T-post electric fence insulating devices

Information

  • Patent Grant
  • 10358840
  • Patent Number
    10,358,840
  • Date Filed
    Wednesday, September 13, 2017
    6 years ago
  • Date Issued
    Tuesday, July 23, 2019
    4 years ago
Abstract
A T-post insulator that includes means to attach in a plurality of locations around the post. The insulator portion of the device consists of an outer surface that wraps around the T-post about 270 degrees for optimal insulation of the wire. The wire is installed through means of a snap in action from the top center of the wire around a retaining post. The wire is insulated fully regardless if installed on a straight run or a corner installation where wrapping around the T-post is required.
Description
BACKGROUND
Field of the Invention

The present invention relates to an electric fence insulating device. Electric fences are used on farms to contain animals. In a typical electrified fence, the horizontal wire carries the charge and must be insulated from ground. The fence post is typically grounded, literally pounded into the ground, and so insulators are necessarily placed in between the charged horizontal wire and the grounded vertical fence post. The present invention is an improvement over the previous electric fence insulating devices.


Description of the Related Art

Regular insulators connect to only one part of the T-post and do not provide adequate insulation for the electric wire. The prior art T-post insulators are generally rod shaped and extend perpendicularly from the fence post and/or have one or more “claw” structures to engage the electric wire.


Insulators designed for T-posts are not well suited for corners that use T-posts and do not provide sufficient insulation for the electric wire when making turns.


Insulators designed for T-posts only attach to the post in one direction and are not well suited for posts that are not driven into the ground at the correct angle. Also these insulators are often time consuming to install. Certain steps: e.g. crimping, nailing, screwing etc. are required to secure each insulator to the fence post.


Also, there are no insulators that can attach to the T-post in multiple orientations and that can provide adequate insulation for both straight runs and corners.


SUMMARY OF THE INVENTION

The insulator described in this application can be adopted for use with any size or shape fence post. A preferred fence post, however, is the T-post and a preferred embodiment will fit 1.25-1.33# T-posts.


The insulators of this invention have a generally semicircular shaped body with an outer surface and an inner surface. The outer surface is generally convex shaped and designed to contact an electrically charged wire. The outer surface wraps around a fence post from about 180 degrees to about 300 degrees, preferably about 270 degrees. This allows the insulator to provide adequate insulation at a number of locations along the fence, including both straight runs and corner installations. In a preferred embodiment, the outer surface will have a structure configured to hold the horizontal wire.


The insulator has a generally concave shaped inner surface which contains various structures that allow the insulator to from a friction fit around the post. Specifically, the insulators are designed to wrap around the post with the inner surface designed to securely engage with the fence post. In particular, it engages with standard studded T-posts such that the insulator is held at a fixed height on the fence post in many different orientations.


Installation is faster and more convenient than installation of insulators previously on the market.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-B are interior and exterior views, respectively, of a common configuration of electrified fencing system showing the T-post insulators in place on both a straight run and corner posts.



FIGS. 2 and 3 are perspective views of the T-post insulator.



FIG. 4 is a top view of the T-post insulator.



FIG. 5 is a side view of the insulator illustrating the side with a tooth.



FIG. 6 bottom view of the T-post insulator.



FIGS. 7A-F are perspective views illustrating six (6) different ways the insulator can be attached to a standard T-post.



FIGS. 8A-F are top views of the insulators illustrated in FIGS. 7A-F.





DETAILED DESCRIPTION

The following defines a preferred embodiment of the invention and is not meant to limit the invention in any way. The invention can have the particular structures illustrated in the various self-explanatory figures submitted as part of this application but these are only some of the preferred embodiments that will function.


The term “generally semicircular shaped body” does not define any specific geometric shape. The preferred embodiments illustrated here, smooth crescents, are chosen for purely aesthetic reasons. The body can be any shape that wraps around a fence post and both engages the post so as to stay in place and provides a surface for the electrified wire to rest, insulated from the fence post, and functional in both straight run fence lines and corners. Accordingly, smooth curved sides, irregularly curved sides and both regular and irregular polygons can function equally well and should be included with the term “generally semicircular shaped body”


Similarly, the term “generally convex outer surface” does not correspond to any particular shape. The outer surface must merely wrap around the fence post and cover enough of the fence post to provide adequate insulation when installed both on straight fence runs and in corners as well as a variety of irregular fence lines.


