Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade

Information

  • Patent Grant
  • 6398384
  • Patent Number
    6,398,384
  • Date Filed
    Thursday, March 22, 2001
    23 years ago
  • Date Issued
    Tuesday, June 4, 2002
    22 years ago
Abstract
A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.
Description




BACKGROUND OF THE INVENTION




The invention relates generally to interior lighting for residences, businesses and other locations, and, in particular, to energy efficient fluorescent lighting.




The 1990's have seen a renewed national commitment to saving energy. However, in many areas residential lighting energy conservation efforts have not generally delivered their full potential. While most end use areas have seen 30 to 50 percent efficiency improvements, numerous resources remain unmined. Moreover, lighting efficiency has been, in places, clumsily implemented and consequently, has not been well received by consumers. Residential lighting in particular, is a microcosm of these larger trends.




Each year in the U.S. about 145 billion kilowatt-hours of energy are used to light homes, at a cost of 10 billion dollars, and resulting in the emission of approximately 140 million tons of carbon dioxide. Promoting and installing more efficient residential light sources, fixtures, and controls can significantly reduce these numbers. The compact fluorescent lamp (CFL) is the most dramatic example of such a technology, offering a 75 percent increase in total lamp lumens per watt over the ubiquitous general service incandescent lamp (A-lamp). Unfortunately, actual applications of CFLs often fail to deliver on promises of equivalent light quality, quantity, and distribution, at comparable cost to traditional lighting.




One of the most popular residential lighting fixtures is the table lamp fixture. These use almost exclusively 60-100 watt incandescent lamps. But they do not offer distribution control.




The current perceptions of CFL table lamps are that they are expensive, not bright enough, prone to failure, and don't look good. This results in widespread consumer rejection. Thus, of the large potential market for residential table lamps, 90 million homes with three plus table lamps per home, CFLs have attained only about 1 percent market share or less.




Of all CFL table lamps, most are screw-based retrofits (Edison sockets); almost none are pin-based hardwired fixtures. Most common are lamps with single, vertically oriented CFLs, e.g. 9-40 watt twin, quad and multi-tube configurations. Some of these are encapsulated in a plastic capsule or globe. The vertical orientation is inefficient in that it directs flux towards the shade. Single lamps offer no control of light distribution out of the fixture. Single planar CFL lamps, e.g. circline and 2D CFLs, are better inside shaded table lamp fixtures, but control is only available through level/intensity control with electronic ballasts.




There is a commercial hardwired table lamp configuration using three twin-tube CFLs arranged radially in a vertical orientation. Switching one, two, and three lamps offers three level intensity control, but there is no control over light distribution.




Multi-lamp incandescent table and floor lamps have traditionally offered level intensity control, typically in dual or triple lamp configurations, usually arranged radially around the center, or with three level switching and/or dimming of a single lamp, e.g. a 50-100-150 W A-lamp. However, control over distribution of light out of the fixture into the room has not generally been provided.




A significant feature of a new lighting fixture based on any type of lamp would be control of light distribution out of the lamp, i.e. the user can readily select and vary the light distribution to meet changing needs. For example, under some conditions direct lighting is needed, while under other conditions indirect lighting is desired. Thus a light fixture which allows a user to readily switch between direct lighting, indirect lighting, or both, would be highly advantageous since the lamp would deliver most of the light where it is needed. Coupled with efficient light sources, e.g. CFLs, tremendous lighting efficiency can be achieved. Unfortunately, present lamps are generally configured with a fixed light output distribution pattern which cannot be changed by the user.




Therefore, it is desirable to provide new lamp fixture configurations for CFL based lamps which take advantage of the great advances in CFL technology made in recent years and which allow easy selection and control of light distribution. High quality phosphors and electronic ballasts produced in the 1990's and the many new shapes, sizes, and colors available provide a lot of flexibility in lighting options. However, the integration of CFLs into table lamps has primarily involved trying to make CFLs behave like incandescent lamps instead of taking advantage of the inherent characteristics of the CFLs. The new design should have high performance, flexibility in control, and provide lots of light for user amenities. A new CFL table lamp fixture design with these features could capture a significant market share. At present, with 90 million homes having three plus table lamps per home at a cost of about $75.00 plus per fixture, with a present CFL market share of less than one percent, there is huge potential for market growth with an efficient CFL fixture. The market potential is further expanded when the lighting system design is applied to table lamps for offices, hotels and other locations, and floor lamps for all these locations.




