This application is a national phase entry of PCT Application No. PCT/JP2019/007223, filed on Feb. 26, 2019, which claims priority to Japanese Application No. 2018-057759, filed on Mar. 26, 2018, which applications are hereby incorporated herein by reference.
The present invention relates to a haptic apparatus that provides a tactile stimulus for users.
Terminal apparatuses using haptic devices using vibration, an electric stimulus, mechanistic deformation, a piezoelectric element, and the like, and services using the haptic devices are being developed. The haptic devices are designed assuming, as a base, a specific gripping shape in consideration of a positional relationship of an actuator, an electrode, and the like, mechanistic efficiency, and the like for an effective exertion of performance. For example, there is proposed an apparatus that is provided with vibrators at one end and the other end of a casing, lets a user place a thumb of a left hand on the one end side and a thumb of a right hand on the other end side to grip the casing, and provides the user with a rotational tactile force sensation (see Patent Literature 1).
The above-described technique has a configuration in which the tactile force sensation is most effectively generated by lightly gripping vicinities of left and right ends of the casing with fingertips. However, in the above-described technique, since the degree of freedom of grip is high, the casing is often not gripped as intended by a designer. If a different place is gripped, the tactile force sensation of the user will be reduced. Therefore, measures have been taken such as guiding how to grip by the external shape and the like of the casing (see
Patent Literature 1: International Publication No. WO 2017/115729
Patent Literature 2: Design Registration No. 1571053.
However, a human hand can grip an object by adapting to various shapes, and often grips at a place not intended by the designer even if the object has the external shape for guiding like the above-described technique. Since the state of a grip portion tends to be hidden in a palm, it is not easy to check an actual practice or a recorded video of another operator in order for the operator to grasp a correct grip method. When an instructor or the like gives guidance, it is not easy to check the gripping state of the operator. For this reason, for example, it has been necessary in the past for an instructor familiar with characteristics of a haptic apparatus to give guidance by touching fingers of each operator, and there was a problem that it was not easy to guide how to grip the casing of the haptic apparatus.
Embodiments of the present invention have been made to solve problems as described above, and an object is to make it possible to more easily guide how to grip a casing.
A haptic apparatus according to embodiments of the present invention includes a casing that can be gripped, at least one sensor that detects contact of a finger of a user who grips the casing, a determination unit that determines whether sensor information on a contact position of the finger detected by the sensor matches preset reference position information, a notification unit that notifies at least one of an indication indicating that the contact position of the finger is shifted from a reference position when the sensor information does not match the reference position information and an indication indicating that the contact position of the finger matches the reference position when the sensor information matches the reference position information, and a tactile stimulus generation unit that provides a tactile stimulus for the user gripping the casing.
In the haptic apparatus, the plurality of sensors are provided in the casing, and the determination unit uses, as the sensor information, combination of detection results of contact of the finger by the plurality of sensors or a value derived by a specific relational formula from the detection results of contact of the finger by the plurality of sensors.
In the haptic apparatus, the sensor may be of a capacitance type.
In the haptic apparatus, the tactile stimulus generation unit may be composed of an actuator that generates mechanical vibration. The actuator provides a tactile stimulus, for example, by asymmetrical vibration. In this case, at least one of electrodes constituting the sensor is preferably connected to an extrapolation unit of the actuator so as to be common or electrically equipotential.
In the haptic apparatus, the tactile stimulus generation unit may be composed of electrodes that provide an electric stimulus to a finger. In this case, at least one of the electrodes constituting the sensor is preferably connected to the electrodes constituting the tactile stimulus generation unit so as to be common or electrically equipotential.
As described above, according to embodiments of the present invention, it is possible to obtain an excellent effect in which how to grip the casing can be more easily guided.
Hereinafter, a haptic apparatus 100 according to an embodiment of the present invention will be described with reference to
The casing 101 has an external shape that can be gripped by a hand of a user, for example, as exemplified in a photo in
For example, a plurality of sensors 102 are provided in the casing 101, and the determination unit 103 uses, as the sensor information, combination of detection results of contact of a finger by the plurality of sensors 102. In addition, the determination unit 103 uses, as the sensor information, a value derived by a specific relational formula from the detection results of contact of the finger by the plurality of sensors 102. The determination unit 103 is a small computer apparatus including, for example, a CPU (Central Processing Unit), a main storage device, and an external storage device, and the CPU is operated by a program deployed in the main storage device, thereby implementing each function described above. The determination unit 103 is, for example, housed in the casing 101.
The notification unit 104 notifies the user at least one of an indication indicating that the contact position of the finger is shifted from a reference position when the sensor information does not match the reference position information and an indication indicating that the contact position of the finger matches the reference position when the sensor information matches the reference position information. The tactile stimulus generation unit 105 provides a tactile stimulus for the user gripping the casing 101. The tactile stimulus generation unit 105 is composed of, for example, an actuator that generates mechanical vibration. The actuator provides a tactile stimulus, for example, by asymmetrical vibration. The tactile stimulus generation unit 105 is composed of, for example, electrodes that provide an electric stimulus to a finger. The notification unit 104 and tactile stimulus generation unit 105 are, for example, housed in the casing 101.
