Embodiments of the present disclosure generally relate to a tactical rail engaging assembly, and more particularly, to a tactical rail engaging assembly configured to quickly and easily engage a tactical rail, such as used in military applications.
Various devices include graspable or gripping members that allow a user to comfortably and efficiently utilize the device. For example, various weapons, such as automatic firearms, have relatively long barrels. Instead of directly grasping the barrel, which may be hot, a soldier may grasp a foregrip positioned along the firearm. In this manner, the soldier is able to steady the firearm and more easily aim the weapon, for example.
A Picatinny rail, otherwise known as a tactical rail, includes a bracket used on some firearms, for example, in order to provide a standardized mounting platform, which may be used to mount accessories such as scopes, grenade launchers, and the like. A typical Picatinny rail includes a series of ridges having a T-shaped cross-section separated by flat spacing slots. Scopes, for example, may be mounted either by sliding them on the rail from an end, through a weaver mount that is clamped to the rail with bolts, thumbscrews, levers, or the like, or onto slots between ridges. A Picatinny rail may be used with various accessories, such as scopes, tactical lights, laser aiming modules, grenade launchers, night vision devices, reflex sights, foregrips, bipods, and bayonets. Picatinny rails typically have standardized dimensions, such as a slot width of 0.206″ (5.23 mm), spacing between slot centers of 0.394″ (10.01 mm) and slot depth of 0.118″ (3.00 mm). In this manner, the Picatinny rails are configured to accommodate interchangeable accessories.
Typically, a tactical rail accessory, such as a foregrip, includes four separate and distinct securing pins that each need to be simultaneously engaged in order to secure the foregrip to a Picatinny rail system. However, engaging each of the four pins and pulling them downward is awkward, and may prove difficult while still holding onto a heavy weapon. Indeed, manipulating and adjusting a typical foregrip with one hand may prove difficult.
Certain embodiments of the present disclosure provide a tactical rail engaging assembly configured to securely engage a tactical rail. The tactical rail engaging assembly may include a securing base having opposed first and second lateral walls connected to opposed first and second end walls. A rail-receiving channel may be formed through a surface of the securing base. At least one button may be formed through at least one of the first and second end walls. At least one rail lock may extend between the first and second lateral walls and have at least one surface extending into the rail-receiving channel in an extended state. The button(s) may be operatively connected to the rail lock(s). The button(s) is configured to be engaged to move the surface(s) of the rail lock(s) from the extended state to a retracted state in order to allow at least a portion of the tactical rail to move within the rail-receiving channel relative to the securing base.
The button(s) may include first and second buttons located at the first and second walls, respectively. The rail lock(s) may include first and second rail locks extending between the first and second lateral walls. At least one spring member may abut into at least a portion of the rail lock(s).
The assembly may also include a graspable member connected to the securing base. The assembly may be a foregrip assembly, for example. However, the assembly may be various other components, devices, or the like.
An end cap may be removably secured to the graspable member. The graspable member may include a hollow interior chamber closed by the end cap.
The assembly may also include at least one rail segment extending from one or both of the first and second lateral walls. The rail segment(s) may be configured to securely retain a component, such as an accessory, device, or the like.
The rail segment(s) may be integrally formed with the first and/or second lateral walls. The rail segment(s) may be removably secured to the first and/or second lateral walls.
One or both of the first and second lateral walls may include a connection post and first and second securing anchors. The rail segment(s) may securely connect to the first and/or second lateral walls through the connection post and the first and second securing anchors.
The rail segment(s) may include a body having a slot and a pivot beam extending into the slot. The pivot beam may include a free stud at a terminal end. A component is configured to connect to the body through, at least in part, the free stud.
Certain embodiments of the present disclosure provide a tactical rail engaging assembly configured to securely engage a tactical rail. The tactical rail engaging assembly may include a securing base having opposed first and second lateral walls connected to opposed first and second end walls. A rail-receiving channel may be formed through a surface of the securing base. The rail-receiving channel may be configured to receive at least a portion of the tactical rail. A first rail segment may extend from the first lateral wall. A second rail segment may extend from the second lateral wall. Each of the first and rail segments may be configured to securely retain a component.
Each of the first and second rail segments may be integrally formed with the first and second lateral walls, respectively. Optionally, one or both of the first and second rail segments may be removably secured to one or both of the first and second lateral walls, respectively.
One or both of the first and second lateral walls may include a connection post and first and second securing anchors. One or both of the first and second rail segments may securely connect to one or both of the first and second lateral walls through the connection post and the first and second securing anchors.
One or both of the first and second rail segments may include connection channels configured to securely connect to the connection post and the first and second securing anchors. The connection channels include one or more of reciprocal channels formed through or within one or both of the first and second rail segments.