Aesthetic appearance is also an important factor in lamp design and selection. While torchieres, in which lamps are enclosed in reflectors without shades, are suitable in some situations, lamps with luminous or translucent shades are preferred in many environments. However, shaded lamps often suffer from hot spots and other nonuniform shade illumination patterns. It would be highly desirable from an aesthetic view to have uniform shade illumination.




In addition, the current electrical power problems in California dramatically demonstrate the need for greater electrical efficiency and electrical energy conservation. The state is faced with inadequate supply to meet the growing demand, and is under a constant threat of rolling blackouts. The electrical utility companies have been forced to buy electricity on the spot market at astronomical cost, and are facing bankruptcy since they cannot pass the costs on to the users. If the costs are passed on to the consumer, many will struggle to pay their utility bills.




Interior lighting is one area where significant electrical energy can be saved if efficient lighting systems are used. Coupled with high performance, lighting quality, and aesthetics, such lighting systems should gain widespread and ready market acceptance.




SUMMARY OF THE INVENTION




Accordingly, it is an object of the invention to provide an improved lighting fixture design for CFL based table and floor lamps, for broad residential, hospitality, and commercial lighting applications.




It is also an object of the invention to provide a lighting fixture geometry for table and floor lamps based on CFLs, that produces controlled light distribution, controlled light intensity, lots of light, and other user amenities.




It is another object of the invention to provide a table or floor lamp with dynamically controlled lighting distribution and with a luminous or translucent shade which is uniformly illuminated.




The invention is a lighting fixture, and a complete table or floor lamp including the fixture, in which two lamps are mounted in a spaced apart vertical relation (i.e. one lamp above the other) with a reflective septum mounted in a substantially horizontal orientation between the two lamps. Additional lamps may also be added above and/or below the septum so that there is at least one lamp above the septum and at least one lamp below the septum. The two lamps are preferably compact fluorescent lamps (CFLs), and more preferably are planar CFLs, but other lamps could also be used. The lamps are preferably mounted in a substantially horizontal orientation. The lamps are preferably circular in geometry, but other geometries can also be used. The lamps and separating reflective septum are also surrounded by a lateral shade which is open at the top and bottom. A user control switch and dimmer allows the user to control lamp output light distribution in three modes: down light only, up light only, or a combination of down light and up light. The control switch also allows user control of light level in each of the lamps. The reflective septum maintains the up/down or combination distribution and also controls stray light and increases efficiency. Thus, the lamp produces a lot of light in a selectable or easily controllable distribution. The optical relationship (geometry) between the lamps, reflective septum, and shade can be designed to maintain even shade luminance while maximizing fixture efficiency and control. Color control may also be achieved by using different color temperature lamps. For example, users may want to have predominantly high color temperature lighting directed upwards (for indirect lighting) and low color temperature lighting directed downwards (for direct lighting). The dual CFL fixture may be used in both table lamps and floor lamps.




In a modified and improved version of the up/down table lamp (or floor lamp), the same general principles are applied, but the reflective septum has a special configuration and some details of the mechanical structure of the fixture are changed to provide uniform illumination of a luminous or translucent shade. The lamp still uses two independently controllable and preferably fully dimmable compact fluorescent lamps (CFLs) or less preferably another type of lamp. The reflective septum is in the form of a reflector dish or bowl which is positioned high on the lamp fixture (at the top of the shade) with the upper CFL in the bowl and the lower CFL below it. The lampshade rests on the upper edge of the reflector dish, and is just suspended from the bowl, e.g. by hooks, so it can easily be removed. The top of the shade is flush with the upper edge of the reflector bowl. The light from the upper CFL is directed upwards toward the ceiling, providing indirect lighting; none of the uplight illuminates the shade. The light from the lower CFL is directed downward, illuminating the desk or table it sits on, as well as toward the inner surface of the lampshade, providing an aesthetically pleasing uniform lampshade illumination. The lamp posts which support the CFLs, their electrical sockets, and the reflective dish or bowl, are configured for ease of plugging in or removing the CFLs.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1A-C

are side views of a table lamp with the double lamp geometry of the invention, with down light distribution, up light distribution, and up/down light distribution respectively.