The term “generally concave inner surface” does not correspond to any particular shape. The inner surface must simply wrap around the circumference of the fence post to a sufficient degree so as to engage structures extending out of opposite sides of the fence post, such as the side wings that extend out of opposite sides of a T-post.


The terms “insulator,” “insulator device” and “insulating device” are used interchangeably in this specification. This invention comprises an insulator with an inner surface and an outer surface as explained above.


The terms “vertical” and “horizontal” as used, for example in the phrases “vertical fence post” “horizontal groove” and “horizontal electrified wire” are meant to distinguish the relative orientations of these structures, and are not meant as limiting the absolute orientation of these structures. The fence will function equally with the insulators installed in all orientations. Accordingly, if the electrified wires are orientated in a vertical direction, perhaps to protect a vertical space, the absolute orientation of certain “horizontal” structures will be vertical. Finally, the insulator will also function if installed “upside down.”


When the fence is installed on uneven terrain certain fence posts may be orientated perpendicular to the ground but not be perpendicular in the absolute sense. Indeed, fence posts may be installed at various angles from the vertical for other reasons particular to the needs and preferences of the owner.


In addition, there is no need for the electrified wire to be perpendicular to the fence post, although this is the preferred embodiment. In cases where the fence post is not perpendicular to the electrified wire the terms “vertical” and “horizontal” are simply meant to indicate the fence post orientation and electrified wire orientation, respectively.


The insulators various “horizontal” and “vertical” structures are also meant to be relative. The insulator can obviously be mounted either horizontally or vertically as needed. Generally speaking, horizontal and vertical structures of the insulator are perpendicular. However, custom made insulators can be made, for example, for use on steeply graded land, in which the horizontal and vertical structures are skewed appropriately for use in these specific non-level terrains.


Referring now to FIGS. 1A and 1B, this illustrates the interior view and exterior view of the insulators as installed in one common configuration. Note that the corner post use the same insulator as the posts on the straight run. In this embodiment, however, the corner post insulator is orientated facing outward so that the horizontal electrified wire contacts the insulator on the outside of the enclosure while the insulators along the straight runs are orientated to contact the wire on the interior of the enclosure.


The electrified wire can be any wire made of conducting material including, but not limited to, wires commonly in use at this time: aluminum steel, poly wire, poly rope and barbed wire.


The insulators can be used with all known electrical configurations including all voltages, both continuous and non-continuous power output and all other electronic parameters.


Referring now, variously, to FIGS. 2-6, in a preferred embodiment the insular 200 has a crescent shape. The outer surface 620 is convex and has a horizontal groove 320. The groove is formed between a first side wall 230, 330 and a second side wall 240, 340.


In another preferred embodiment, the insulator contains a tooth 250, 350 that rises out from the top 410 of the first side wall and extends toward the second side wall. In still another preferred embodiment, the area of the second side wall toward which the tooth extends is notched 360. In these embodiments, the tooth can extend into and beyond 510 the plane of that portion of second side wall 520 which was removed to form the notch. The edge 415 of the notch 360 can also have a lip 260. Preferably the lip extends perpendicularly from the second side wall in the direction opposite of the first side wall. The notch with and without the lip, works together with the tooth so that the electrified wire can be easily installed, through means of a snap in action, without reducing the insulation of the wire with respect to the fence post.


The crescent shaped insulator 200 also has a crescent shaped concave inner surface 630. The inner surface will have a set of strategically arranged structures that will function to engage a standard T-post in any of several orientations. These interior structures can be studs, bumps, teeth, wings, prongs slots or any number of well-known structures that can engage a T-post to form a friction fit. In a preferred embodiment, the inner surface wraps around the post from about 180 degrees to about 300 degrees, preferably about 180 degrees. In another preferred embodiment, the insulator forms a crescent covering about 270 degrees.