The sensor 102 includes, for example, a plurality of electrodes (detection electrodes) 121, 122, 123, 124, 125, 126, and 127, as shown in
The electrodes 121, 122, 123, 124, 125, 126, and 127 detect, for example, capacitance caused by the contact of the finger of the user gripping the casing 101. For example, as shown in
In the haptic apparatus 100, for example, the electrodes 121, 122, 123, and 124 are connected to a controller 131, as shown in
Regarding the notification of the determination result, as shown in
At least one of the electrodes constituting the sensor 102 may be connected to an extrapolation portion of the actuator so as to be common or electrically equipotential. When the extrapolation portion of the actuator is made of metal and electrically floating, if a finger is disposed on the casing 101 at this portion, electrostatic coupling occurs. In this case, it is a cause of a decrease in capacitance detection performance by the sensor 102. Here, if the extrapolation portion of the actuator is grounded, static electricity generated in the casing 101 is attenuated by the grounding, and therefore it cannot be grounded. On the other hand, the above-mentioned problem can be solved by connecting at least one of the electrodes constituting the sensor 102 to the extrapolation portion of the actuator so as to be common or electrically equipotential.
Next, a notification example of the determination result will be described. For example, if the sensor information does not match the reference position information and it is determined that a gripping position is shifted, a red lamp is turned on, notifying the user that the contact position (gripping position) of the finger is shifted, as shown in (a) of
For example, if the sensor information does not match the reference position information and it is determined that the gripping position is shifted, the user is notified that the gripping position is shifted by continuous sound from a speaker, as shown in (a) of
For example, if the sensor information does not match the reference position information and it is determined that the gripping position is shifted, the user is notified that the gripping position is shifted by continuous vibration by the actuator, as shown in (a) of
When the tactile stimulus generation unit 105 is composed of electrodes that provide an electric stimulus to a finger, a plurality of electrodes 111 are provided in the casing 101 of the haptic apparatus 100, as shown in
For example, a weak current is caused to flow between adjacent electrodes 111 by a stimulation circuit and the current between them is detected by a detection circuit. The above-described circuits are provided every adjacent electrodes 111. For example, when a thumb and an index finger contact the adjacent electrodes 111, current flows between the electrodes, and contact is detected. When they do not contact both of the adjacent electrodes 111, current does not flow and it can be determined they do not contact. In this configuration, at least one of the electrodes constituting the sensor 102 is preferably connected to the electrodes constituting the tactile stimulus generation unit 105 so as to be common or electrically equipotential. By doing like this, it becomes possible to prevent a decrease in capacitance detection performance by the sensor 102 in the same manner as described above.
As shown in
As shown in
Next, more detailed description will be made using an example. For example, as shown in
In the above-described configuration, as shown in
As described above, in embodiments of the present invention, the sensor detects contact of the finger of the user gripping the casing, the determination unit determines whether the sensor information on the contact position of the finger detected by the sensor matches the preset reference position information, and when the sensor information does not match the reference position information, the user is notified that the contact position of the finger is shifted. As a result, according to embodiments of the present invention, it is possible to more easily guide how to grip the casing.
In the conventional art, as a result of tending to cause grip different from the intention of a designer, a tactile effect is not sufficiently obtained and an optimum state is often not obtained. In addition, even if there is an instructor who gives operation guidance, direct contact with another person is necessary for guidance, and a gripping state may be hidden by a palm or fingers and cannot be sufficiently checked. When an operator is in a remote place or there are many operators, it is hard to individually check. For these reasons, it has been sometimes difficult to achieve a sufficient tactile effect.
According to embodiments of the present invention, the tactile effect is sufficiently obtained and the optimum state is obtained. The direct contact with another person for guidance is not necessary and the gripping state can be sufficiently checked. In addition, even when a user (operator) is in a remote place or there are many users, it is possible to individually check.
Note that the present invention is not limited to the embodiment described above and it is clear that many modifications and combinations can be made by those having ordinary knowledge in the art within the technical idea of the invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-057759 | Mar 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/007223 | 2/26/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/187892 | 10/3/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20030174121 | Poupyrev | Sep 2003 | A1 |
20140078117 | Asano | Mar 2014 | A1 |
20170136354 | Yamano | May 2017 | A1 |
20180369865 | Shoji et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
201462962 | Apr 2014 | JP |
201733335 | Feb 2017 | JP |
201737583 | Feb 2017 | JP |
1571053 | Mar 2017 | JP |
2017115729 | Jun 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20210018984 A1 | Jan 2021 | US |