FIG. 2A

is a side sectional view showing the details of the two planar lamps, lamp socket, reflective septum, and shade.





FIGS. 2B-D

are top views of circular, multitube, and single tube planar lamps over a reflective septum.





FIG. 3

shows the control system for the double lamp configuration.





FIG. 4

is a side view of an alternate embodiment of a table lamp of the invention.





FIG. 5

is a side view of a floor lamp according to the invention.





FIGS. 6A

, B are side and perspective views of a modified and improved table lamp of the invention.





FIGS. 7A

, B are side views of two embodiments of the reflector bowl for the table lamps of

FIGS. 6A

, B.











DETAILED DESCRIPTION OF THE INVENTION




As used herein and as commonly used in the industry, the term “lamp” refers to both the light producing element, e.g. a fluorescent lamp (a fluorescent tube or a CFL) or an incandescent lamp (a light bulb), and to the entire lighting apparatus or luminaire, e.g. a table lamp or floor lamp. The meaning will generally be apparent from the context. The term “fixture” generally refers to the parts of the lighting apparatus other than the light producing element, and is often sold separately from the light producing elements. The fixture thus normally includes the mechanical support structure, the socket, the control switch, and the shade.




The invention is directed to “table lamps” which are generally all portable lamps which are placed on tables, desks, or other work surfaces. The invention is also directed to “floor lamps” which are generally portable lamps which stand on a floor.




A table lamp or lighting apparatus


10


, as illustrated in

FIGS. 1A-C

, has a pair of planar compact fluorescent lamps (CFLs)


12


,


14


(or other lamps) arranged substantially horizontally in a spaced apart vertical relationship in a fixture


20


. A reflective septum


16


, mounted in a substantially horizontal orientation, is positioned between the two planar compact fluorescent lamps


12


,


14


and is reflective on both its top and bottom surfaces. The planar fluorescent lamps


12


,


14


are also plugged into a socket


18


. The planar fluorescent lamp-reflective septumelectrical socket assembly


19


is mounted on the vertical member


24


of light fixture


20


. Vertical element


24


extends from base or pedestal portion


22


of fixture


20


. The two fluorescent lamps


12


,


14


and reflective septum


16


are surrounded by a round conical shade


26


which is open at its top surface


28


and bottom surface


30


. (Shade


26


may of course have other shapes, e.g. cylindrical.) Fixture


20


includes the mechanical support structure formed by base


22


and vertical member


24


, as well as reflector


16


, socket


18


, shade


26


, and a light switch (not shown), i.e. everything but lamps


12


,


14


.




As shown in

FIG. 1A

, the bottom CFL


14


is turned on, producing a down light distribution represented by light cone


32


. As shown in

FIG. 1B

, the top CFL


12


is illuminated, producing an up light distribution represented by light cone


34


. As shown in

FIG. 1C

, both CFLs


12


,


14


are lit, producing an up-down light distribution represented by the pair of light cones


32


,


34


. Thus the user can control the lighting distribution from the lamp.




Because the fluorescent lamps


12


,


14


are planar and horizontally oriented, little of the light is emitted laterally. Most of the light will be emitted vertically. The reflective septum


16


directs all light outwards (i.e. either upwards, downwards, or both) from the lamp. Thus, the configuration is highly efficient in providing most of the light produced by the lamp to the user. Since the lamps


12


,


14


are CFLs, they are highly energy efficient in producing the light.





FIG. 2A

shows greater detail of the two planar fluorescent lamps


12


,


14


, reflective septum


16


and socket


18


. The planar fluorescent lamps


12


,


14


are preferably circular, e.g., circline CFLs, since they produce the most uniform 360 degree distribution of light. However, other planar non-circular CFLs, e.g. 2D CFLs, can also be used. The two lamps


12


,


14


are plugged into socket


18


which is preferably a pin type socket positioned between lamps


12


,


14


but may also be a screw type socket. Socket


18


may be a multiple lamp socket or may instead be a plurality of individual sockets. Reflective septum


16


extends out from socket(s)


18


at least to and generally beyond the lateral extent of the planar fluorescent lamps


