This application is a U.S. National Phase application of International Patent Application No. PCT/JP2012/078198, filed on Oct. 31, 2012, which is hereby incorporated by reference in the present disclosure in its entirety.
The present invention relates to a T-cutter, a method of forming a rib which uses a T-cutter to cut out a rib which has an overhanging part, and an aircraft part which has a rib defining an overhanging part.
For example, in order to form a “T-slot”, in the past, a “T-slot cutter” has been used. A T-cutter is also used for forming an undercut at a side surface of a workpiece. Such a method of forming an undercut on a side surface of a workpiece is, for example, also applied when forming a return flange at a rib of a skin panel of a wing of an aircraft.
A T-cutter has a shank and a head which is joined with a front end of the shank. Usually, the head has cemented carbide tips screwed or soldered to it. There are also T-cutters which have polycrystalline diamond (PCD) tips soldered to their heads.
For example, PLT 1 describes a T-cutter which is provided with a groove part, which extends from an edge part side to a side opposite to the edge parts so as to be inclined in a direction opposite to a rotation direction about an axial center, at an outer circumferential surface of the shank so as to improve the discharge of chips. This T-cutter has cemented carbide throwaway tips screwed to the edge parts.
PLT 2 describes a T-cutter comprised of front end part side tips and proximal end side tips screwed to a cutting head while alternately arranged in a rotational direction of a tool.
PLT 1: Japanese Patent Publication No. 2009-18354A
PLT 2: Japanese Patent No. 4830597B2
In a T-cutter with cemented carbide tips screwed to it as described in PLTs 1 and 2, due to variations in centrifugal force or the radii of rotation of the tips, the spindle rotational speed has been limited to about 1000 rpm and the feed speed to several hundred mm/min or so, so the processing efficiency, which is shown by rate of removal of material from the workpiece per unit time (MRR (cm3/min)), becomes low. Further, in the case of processing along a curved surface such as shown in
On the other hand, a T-cutter which has polycrystalline diamond (PCD) tips soldered to its head, compared with a T-cutter which has cemented carbide tips screwed or soldered to it, can increase the rotational speed of the tool and increase the processing efficiency. However, when performing processing along a curved surface such as shown in
Therefore, the present invention has as its technical problem so solve such problems of the prior art and has as its object the provision of a T-cutter which can form a rib which has an overhanging part by high speed rotation and high speed feed, in particular can form a 3D undercut shape, a method of forming such a rib, and an aircraft part.
To achieve the already explained object, according to the present invention, a T-cutter comprising a shank and a head which is provided at one end of the shank and which alternately arranges in a peripheral direction of the T-cutter a plurality of bottom edge parts which have cutting edges at a distal end side of the T-cutter of an opposite side from the shank and a plurality of top edge parts which have cutting edges at a proximal end side of the T-cutter in proximity to the shank side, the cutting edges of the bottom edge parts and the top edge parts being formed integrally in structure with the shank and the head is provided.
Further, according to the present invention, a method of forming a rib which cuts out a rib which has an overhanging part at a workpiece is provided, the method of forming a rib comprising forming a rib part of the workpiece while leaving a thickness of at least a width dimension of the overhanging part, attaching a T-cutter, comprising a shank and a head which is provided at one end of the shank and which alternately arranges in a peripheral direction of the T-cutter a plurality of bottom edge parts which have cutting edges at a distal end side of the T-cutter of an opposite side from the shank and a plurality of top edge parts which have cutting edges at a proximal end side of the T-cutter in proximity to the shank side, the cutting edges of the bottom edge parts and the top edge parts being formed integrally in structure with the shank and the head, to a spindle of a machine tool, rotating it, and moving the workpiece and the T-cutter relative to each other so as to cut out the rib so that the overhanging part remains.
Further, according to the present invention, an aircraft part which has a rib which has an overhanging part which is formed by cutting a workpiece material by a machine tool is provided, in which an aircraft part is obtained by forming a rib part of the workpiece material while leaving a thickness of at least a width dimension of the overhanging part, attaching a T-cutter, comprising a shank and a head which is provided at one end of the shank and which alternately arranges in a peripheral direction of the T-cutter a plurality of bottom edge parts which have cutting edges at a distal end side of the T-cutter of an opposite side from the shank and a plurality of top edge parts which have cutting edges at a proximal end side of the T-cutter in proximity to the shank side, the cutting edges of the bottom edge parts and the top edge parts being formed integrally in structure with the shank and the head, to a spindle of a machine tool, rotating it, and moving the workpiece material and the T-cutter relative to each other so as to cut out the rib so that the overhanging part remains.