One or both of the first and second rail segments may include a body having a slot and a pivot beam extending into the slot. The pivot beam may include a free stud at a terminal end. The component is configured to connect to the body through, at least in part, the free stud.
Certain embodiments of the present disclosure provide a tactical rail configured to receive and retain a component. The tactical rail may include at least one rail segment including a body having a slot and a pivot beam extending into the slot. The pivot beam may include a free stud at a terminal end. The component is configured to connect to the body in a securing connection through, at least in part, the free stud. A reciprocal feature of the component is configured to receive and retain the free stud or be securely positioned between the free stud and a portion of the body. The pivot beam is configured to be manipulated to remove the free stud from the securing connection with the free stud.
The rail segment(s) may include connection channels configured to receive and retain portions of a securing base. The connection channels may be configured to secure to a connection post and first and second securing anchors of the securing base.
Before the embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof.
An end cap 22 may be removably secured to a distal end 24 of the graspable member 12. The end cap 22 may include a threadable interface configured to threadably engage an internal threadable interface at the distal end 24 of the graspable member 12 in order to allow the end cap 22 to be removed from the distal end 24, and later secured thereto. The graspable member 12 may include a hollow interior chamber, for example, that may be accessed by way of the end cap 22 being removed from the distal end 24. Alternatively, the end cap 22 may be secured to the distal end 24 through various other structural features. For example, the end cap 22 may be secured to the distal end 24 through a latch and pivotal hinge, separate and distinct fasteners, adhesives, and/or the like. Also, alternatively, the graspable member 12 may not include the end cap 22.
The securing base 14 may be perpendicular to the graspable member 12 and may be distally located from the end cap 22. The securing base 14 may include a main body 26 having a bottom surface 28 integrally connected to a proximal end 30 of the graspable member 12. The bottom surface 28 connects to opposed lateral walls 32 and opposed end walls 34, which, in turn, connect to an upper surface 36.
Button cavities 38 are formed through each end wall 34. Each button cavity 38 is configured to receive and retain a button 40.
Lock channels 42 are formed through each lateral wall 32. Each lock channel 42 is configured to receive and retain a rail lock 44 that spans between the opposed lateral walls 32.
A rail-receiving channel 46 is formed through the upper surface 36. The rail-receiving channel 46 extends from each end wall 34 over a length of the securing base 14. The rail-receiving channel 46 is generally perpendicular to the rail locks 44. The rail-receiving channel 46 is sized and shaped to receive a securing platform of a tactical rail, such as a Picatinny rail.
As shown in
The spring members 62 may be coil springs retained within cavities 103 formed through the bottom surface 28 of the securing base 14. Upper ends of the spring members 62 abut into lower surfaces of the rail locks 44.
In operation, as the buttons 40 are pushed into the internal chamber 90, the ramped surfaces 96 slide over internal edges 100 of the rail locks 44, thereby forcing the rail locks 44 downwardly in the direction of arrow A. As the rail locks 44 continue to move downwardly, the engaging surfaces 60 of the rail locks 44 retreat into the internal chamber 90 towards a retracted state. The buttons 40 continue to be pushed inwardly until the engaging surfaces 60 are flush with (or below) the flat surface of the rail-receiving channel 46. In the retracted state, a securing platform of a tactical rail may be slid into the rail-receiving channel 46 and located at a desired position. After the tactical rail is moved to a desired position, the buttons 40 are released, and the spring members 62 decompress and force the rail locks 44 upwardly so that the engaging surfaces 60 extend upwardly into the rail-receiving channel 46 in an extended state, and the buttons 40 are forced back out. As such, the securing platform is locked in position with respect to the rail-receiving channel 46. As noted, the hook portions 102 ensure that the buttons 40 do not eject from the end walls 34.
Accordingly, an individual may secure a tactical rail to the tactical rail engaging assembly 10 by using one hand, and squeezing the buttons 40 inwardly. The individual then positions the tactical rail as desired, while continuing to press the buttons 40 inwardly. After the tactical rail is at a desired position, the individual releases the buttons 40, which causes the rail locks 44 to extend upwardly into the rail-receiving channel 46 and lock the tactical rail in position.
As noted above, the end cap 22 may be removably secured to the distal end 24 of the graspable member 12. The end cap 22 may include a threadable interface 120 that threadably engages an internal threadable interface 122 of the graspable member 12. A hollow interior chamber 124 may be formed within the graspable member 12. In order to gain access to the hollow interior chamber 124, an individual may unscrew the end cap 22 from the distal end. Small parts may be stored within the hollow interior chamber 124. For example, an individual may unscrew the end cap 22 from the distal end 24 and place various small parts or devices within the hollow interior chamber 124. Once the small parts are positioned within the hollow interior chamber 124, the individual may then screw the end cap 22 back onto the distal end 24, thereby containing the small parts or devices within the hollow interior chamber 124.