12


,


14


. Reflective septum


16


is reflective on both its upper surface


36


and lower surface


38


so that any light emitted by lamps


12


,


14


which is initially directed toward septum


16


will be reflected back away from septum


16


and out of the lamp. The pair of horizontal lamps


12


,


14


and horizontal septum


16


are surrounded by the conical shade


26


of

FIGS. 1A-C

. Different shapes, e.g. cylindrical, and styles of the lampshade may be used for providing different aesthetic looks and improved performance by directing light out of the fixture. Similarly, different styles of the fixture


20


(particularly the base portion


22


) may be used for aesthetic reasons. Also, the shade may be opaque and have a reflective inner surface so that the small amount of light from the lamps


12


,


14


incident thereon will also be reflected out of the lamp.





FIGS. 2B-D

are top views of a planar fluorescent lamp


12


positioned above a reflective septum


16


wherein lamp


12


is a circular lamp


12




a


, a multitube lamp


12




b


and a single tube lamp


12




c


respectively. In general, CFLs


12


,


14


may have any configuration, including nonplanar, and any orientation, including vertical. However, substantially planar horizontally oriented lamps are preferred so that most of the light is directed up or down. Additional lamps, e.g. optional lamp


12




d


in

FIG. 2D

, may also be added above and/or below the septum


16


, so that there is at least one lamp above the septum and at least one lamp below the septum. While planar fluorescent lamps, particularly CFLs, are preferred, other types of lamps, including incandescent, halogen, and light emitting diodes (LEDs) could also be used.




The user control is a switching/dimming (lighting control) system


41


as shown in

FIG. 3. A

control switch/dimmer (controller)


42


is electrically connected to ballast


44


which is connected through electrical wires


46


,


48


to electrical socket(s)


18


to which fluorescent lamps


12


,


14


are connected. In its simplest form, controller


42


is a three-way on-off switch, which has three positions to control light distribution from the lamp. In position


1


, the top lamp


12


is on and the bottom lamp


14


is off, producing up lighting. In position


2


, the top lamp


12


and bottom lamp


14


are both on, producing up/down lighting. In position


3


, the top lamp


12


is off and bottom lamp


14


is on, producing down lighting. In a more complex form, controller


42


includes a dimmer which can also adjust the voltage to each of the lamps


12


,


14


to control light intensity (light level control) from the lamps as well as distribution pattern. Lamps


12


,


14


can also be selected to produce different color outputs, e.g. upper lamp


12


can produce high color temperature light while lower lamp


14


can produce lower color temperature light. Thus a simple controller allows the user to readily select a light distribution pattern which is optimum for particular conditions, i.e. up lighting, down lighting or both, and to also vary the intensity of the light in either or both of the up lighting or down lighting. Different color light can also be provided in the up and down directions.





FIG. 4

shows an alternate embodiment of a table lamp of the invention presenting a different aesthetic appearance from the lamp of

FIGS. 1A-C

. Lamp


50


has a fixture


20




a


which has a flat base


22




a


and a vertical member


24


extending up from base


22




a


. The lighting controller


42


is mounted on base


22




a


with the wires (not shown) extending up through vertical member


24


to the lamp's socket(s)


18


. A cylindrical shade


54


is used in place of conical lampshade


26


of

FIGS. 1A-C

or


2


A. The dual planar lamps


12


,


14


with the reflective septum


16


in between are similar to the prior embodiments.




The fixtures


20


,


20




a


are functionally the same but have different ornamental appearances. The bases


22


,


22




a


and vertical member


24


can take a number of different aesthetic configurations. The lampshades can take a wide variety of ornamental (and sometimes functional) configurations. Shades


26


,


54


illustrate two styles; however, any lateral light blocking element can be used.




Because the lamps are planar and oriented horizontally, most of the emitted light will be directed up or down and not laterally. The shade will block the lateral light. The shade may be opaque or it may be luminous or translucent. If it is luminous or translucent, the lamp can be designed to make the shade more or less uniformly luminous. For example, reflector


16


should have a diameter at least as great as the diameter of CFLs


12


,


14


so that light from one cannot directly enter the distribution pattern of light from the other. However, if reflector


16


extends all the way to the shade, then no light from the top or bottom lamp can reach the opposite part of the shade and only a part of the shade will be luminous when only one of the lamps is lit. To avoid this effect, a sufficient gap may be left between the reflector


16


and the shade so that the shade will be illuminated by either CFL without seriously affecting the light distribution output of the lamp.