According to the present invention, the T-cutter is designed as a solid-type cutting tool where the head, including the edge parts, and the shank are formed integrally without soldering or other joining means, compared with a conventional T-cutter with cemented carbide tips screwed or soldered to it or a T-cutter of the prior art with PCD tips soldered to the head, not only when performing 2D processing, but also when performing processing along a curved surface or when processing a slanted surface to form a 3D undercut shape, the tips will not fall off, the rotational speed and feed speed can be made extremely high, and the processing efficiency can be extremely high.
In particular, by applying the T-cutter and method of forming a rib to processing of an aircraft part which has a rib with an overhanging part, for example, a skin panel of a wing, leading edge, wing rib, or other wing member, a high MRR can be obtained. They perform formidably in the production of aircraft parts where almost the entire large block material of an aluminum alloy is cut away to form ribs which has overhanging parts.
Below, referring to the attached drawings, a preferred embodiment of the present invention will be explained. First, referring to
The cutting edges 16a of the bottom edge parts 16 are formed by ridgelines PA-PB where the bottom faces, side faces, and corners R between the two of the bottom edge parts 16 intersect the rake faces 16b (see
Furthermore, the T-cutter 10 is formed with coolant passages for feeding a coolant to the processing region. The coolant passages are comprised of an axial direction passage 12a which runs through the shank 12 along the center axial line O and radial direction passages 14a which run from the axial direction passage 12a in the radial direction through the head 14, extend in the directions of the rake faces 16b, 18b of the bottom edges part 16 and top edge parts 18, and open so as to eject coolant toward the cutting edges 16a, 18a. The coolant passages communicate with a coolant feed pipe (not shown) which is provided at the inside of the spindle 116 so as to supply coolant toward the cutting edges 16a, 18a, whereby generation of heat is reduced and the tool life and chip discharge become better.
Next, referring to
Next, referring to
A skin panel 50 of the wing of an aircraft which is shown as one example in
Next, referring to
At the spindle table 106, a swivel base 110 is supported to be able to rotate about a C-axis direction centered about the Z-axis. The swivel base 110 has bracket parts 112 at the two side parts straddling the rotational axis of the swivel base 110. At the bracket parts 112, a spindle head 114 is attached to be able to rotate in an A-axial direction by a shaft 112a which is parallel to the X-axis. At the spindle head 114, a spindle 116 is supported to be able to rotate about a rotational axis Os in the longitudinal direction. At the front end part of the spindle 116, a T-cutter 10 is attached.
Note that, the X-axis feed mechanism may be provided with a pair of X-axis guide rails 102a which extend at the top surface of the bed 102 in the left-right direction horizontally, a guide block (not shown) which is attached to a bottom surface of the table 108 to be able to slide along the X-axis guide rails 102a, an X-axis ball-screw (not shown) which extends in the bed 102 in the X-axial direction, a nut (not shown) which is attached to a bottom end part of the table 108 and engages with the X-axis ball-screw, and a servo motor (not shown) which is coupled with one end of the X-axis ball-screw and drives rotation of the X-axis ball-screw.
Similarly, the Y-axis feed mechanism may be provided with a pair of Y-axis guide rails (not shown) which extend vertically in the column 104, a guide block (not shown) which is attached to the spindle table 106 to be able to slide along the Y-axis guide rails, a Y-axis ball-screw (not shown) which extends in the column 104 in the Y-axial direction, a nut (not shown) which is attached inside the spindle table 106 and engages with the Y-axis ball-screw, and a servo motor (not shown) which is coupled with one end of the Y-axis ball-screw and drives rotation of the Y-axis ball-screw.
Similarly, the Z-axis feed mechanism may be provided with a guide block (not shown) which is attached to the top surface of the bed 102 in the front-rear direction horizontally and which is attached to the bottom surface of the column 104 to be able to slide along the Z-axis guide rails 102b, a Z-axis ball-screw (not shown) which extends in the bed 102 in the Z-axial direction, a nut (not shown) which is attached to the bottom surface of the column 104 and engages with the Z-axis ball-screw, and a servo motor (not shown) which is coupled with one end of the Z-axis ball-screw and drives rotation of the Z-axis ball-screw. In this way, the machine tool 100 forms a five-axis NC machine tool which has three linear feed axes of the X-axis, Y-axis, and Z-axis and two rotational feed axes of the A-axis and C-axis.