The tactical rail 200 includes at least one securing platform 202 having a longitudinal rail 204. Multiple securing ridges 206 extend outwardly from the securing platform 202. Referring to
Referring to
The rail-receiving channel 46 may be sized and shaped differently, and the ridges 206 may be sized and shaped in a similar fashion. For example, the rail-receiving channel 46 may have a generally cylindrical shape, while the ridges 206 may be shaped as circular discs that fit within the rail-receiving channel 46.
Referring to
While the tactical rail engaging assembly 10 may be a foregrip assembly, the tactical rail engaging assembly 10 may be various other components, devices, accessories, or the like. For example, the tactical rail engaging assembly may be part of a scope, tactical light, laser-aiming module, grenade launcher, night vision devices, reflex sights, bipods, bayonets, or the like. For example, each device, components, accessory, or the like may include a securing base, such as the securing base 14, configured to adjustably secure to a tactical rail.
The securing base 14 includes opposed buttons 40. The buttons 40 are engaged to retract the rail locks 44 that are used to lock into and engage the tactical rail. The buttons 40 may include tactile features, such as ribs, embossments, or the like, which allow for easier manipulation when a user is wearing gloves.
Embodiments of the present disclosure provide a tactical rail engaging assembly 10 that is easy to adjust with respect to a tactical rail of a weapon, for example. Moreover, embodiments of the present disclosure may be easily used and adjusted while wearing gloves.
The tactical rail engaging assembly 10 may be formed of a polymer having a reduced infrared signature, for example. As such, the tactical rail engaging assembly 10 may be less visible through night vision goggles, for example. Additionally, embodiments may be formed from a polymer that is not easily fragmented. The tactical rail engaging assembly 10 may be formed through injection-molding, for example.
The pivot beam 320 is generally perpendicular to the ridges 310. While the pivot beam 320 is shown such that the free stud 322 is generally at a mid-section of the rail segment 304, the pivot beam 310 may be at various other locations on the rail segment 304. Additionally, the rail segment 304 may include more than one pivot beam and free stud within a slot.
The pivot beam 320 is configured to allow a component, such as a device, accessory, or the like, to be directly secured to the rail segment 304 without being slid over a substantial length of the rail segment 304. While not shown, the rail segment 302 may also include a pivot beam 320.
The lateral wall 308 of the securing base 314 includes a connection post 352 having a cylindrical extension 354 extending outwardly from the lateral wall 308. The cylindrical extension 354 includes a terminal disc 356 at a distal end thereof. The connection post 352 may be proximate to a middle of the lateral wall 308. Alternatively, the connection post 352 may be located at various other areas of the lateral wall 308.
Securing anchors 360 may extend outwardly from upper corners of the lateral wall 308. The securing anchors 360 and the connection post 352 are configured to securely retain the rail segment 304 to the lateral wall 308. The securing anchors 360 and the connection post 352 cooperate to provide three securing points for the rail segment 304. Alternatively, the rail segment 304 may not include the securing anchors 360. Also, alternatively, the rail segment 304 may include the securing anchors 360, but not the connection post 352.
Referring to
Optionally, instead of a cavity, the accessory 400 may include a peg or the like extending from an underside thereof. The peg may be configured to be retained over the terminal disc 356 and between an end of the free stud 322 and an internal distal end of the slot 316.
In order to remove the accessory 400, the pivot arm 320 is engaged, such as with a separate tool or finger, and pushed toward the lateral wall 308 so that the free stud 322 no longer engages the cavity or peg of the accessory 400. In this manner, the free stud 322 may be removed from a securing connection with the accessory 400. The accessory may then be slid off the rail segment 304.
Additionally, the accessory 400 may be removed by sliding the rail segment 304 off the lateral wall 308 so that the terminal disc 356 and anchors 360 disengage from the rail segment 304. Once the rail segment 304 is removed, an individual may bend the pivot arm 320 so that the free stud 322 no longer securely engages a portion of the accessory 400. The accessory 400 may then be slid off the rail segment 304. In this manner, the free stud 322 may be removed from a securing connection with the accessory 400. The rail segment 304 may then be re-secured to the lateral wall 308.
