the respective side beam 131, 132. Each guide arm contact beam 151, 152, is oriented at a substantially acute angle to slidably contact the guide arms 101, 102 of the multi-well modular template 31 during operational positioning of the main body 61 of the spacer device 33 about the outer surface portions of the low-pressure housing of the well 53. According to the exemplary configuration, the alignment frame 111 has a lead of greater than 50 degrees which guides it to a proper alignment with multi-well modular template 31 as shown, for example, in
Referring to FIGS. 7 and 13-15, it can be seen that the spacer device 33 landed on the well 53 controls the positional orientation of the “third” well 55 to be drilled to within a preselected tolerance, e.g., plus or minus 1 inch and radial direction (i.e., plus or minus ½ inch radial misalignment), in the exemplary configuration. Similarly,
Referring to
Referring to
Various embodiments of the present invention provide several advantages. For example, an embodiment of the present invention provides a spacer (structural) device designed to position, align, and orient the drilling location of the primary (first) well to a secondary one within a full radial circumference of 360 degrees, and/or to accurately align multiple drilling templates, one to another. In an embodiment, the spacer device can compensate for axial alignment of the well depth within a specified distance to assure proper function according to the respective configuration. In an embodiment, the specified distance is plus or minus ½ meter from the main central well upon which the template is initially installed. In an embodiment, alignment of the subsequent third well is assured to within a specified distance along the axis of the main central well which the template is initially installed. In an embodiment, the specified distance is plus or minus ½ inch.
In an embodiment, due to the shape of the stab-in links on the dogs of the spacer and similar modification to a dedicated tool, the system/methods allow the template to have up to approximately 4 degrees of axial misalignment (off level) on the sea floor to facilitate stab in and out of the spacer with the fixed tool on the rig, when installed to the wellhead and while resting on the sea bed. In an embodiment, the dogs that latch spacer to wellhead housing are located at specific angle to prevent cocking of the spacer when impacted with loads from the drill pipe, casing preventing it from popping off. In an embodiment, the spacer allows for approximately 75000 lbf of impact loading from drill pipe, casing or any debris that could fall from the rig to the sea bed. In an embodiment, the spacer allows for approximately 10 in. of vertical misalignment with respect to the well being drilled from desired location. In an embodiment, the spacer can be reused multiple times as long as the arm of the spacer is within 10 in. of vertical misalignment. In an embodiment, the alignment frame allows easy stab in of the spacer to the template and prevent any rotational misalignment which could impact the position/location of the well being drilled.
In an embodiment, the spacer device provides options for installations to include the ability to run the device directly from a rig/vessel using either slings or a guide tool. According to an embodiment, multiple wells can be drilled at one location from a fixed or floating platform. In an embodiment, the spacer device is sized to be easily transported via rig, ship, barge, or land systems. In an embodiment, the spacer can be run through the moon pool of a rig as a single piece. In an embodiment, the spacer can be run with multiple tools; i.e., a dedicated tool attached to the spacer and/or a tool with slings. In an embodiment, the spacer can be retrieved using a fixed dedicated tool or sling tool. In an embodiment, the spacer can be rotated to orient itself to the template by applying a torque to the fixed tool without fear of disengaging the spacer from the tool. A set of recesses along the inner diameter of the latch ring can be provided to prevent tool rotation during rotation of the spacer. In an embodiment, the center of gravity of the spacer and be easily maintained irrespective of weather conditions while operating/using the spacer for its intended purpose. In an embodiment, the spacer allows a one-way installation with the template. In an embodiment, the spacer can be assembled/disassembled into one piece on the rig to facilitate transportation of the spacer through road, small ships, etc.
In the drawings and specification, there have been disclosed a typical preferred embodiment of the invention, and although specific terms are employed, the terms are used in a descriptive sense only and not for purposes of limitation. The invention has been described in considerable detail with specific reference to these illustrated embodiments. It will be apparent, however, that various modifications and changes can be made within the spirit and scope of the invention as described in the foregoing specification.