N/A
N/A
N/A
Celestial navigation is a collection of traditional mathematics and geometry methods for establishing and tracking the positions of vessels at sea based on astronomical observations. Even today in the age of the Global Positioning System (GPS) celestial navigation continues to be of interest to mariners and enthusiasts. For over a century the intercept method of Marcq St. Hilaire has been the workhorse technique of translating a chronometer-timed sextant altitude observation of a celestial object into a line of position (LOP) plotted on a nautical chart. The crossing of at least two separate LOPs then marks the vessel's location with accuracy that is adequate for sailing out of sight of land. The subject of this application is the T-plotter (
According to the intercept method of Marcq St. Hilaire a celestial LOP is characterized by the latitude (Lat) and the longitude (Lon) of the so-called assumed position (AP), the azimuth Z toward the geographical position (GP) of the observed celestial body, and the intercept distance (or intercept) a measured in nautical miles (NM), which can be directed either toward (T) or away (A) from the GP along the Z-azimuth line originating from the AP. The above mentioned quantities are the results of sight-reduction procedures that the navigator performs prior to the plotting of the LOP. Once these characteristics have been established, the LOP (along which the vessel is located) can be plotted on a chart as the line running perpendicular to the azimuth line and crossing it at the intercept point.
I am aware of the following two U.S. patents granted for inventions that provided solutions to tasks similar to the subject of this my application; these are US 2,916,207—M. G. Vohland, Dec. 8, 1959, and U.S. Pat. No. 4,170,065—D. W. Hiscott, Oct. 9, 1979. As I specify in my claims below, my invention is distinctly different from prior art due to: 1) the T-shape of the main body of the invention, and, 2) the mounting of the compass rose on a shuttle sliding relative to the device's main body.
The most common LOP plotting procedure involves the use of parallel rules for the transferring of azimuth bearings from the chart's compass rose onto the AP, dividers to mark the intercept distance based on the chart's latitude scale onto the azimuth line, and triangles for drawing both the azimuth line and the LOP. The T-plotter allows the same LOP to be drawn with a single plotting aid on charts of any scale, without the use of the intermediate azimuth line, and without the need to transfer bearings by sliding any device on the potentially uneven surface of the chart.
The T-plotter is made of a thin transparent material. The main body (the first member) of the T-plotter is T-shaped and consists of the plotting arm 1 and the arm of symmetry, also called the azimuth arm 2 (
It is hereby understood that the values of Lat, Lon, Z, a, and T/A are all known prior to the use of the T-plotter. The azimuth Z is dialed in by aligning the compass rose 6 with the azimuth lines 4 and 7; azimuths for TOWARD (T) intercepts are marked using the top side of the compass rose (i.e. the side that is closer to the plotting edge 3), and AWAY (A) intercepts are marked away from it. The T-plotter is then placed on the side of the nautical chart with its azimuth lines aligned with the latitude scale. The shuttle 5 is moved into the position in which the distance between the center of the compass rose 8 and the TAL 9 represents the intercept distance a in a manner that is consistent with the scale of the chart. (One arc-minute of latitude along any Earth's meridian equals one nautical mile.) With the shuttle 5 now in the required position and with the compass rose 6 in the correct orientation the T-plotter is placed on the chart with the compass rose aligned with the chart's cardinal directions and its center 8 over the AP. For short intercepts a the shuttle 5 will protrude over the plotting edge 3 which would obstruct the plotting of the LOP. Therefore the shuttle 5 is now moved sufficiently far away from the plotting edge 3 toward the bumper 10 while keeping the T-plotter's position and orientation on the chart. Lightly pressing on the plotting arm 1 will slightly bend the main body thus bringing the plotting edge 3 in contact with the chart. The LOP is now drawn on the chart along the plotting edge 3 of the T-plotter. If the available length of the azimuth arm 2 is insufficient to accommodate the prescribed intercept distance a, then a can be mathematically partitioned into several pieces, each short enough to fit along the azimuth arm 2 given the scale of the chart. In this case the LOP can be arrived at in stages, in which each previous location of TAL 9 becomes the new auxiliary “AP” for the next stage and its part of the intercept distance a. During all these steps the compass rose 6 is kept in its original orientation relative to the shuttle 5 based on azimuth Z and T/A.