In another preferred embodiment the inner surface can be divided into two symmetric side regions (the areas around 440 and 450) and a middle region 430. The symmetric side regions 440, 450 are each adjacent to the ends of the crescent and they flank the middle region 430 located in between the two side regions. The side regions can be further subdivided into a forward portion 450 located near at the crescent opening and a rearward portion 440 ending at the middle region 430. In still another preferred embodiment, a prong structure 420 is provided that originates in the forward portion 450 of the side region and extends backward, roughly parallel to the walls 425 of the side region. The prong extends over the side region rearward portion 440 toward the middle region 430. In another preferred embodiment, the prong 420 is spring loaded so that it can form a friction fit with both 1.25 lbs/ft and 1.33 lbs/ft T-posts.


Still other preferred embodiments exist. The interior side of the prong can contains structures that contact the T-post to form a secure friction fit. Examples of these structures are a slot 650 located at an end of the prong that will engage the T-post and a slot 640 located near the base of the prong that will also engage the T-post.


Another option is to include a pair of a pair of wings 660 located in the middle region 430 of the interior surface and extending out perpendicularly from the middle region surface to form a middle channel 670.



FIGS. 7A-F and 8A-F illustrate how the various inner surface structures work together to provide for six (6) preferred configurations of attachment of the insulator to the T-post. In the first configuration, FIGS. 7A, 8A, the slots 650 located at the ends of the prong engages the T-post side wings while the middle channel 670 engages the studs. In the second configuration, FIGS. 7B, 8B, the middle channel 670 engages one of the T-post side wings. The slot 640 located near the base of one prong engages the other T-post side wing and the slot located at the base of the other prong engages the T-post spine.


In the third configuration, FIGS. 7C, 8C, the slot 650 at the end of one prong engages one T-post side wing. The slot 640 at the base of this prong engages a T-post stud. The slot 650 at the end of the other prong engages the T-post spine. In the fourth configuration, FIGS. 7D, 8D, the T-post side wings are each engaged by the slot 640 at the base of each prong and the T-post spine is engaged by the middle channel 670.


The fifth configuration, FIGS. 7E, 8E, is a mirror image if the third configuration. Finally, the sixth configuration is a mirror image of the second configuration.


The insulator can be made out of any material, or combination of materials, that provide sufficient insulation. In a preferred embodiment, the insulator is made out of various resins and injection molded with UV stabilized thermoplastics that have a high dielectric strength, e.g. HDPE, HEPE+PP and the like. It is understood that a general-purpose insulator be made of materials with a practical blend of favorable properties such as low expense, dielectric strength, flexibility, durability. On the other hand, materials can be modified to favor certain features over others for special purposes. For example, the insulators can have an increased durability at the expense of flexibility and cost.

Claims
  • 1. An electric fence insulator device comprising: a body that is generally semicircular, said body has a generally concave inner surface and a generally convex outer surface,said device inner surface contains structures configured to form a friction fit with a vertical fence post, andsaid device outer surface contains structures configured to hold a horizontal wire,wherein said outer surface structures comprise: a horizontal groove traveling along a portion of the outer surface, said groove being formed between opposing first and second side walls, anda tooth attached to the first side wall and extending perpendicularly toward the second side wall,wherein said device will electrically insulate said horizontal wire from said vertical post when said horizontal wire is electrified.
  • 2. The device as defined in claim 1 wherein said device is configured to form a friction fit with a vertical T-post.
  • 3. The device as defined in claim 2 wherein the horizontal wire is selected from the group consisting of: aluminum steel, poly wire, poly rope wire and barbed wire.
  • 4. The device as defined in claim 2 wherein the inner surface further comprises: two side regions and a middle region in between the two side regions, said two side regions each comprise a forward portion extending from the body and a rearward portion extending to the middle region, wherein the inner surface structures further comprise: two symmetric prongs extending out from both side region forward portions and continuing backward toward the middle region at an orientation roughly parallel to the device inner surface such that the prongs are spring loaded to engage a T-post to form a friction fit.
  • 5. The device as defined in claim 4 wherein the two symmetric prongs each further comprise a slot located at an end of the prong that can engage a T-post and a slot located at a base of the prong that can engage a T-post.
  • 6. The device as defined in claim 5 wherein said two symmetric spring loaded prongs are configured to engage both standard size T-posts, 1.25 mm and 1.33 mm.
  • 7. The device as defined in claim 5 wherein said inner surface structures further comprise a pair of wings located in the middle region and extending out perpendicularly from the middle region to form a middle channel wherein the middle channel can engage a T-post.
  • 8. The device as defined in claim 1 wherein said outer surface structures further comprise: a second side of said horizontal groove having a notch carved out to facilitate insertion of a horizontal wire beneath the tooth and into the groove.
  • 9. The device as defined in claim 8 wherein said notch further comprises: a notch perimeter with a lip extending perpendicular to the second side wall of the horizontal groove and extending in a direction away from the first side wall of the horizontal groove such that said lip facilitates insertion of a horizontal wire beneath the tooth and into the groove.
  • 10. A fencing system, suitable for electrified fencing, comprising: the insulator device as defined in claim 1, a vertical fence post, and a horizontal wire, wherein the device, the post, and the wire are combined so that: the insulator device is attached to the vertical fence post, and the horizontal wire is attached to said insulator device, wherein the horizontal wire will be insulated from the vertical fence post such that an electrified fence will be created if the horizontal wire is electrified.
  • 11. The fencing system as defined in claim 10 wherein the horizontal wire is selected from the group consisting of: aluminum steel, poly wire, poly rope wire and barbed wire.
  • 12. The fencing system as defined in claim 10 further comprising insulator devices attached to the vertical posts that are the same as insulator devices attached to posts along a straight run.
Parent Case Info