To use the T-cutter 10 to form return flanges on the skin panel of the wing of an aircraft, first, an aluminum alloy block which has dimensions larger than the skin panel 50 is attached as a workpiece W to the table 108 in the state fastened to a pallet P. Next, for example, a rotary cutting tool such as an end mill (not shown) is attached to the spindle 116 of the machine tool 100. By controlling the feed operations of the five axes of the machine tool 100, the workpiece W is processed whereby a skin panel which has an outer skin 52, longitudinal ribs 54, 56, and traverse ribs 58 (rib parts) not provided with return flanges 60 is formed. At this time, the traverse ribs (rib parts) 58 have thicknesses of at least the width dimension of the return flanges 60 which enable formation of the return flanges 60.
Next, for example, an automatic tool changer (not shown) of the machine tool 100 is used to change the conventional end mill to the T-cutter 10. Next, by feed control of the five axes of the three linear feed axes of the X-axis, Y-axis, and Z-axis and the two rotational axes of the A-axis and C-axis of the machine tool 100, as shown in
According to the present embodiment, the T-cutter 10 is a solid-type cemented carbide cutting tool where the head 14, including the cutting edges 16a, 18a, and the shank 12 are formed integrally without soldering or other joining means, compared with a conventional T-cutter with cemented carbide tips screwed or soldered to it, not only when performing 2D processing, but also when processing along a curved surface such as shown in
One example of the processing results will be shown. Aluminum alloy workpieces were processed to form 3D undercut shapes using φ45 outside diameter T-cutters. As the T-cutters, two types, a conventional cutter which has cemented carbide soldered edges and a cutter of the present invention which is a solid type of cemented carbide, were prepared. The heights of the edges from the bottom edge parts to the top edge parts were 16 mm in both cutters. The conventional cutter suffered from some vibration at a rotational speed of 1000 rpm, feed speed of 263 mm/min, and radial direction depth of cut of 11 mm and approached the limit of processing ability. The MRR at this time was 46 cm3/min. As opposed to this, the cutter of the present invention suffered from some vibration at a rotational speed of 33000 rpm, feed speed of 11000 mm/min, and radial direction depth of cut of 4 mm and approached the limit of processing ability. The MRR at this time was 704 cm3/min. The cutter of the present invention had an efficiency 15.3 times higher compared with the conventional cutter. Therefore, the T-cutter of the present invention exhibits a remarkable effect if used under processing conditions of an MRR of 100 cm3/min to 1000 cm3/min.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2012/078198 | 10/31/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/068710 | 5/8/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3597817 | Whalley | Aug 1971 | A |
4733995 | Aebi | Mar 1988 | A |
5597268 | Izumi | Jan 1997 | A |
6976810 | Helvey | Dec 2005 | B2 |
7972545 | Bae | Jul 2011 | B2 |
8096092 | Vichniakov | Jan 2012 | B2 |
8137038 | Katoh | Mar 2012 | B2 |
8708611 | Marshansky | Apr 2014 | B2 |
20040013477 | Helvey et al. | Jan 2004 | A1 |
20120039676 | Marshansky | Feb 2012 | A1 |
20120093602 | Osawa et al. | Apr 2012 | A1 |
20120224930 | Katoh et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
201572954 | Sep 2010 | CN |
202317209 | Jul 2012 | CN |
56-83315 | Jul 1981 | JP |
57-170914 | Oct 1982 | JP |
58-177212 | Nov 1983 | JP |
2000-326133 | Nov 2000 | JP |
2003-165016 | Jun 2003 | JP |
2009-18354 | Jan 2009 | JP |
2010-528876 | Aug 2010 | JP |
2010-284752 | Dec 2010 | JP |
2011-88275 | May 2011 | JP |
4830597 | Sep 2011 | JP |
Entry |
---|
International Search Report dated Nov. 27, 2012, directed to International Application No. PCT/JP2012/078198, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20150298225 A1 | Oct 2015 | US |