The invention, together with further objects and advantages thereof, may be best understood by making reference to the following description taken together with the accompanying drawings, in which:
Six different embodiments have been defined. In order to illustrate the ideas a four-beam antenna system is used for five of the embodiments. However, for all solutions the extension to antenna systems with more beams is also discussed.
In a first embodiment a separate sector antenna could be used to do the update of the timing advance (TA). For every TA-burst the transmission is switched to the sector antenna thereby avoiding the problem that mobile stations are located outside the coverage area of the narrow beams.
The advantage with this embodiment is that TA-update works the same way as in a sector antenna system, hence, in which of the narrow beams the mobile stations are located does not need to be considered.
The number of antenna beams does not have to be considered in this solution, i.e. the solution described above works for any number of beams.
In a second embodiment no regard is taken to the beam affiliation of the mobile stations when the Timing Advance Index (TAI) is assigned. The TA-messages are sent in one beam at a time, e.g. TA message 1 in beam 1, TA message 2 in beam 2, and so on.
The advantage of this embodiment is that it is simple to implement. The mobile stations will at least receive four good bursts.
The second embodiment would work as intended for antenna systems with up to four beams. If there are more beams than TA messages (i.e. four) it will not be possible to send one TA message in each beam. It might hence happen that a mobile station has to wait for more than four TA messages before it receives an update in the beam where it is located.
In this embodiment the TA-message is sent in one beam at a time as in the previous embodiment. However, when the timing advance index, TAI, is assigned, the beam in which the mobile station is located is then considered.
E.g. all mobile stations located in beam 1 are assigned TAI between 0-3 i.e. they will be updated in TA message 2. Mobile stations located in beam 2 are assigned TAI between 4-7 and are updated in TA message 3 and so on.
Hence, TA message 2 is transmitted in beam 1 (where all the concerned mobiles are located), TA message 3 in beam 2 and so on.
The advantage of this embodiment is that the mobiles will receive four good bursts without delay
Since there are four TA messages that can be assigned to different beams the solution would work for antenna systems with up to four beams.
The TA-message is interleaved over four bursts. If one burst is transmitted in each beam the mobile stations will receive one good burst no matter in which beam there messages are situated. The other 3 bursts, which are transmitted in the “wrong” beam, might give enough extra information to decode the interleaved message.
The embodiment of version 1 has the advantage that the mobiles are guaranteed one good burst without delay.
Send two bursts in each beam. Send the bursts for TA-message 1 in beams 1 and 3. For TA message 2, send the bursts in beams 2 and 4 and so on. The reason for sending in every second beam is that if the mobile station wanting to receive the message is not located in the right beam it will be located in a neighbouring beam which is the next best thing. One TA-message will be distributed over two beams. The mobile station will hence receive two good bursts and two bad bursts. Since the message is transmitted with a robust code (CS1) chances are that it can be decoded anyway.
This embodiment has the advantages that the mobile station receives two good bursts plus two bursts in a neighbouring beam.
For up to 4 beam systems at least one burst per TA message is sent in the beam where the MS is located. For systems with more beams the bursts of more than one TA message would be needed to cover all beams. E.g. for an eight beam system the bursts of TA 1 could be sent in beams 1-4 and the bursts of TA 2 in beams 4-8. This of course implies an extra update delay.
As in version 1 but e.g. for an eight beam system all four TA messages would be needed to transmit 2 bursts in each beam.
In (E)GPRS the mobile stations are in many cases assigned several timeslots. The timing advance value is however the same for all timeslots. If the timing advance is updated in different beams for different packet data channels, the mobile station could use the best received update value for all timeslots. The method works best if all mobile stations are assigned four packet data channels (PDCH). If less than four PDCH are assigned to a mobile station, the beam affiliation has to be considered when assigning the PDCH. Otherwise the TA update for the MS might be directed to a beam where the MS is not located.
Advantages: The mobile stations will receive four good bursts without delay.
The solution works as long as the mobile station is assigned as many or more PDCH as there are antenna beams. The upper limit is eight beams since a mobile station can not be assigned more than 8 PDCH.
If only one mobile station needs to be updated for every TA message the beam pointing towards that mobile station can be used. This means that e.g. TAI=0, 4 ,8 and 12 can be used for four mobile stations multiplexed on the same PDCH. If more than four MS are assigned to the same PDCH the first four should be assigned as described above. The fifth (and higher number MS) should if possible be updated in a TA message sent in the beam where they are located initially. If they should move out of that beam their TA update will be delayed.
Advantages of this embodiment having one MS per TA-message is that the TA message can always be sent to the MS in the right beam.
For this solution there is no limitation to the number of antenna beams. Since each TA message is dedicated to one MS it can be sent in the beam where the MS is located.
The general advantage of all solutions is that continuous TA-update with minimum delay is made possible in adaptive antenna systems. By minimising the delay with which the TA-update message is received by the mobile station the issue of using old TA values, resulting in overlap of timeslots and bad quality, is mitigated.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE04/00840 | 5/28/2004 | WO | 00 | 11/28/2006 |