The lamps may be designed specifically for home lighting applications or may be designed for office lighting conditions or other environments, e.g. hotels and motels, schools, or libraries. Aesthetic appearance can be tailored to specific environments.




As shown in

FIG. 5

, a floor lamp


60


according to the invention has a fixture


20




b


with a flat base


22




b


and a vertical member


24


. The dual planar lamp-reflector-socket assembly


56


is mounted at the top of vertical member


24


and surrounded by a conical shade


26


. Lamp


60


provides a selectable combination of indirect lighting, represented by up light cone


62


, and direct lighting, as represented by down light cone


64


, or both.




As shown, floor lamp


60


looks a lot like table lamp


50


of

FIG. 4

, except for the relative proportions, since vertical member


24


will be much taller in lamp


60


than in lamp


50


. However, floor lamp


60


may have other aesthetic appearances. In particular, base


22




b


, vertical member


24


, and shade


26


may have other ornamental and structural designs.




The general principles described above are applied to a modified and improved table lamp


70


illustrated in

FIGS. 6A

, B which still has an up lamp and a down lamp separated by a reflective septum, but the shape and position of the reflector are significantly changed. There are also other changes in the structure of the lamp fixture. Lamp


70


is designed to have a luminous shade which is uniformly illuminated by the down lamp.




Lamp


70


has a pair of planar compact fluorescent lamps (CFLs) or other lamps—upper lamp


72


and lower lamp


74


—arranged substantially horizontally in a spaced apart vertical relationship in a fixture


80


. A reflector dish


76


is positioned between the two planar compact fluorescent lamps


72


,


74


and is reflective on both its top and bottom surfaces. The upper CFL


72


sits inside the reflector dish or bowl


76


while the lower CFL


74


is positioned below reflector dish or bowl


76


. Again, while CFLs are preferred for energy efficiency, and circular planar lamps are preferred for their geometry, other lamps may be used in their place, including incandescent lamps, halogen lamps, and LEDs.




Lamp fixture


80


includes a table lamp base


82


with lamp base foot


83


. Extending upward from base


82


are a lower lamp post


84


and an upper lamp post


85


. At the top of lower lamp post


84


is lower electrical socket


78


, and at the top of upper lamp post


85


is upper electrical socket


79


which is also inside the reflector dish or bowl


76


which is also mounted to the top of post


85


. CFLs


72


,


74


include the appropriate ballasts. Upper lamp/ballast


72


plugs into upper socket


79


while lower lamp/ballast


74


plugs into lower socket


78


. Upper lamp post


85


has a bent or U-shaped portion to provide clearance to allow lower lamp


74


to be easily plugged into lower socket


78


. Sockets


78


,


79


are preferably pin type sockets.




The two CFLs


72


,


74


and the reflective dish


76


are surrounded by a round conical luminous shade


86


which is open at its top surface


88


and bottom surface


89


. Top surface


88


of shade


86


fits against the top edge


77


of reflector bowl


76


. Instead of the normal harp on which table lamp shades are mounted, shade


86


may merely hang on reflector bowl


76


by a few, e.g. 3, hooks


87


.




All the light from upper CFL


72


is directed upwards from lamp


70


; the light is either emitted upwards or is reflected upwards by the upper surface of reflector bowl


76


. Thus upper CFL provides indirect lighting for a room.




The light from lower CFL


74


performs two functions, downlighting (for task lighting) and shade illumination. Some of the light from lower CFL


74


is emitted downwards from lamp


70


and some of the light is emitted upwards toward the bottom surface of reflector dish


76


. Some of the light reflected by the bottom of dish


76


passes through the lower opening


89


of the shade


86


. However, some of the light reflected from the lower surface of dish


76


will strike the inner surface of shade


86


; some light emitted from lower CFL


74


will also be directed at the inner surface of shade


86


. Because of the contour and reflectivity of the lower surface of reflector dish


76


, the inner surface of shade


86


will receive substantially uniform illumination over its entire surface, creating a very aesthetic appearance.