Accordingly, the accessory 400 is protected from being accidentally released from the rail segment 304. As noted above, in order to remove the accessory 400 from the rail segment 304, a separate tool or finger is used to engage the pivot arm 320, and/or the rail segment 304 is removed from the lateral wall 308 by disengaging it from three points of securing contact with the lateral wall 308. Accordingly, the likelihood of the accessory being inadvertently knocked off the rail segment 304 is eliminated or otherwise reduced.
The connection post 352 and the securing anchors 360 cooperate to protect the rail segment 304 from peeling away from the lateral wall 308. More or less connection members may be used. For example, additional securing anchors at lower corners of the lateral wall 308 may be used. Additionally, more connection posts 352 than shown may be used.
As noted, any of the tactical rails noted above may include a connecting member, such as the pivot beam 320 and free stud 322 as described above. The connecting member is not limited to use on just a tactical rail engaging assembly, such as the assembly 300.
Thus, embodiments of the present disclosure provide a rail segment that may be used to securely and reliably retain a component, such as an accessory, device, or the like. The component may be secured to the rail segment without having to be slid over a substantial length of the rail segment.
The rail segment may be part of a tactical rail engaging assembly. The rail segment may alternatively be part of a tactical rail, such as a Picatinny rail system, for example.
While various spatial and directional terms, such as top, bottom, lower, mid, lateral, horizontal, vertical, front and the like may be used to describe embodiments of the present disclosure, it is understood that such terms are merely used with respect to the orientations shown in the drawings. The orientations may be inverted, rotated, or otherwise changed, such that an upper portion is a lower portion, and vice versa, horizontal becomes vertical, and the like.
Variations and modifications of the foregoing are within the scope of the present disclosure. It is understood that the embodiments disclosed and defined herein extend to all alternative combinations of two or more of the individual features mentioned or evident from the text and/or drawings. All of these different combinations constitute various alternative aspects of the present disclosure. The embodiments described herein explain the best modes known for practicing the disclosure and will enable others skilled in the art to utilize the disclosure. The claims are to be construed to include alternative embodiments to the extent permitted by the prior art.
Various features of the disclosure are set forth in the following claims.
This application is a National Phase of International Application Number PCT/US2013/021682 filed Jan. 16, 2013 and relates to and claims priority benefits from U.S. Provisional Patent Application No. 61/587,709 entitled “Foregrip Assembly,” filed Jan. 18, 2012, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/021682 | 1/16/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/109590 | 7/25/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6487807 | Kopman | Dec 2002 | B1 |
6499245 | Swan | Dec 2002 | B1 |
7111424 | Moody | Sep 2006 | B1 |
7243454 | Cahill | Jul 2007 | B1 |
7421815 | Moody | Sep 2008 | B1 |
7559167 | Moody | Jul 2009 | B1 |
7568304 | Moody | Aug 2009 | B1 |
7665239 | Moody | Feb 2010 | B1 |
7845105 | Cahill | Dec 2010 | B1 |
7861451 | Moody | Jan 2011 | B1 |
7900390 | Moody | Mar 2011 | B2 |
7987623 | Moody | Aug 2011 | B1 |
8109032 | Faifer | Feb 2012 | B2 |
8136284 | Moody | Mar 2012 | B2 |
8215047 | Ash, Jr. | Jul 2012 | B2 |
8245428 | Griffin | Aug 2012 | B2 |
8341866 | Gaddini | Jan 2013 | B1 |
8393104 | Moody | Mar 2013 | B1 |
9010008 | Hovey | Apr 2015 | B2 |
20020100204 | Kim | Aug 2002 | A1 |
20050188588 | Keng | Sep 2005 | A1 |
20050241206 | Teetzel | Nov 2005 | A1 |
20060191183 | Griffin | Aug 2006 | A1 |
20060277809 | Moody | Dec 2006 | A1 |
20070271832 | Griffin | Nov 2007 | A1 |
20080052979 | Lee | Mar 2008 | A1 |
20080276518 | Moody | Nov 2008 | A1 |
20090038200 | Keng | Feb 2009 | A1 |
20090056192 | Oz | Mar 2009 | A1 |
20090193702 | Lin | Aug 2009 | A1 |
20100005696 | Moody | Jan 2010 | A1 |
20100031551 | Griffin | Feb 2010 | A1 |
20100229450 | Becker et al. | Sep 2010 | A1 |
20100307043 | Moody | Dec 2010 | A1 |
20110179688 | Ash, Jr. | Jul 2011 | A1 |
20120096755 | Griffin | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
20303993 | Sep 2003 | DE |
102008005698 | Jul 2009 | DE |
Entry |
---|
ISR and WO for PCT/US2013/021682 mailed Jun. 19, 2013. |
Number | Date | Country | |
---|---|---|---|
20140360079 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61587709 | Jan 2012 | US |