This application claims the benefit of Provisional Patent Application Ser. No. 62/394,735 filed on Sep. 14, 2016, the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (55)
Number Name Date Kind
2437344 Behlmann Mar 1948 A
3652780 Wilson Mar 1972 A
3654383 Wilson Apr 1972 A
3820758 Berg, Jr. et al. Jun 1974 A
D243342 Langlie et al. Feb 1977 S
D243343 Berg, Jr. et al. Feb 1977 S
4028489 Berg, Jr. et al. Jun 1977 A
4040604 Langlie et al. Aug 1977 A
4061873 Berg, Jr. et al. Dec 1977 A
4077611 Wilson Mar 1978 A
D248644 Berg, Jr. et al. Jul 1978 S
D248645 Langlie et al. Jul 1978 S
D248851 Langlie et al. Aug 1978 S
4263477 Wilson, Sr. Apr 1981 A
4520231 Hubbell May 1985 A
4580767 Zimmerman Apr 1986 A
4599488 Wilson, Jr. Jul 1986 A
4623756 Wilson, Jr. Nov 1986 A
4642940 Ettema Feb 1987 A
4680428 Wilson, Jr. Jul 1987 A
4845317 Wilson, Jr. Jul 1989 A
4866218 Wilson, Jr. Sep 1989 A
4883923 Langlie et al. Nov 1989 A
4905968 Eby et al. Mar 1990 A
4965413 Langlie et al. Oct 1990 A
4982932 Baker Jan 1991 A
5032693 Langlie et al. Jul 1991 A
5046705 Williams Sep 1991 A
5063274 Johnson Nov 1991 A
5096162 Cleveland Mar 1992 A
D330008 Berg et al. Oct 1992 S
D331221 Langlie et al. Nov 1992 S
D347823 Berg et al. Jun 1994 S
5412158 Yearwood May 1995 A
5920036 Egger Jul 1999 A
5959255 Langlie et al. Sep 1999 A
D416859 Langlie Nov 1999 S
6353187 Wilson, Jr. Mar 2002 B1
6380490 Gaston Apr 2002 B1
6489569 Thomson Dec 2002 B1
D474152 Burdick May 2003 S
6563055 Burdick May 2003 B1
6583363 Wilson, Jr. Jun 2003 B1
6619627 Salisbury et al. Sep 2003 B2
6872892 Burdick Mar 2005 B1
6960728 Halderman Nov 2005 B1
D535616 Halderman Jan 2007 S
7915536 Hackett Mar 2011 B1
8123155 Petty Feb 2012 B2
8507799 Johnson et al. Aug 2013 B2
D690265 Nelson Sep 2013 S
8697999 Thiem Apr 2014 B2
9142337 Nelson Sep 2015 B2
9521827 Houston Dec 2016 B2
D789185 Wall Jun 2017 S
Related Publications (1)
Number Date Country
20180073269 A1 Mar 2018 US
Provisional Applications (1)
Number Date Country
62394735 Sep 2016 US