User control is provided by switch/dimmer knobs


90


in lamp base foot


83


. Again, in a simple embodiment, lamp


70


may only include on/off switches so that the upper and lower lamps


72


,


74


are turned on and off as desired, but a more complete system would include dimmers so that the intensity of each lamp may be controlled. Electrical wires


92


to electrical plug


93


also extend from lamp base foot


83


. Lamp base foot


83


may also include a power outlet and/or data port


94


.




While reflector dish/bowl


76


has been shown with curved sides, as shown in

FIG. 7A

, other geometries can be used.

FIG. 7B

, shows a reflector dish/bowl


96


which has a conical shape. In both cases the upper surface of reflector dish/bowl


76


,


96


reflects light from the upper CFL upwards out of the lamp. In both cases the bottom surface of reflector dish/bowl


76


,


96


reflects light from the lower CFL both downwards out of the lamp and sideways onto the inner surface of the shade.




Again the fixture


82


may take a variety of different aesthetic appearances. While the lamp


70


is described as a table lamp, it can also be a floor lamp with a floor lamp base, as in FIG.


5


. While the shade is shown as conical, it may be cylindrical as in

FIG. 4

, or other shapes.




The lamp configuration shown in

FIGS. 6A

, B provides a superior high performance energy efficient table (or floor) lamp that is designed to save energy in homes and offices while greatly increasing light quality and visibility. Widespread use of this lighting system in offices and homes could greatly reduce electrical energy consumption, alleviating the current power problems in California, while also increasing the quality of the lighting environment. Nothing currently available in the office, residential, or hospitality marketplace has both the high performance lighting characteristics and the energy efficiency of this lamp. At full power, this two lamp fluorescent system matches the combined luminous output of a 300 W halogen lamp and a 150 W incandescent table lamp while using only a quarter of the energy.




The lamp uses two independently controllable and fully dimmable CFLs with a reflective dish or bowl separating the two CFLs, allowing three modes of lighting: downward lighting only, upward only, or up and down together. The relationship between the CFLs, the reflector and the lampshade have been designed to maximize the effective distribution of light as well as provide soft and even shade brightness.




While the lamp is clearly an energy saver in homes, it is also a great energy efficient alternative in office spaces. Conventional overhead lighting can be shut off altogether. The downlight of this lamp provides more than enough light flux for most tasks while the uplight provides a low glare ambient light that is ideal for computer environments.




The fully dimmable and controllable lights of the invention allow for maximum flexibility by enabling the user to adjust the lighting system to a changing environment. The dimming option increases energy savings by allowing users to reduce power when they need less light. The lamp also produces more uniform light, reducing the harsh hot spot effect of halogen lights and some CFL designs.




In summary, there are at least four major benefits from the lamp design of

FIGS. 6A

, B.




1. Distribution—Ambient Lighting. The bowl shaped reflective septum is positioned toward the top of the shade volume to ensure that the flux from the top lamp goes up, with no flux below the horizontal plane or onto the lampshade. This gives glare control for computer tasks using a table lamp as a torchiere geometry.




2. Distribution—Task Lighting. The reflective septum is positioned to ensure that no direct component of the lower lamp light flux is allowed to go above the horizontal plane to maintain a direct task light function in an otherwise dark room. Most of the flux from the bottom lamp is directed down for task lighting at the table or floor. The only up light is flux transmitted through the shade which maintains a dark surround, i.e. low light levels on vertical and ceiling surfaces.




3. Shade Luminance Uniformity. The bowl shaped reflective septum is designed optically to perform inside a transmissive glare control envelope, the lampshade. The reflective septum is positioned at the top of the shade compartment with appropriate shape to ensure equal luminance across the shade, eliminating the appearance of hot spots or shadows commonly found with other applications of CFLs in shaded fixtures. This uniformity is achieved by controlling the distribution of reflected light off the bottom surface of the reflective septum by modifying the shape and surface treatment of the septum.




4. Harp-less Shade Support. The reflective septum provides support for the shade, eliminating the conventional harp, and allowing for a wide variety of lamp sizes and easy lamp change in a table/floor lamp geometry. Eliminating the traditional harp allows any type or size of lamp to be used.




Changes and modifications in the specifically described embodiments can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.



Claims
  • 1. A lighting fixture for a table or floor lamp comprising:a table or floor lamp support structure; a reflective septum in the form of a reflector dish or bowl mounted to the support structure in a substantially horizontal orientation facing upward, the septum being reflective on both its top and bottom surfaces; at least one electrical socket mounted on the support structure inside the reflector dish or bowl and at least another electrical socket mounted on the support structure below the reflector dish or bowl; a lighting control system connected to all the electrical sockets; a luminous or translucent lateral shade mounted on the reflective septum with the top of the shade flush with the top edge of the reflector dish or bowl; wherein the fixture is configured to mount at least a pair of lamps in the fixture with at least one lamp in the reflector dish or bowl and at least another lamp below the reflector dish or bowl; wherein the at least one lamp in the reflector dish or bowl provides uplight and the at least one lamp below the reflector dish or bowl provides both downlight and substantially uniform shade illumination.
  • 2. The lighting fixture of claim 1 wherein the support structure is configured to mount the lamps in the fixture in a substantially horizontal orientation.
  • 3. The lighting fixture of claim 1 wherein the lighting control system comprises an on-off switch for selectively turning on and off each of the lamps to be mounted in the fixture to selectively produce down light, up light, and both up and down light distribution.
  • 4. The lighting fixture of claim 3 wherein the lighting control system further comprises a dimmer for selectively controlling the light intensity of each lamp.
  • 5. The lighting fixture of claim 1 wherein the lamps are compact fluorescent lamps (CFLs) and the lighting control system further comprises a ballast for the CFLs.
  • 6. A table or floor lamp comprising:the lighting fixture of claim 1; at least a pair of lamps mounted in the fixture.
  • 7. The table or floor lamp of claim 6 wherein the lamps are compact fluorescent lamps (CFLs).
  • 8. The table or floor lamp of claim 7 wherein each CFL is a planar CFL.
  • 9. The table or floor lamp of claim 8 wherein each planar CFL is a circular planar CFL.
  • 10. The table or floor lamp of claim 7 wherein the lighting control system comprises at least an on-off switch for selectively turning on and off each of the CFLs to selectively produce down light, up light, and both up and down light distribution, and optionally comprises a dimmer for selectively controlling the light intensity of each CFL.
  • 11. A table or floor lamp lighting apparatus comprising:a table or floor lamp lighting fixture having a horizontal reflective septum in the form of an upwardly facing dish or bowl which is reflecting on its top and bottom surfaces, and a luminous or translucent shade mounted to and extending down from the top edge of the reflective septum; a pair of lamps mounted in the fixture with one lamp in the reflective septum dish or bowl and the other below the reflective septum; wherein the upper lamp provides uplighting from the reflective septum dish or bowl and the lower lamp provides downlighting and substantially uniform illumination of the shade.
  • 12. The apparatus of claim 11 wherein the lighting fixture further comprises a lighting control system for operating the pair of lamps.
  • 13. The apparatus of claim 12 wherein the lighting control system comprises an on-off switch for selectively turning on and off each of the lamps to selectively produce down light, up light, and both up and down light distribution.
  • 14. The apparatus of claim 13 wherein the lighting control system further comprises a dimmer for selectively controlling the light intensity of each lamp.
  • 15. The apparatus of claim 11 wherein the lamps are compact fluorescent lamps (CFLs) and the lighting control system further comprises a ballast for the CFLs.
  • 16. The apparatus of claim 11 wherein each lamp is a planar lamp.
  • 17. The apparatus of claim 16 wherein each lamp is a circular planar lamp.
  • 18. The apparatus of claim 11 wherein the lamps are fluorescent lamps.
  • 19. The apparatus of claim 11 wherein the lamps are compact fluorescent lamps (CFLs).
  • 20. The apparatus of claim 11 further comprising one or more additional lamps mounted either above or below or above and below the reflective septum.
RELATED APPLICATIONS

This application is a continuation-in-part (CIP) of Ser. No. 09/525,610 filed Mar. 14, 2000.

GOVERNMENT RIGHTS

The United States Government has rights in this invention pursuant to Contract No. DE-AC03-76SF00098 between the U. S. Department of Energy and the University of California.

US Referenced Citations (3)
Number Name Date Kind
1447238 Crownfield Mar 1923 A
4161020 Miller Jul 1979 A
6206545 Yan Mar 2001 B1
Continuation in Parts (1)
Number Date Country
Parent 09/525610 Mar 2000 US
Child 09/815617 US