Tactile switch for a mobile electronic device

Information

  • Patent Grant
  • 10741347
  • Patent Number
    10,741,347
  • Date Filed
    Monday, February 12, 2018
    6 years ago
  • Date Issued
    Tuesday, August 11, 2020
    4 years ago
Abstract
A tactile switch on a mobile electronic device having a housing is provided. The tactile switch is comprised of a pressure sensitive interface on an exterior portion of the housing, a switch mechanism, and at least one pathway coupled to the pressure sensitive interface and extending from the pressure sensitive interface to the switch mechanism. The switch mechanism is at a remote location from the pressure sensitive interface. The pathway is formed in an interior portion of the housing. The tactile switch further includes a viscous fluid substantially filling the pathway. The tactile switch is configured such that when pressure is applied to the pressure sensitive interface, the viscous fluid exerts pressure on the switch mechanism, causing the switch to make an electrical contact.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. patent application Ser. No. 14/740,320 for A Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (and published Dec. 22, 2016 as U.S. Patent Application Publication No. 2016/0372282), now U.S. Pat. No. 9,892,876. Each of the foregoing patent application, patent publication, and patent is hereby incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates to mobile electronic devices such as smart phones and handheld computers, and particularly to button switches on such devices.


BACKGROUND

Generally speaking as electronic devices become more mobile, portable, and smaller, these handheld electronic devices employ touch screens and touch gestures to operate features of the device. However, the need for traditional tactile button, or mechanical approach has not completely been eliminated.


Implementing traditional mechanical approach presents challenges. Often, an electronic device's internal components are competing for space which makes the mechanical approach particularly difficult to implement. The positioning of the input tactile buttons can lead to additional challenges such as RF interference or decreased durability.


Therefore, a need exists for tactile buttons for human input on handheld and portable electronic devices which have flexible positioning with respect to the switch or operation of the button controls, and which are efficient in the space they occupy within the device.


SUMMARY

Accordingly, in one aspect, the present invention embraces a tactile switch on a mobile electronic device.


In an exemplary embodiment, a tactile switch on a mobile electronic device having a housing, includes a pressure sensitive interface on an exterior portion of the housing, a switch mechanism, and at least one pathway coupled to the pressure sensitive interface and extending from the pressure sensitive interface to the switch mechanism. The switch mechanism is at a remote location from the pressure sensitive interface. The pathway is formed in an interior portion of the housing. Additionally, a viscous fluid substantially fills the pathway. The tactile switch is configured such that when pressure is applied to the pressure sensitive interface, the viscous fluid in the pathway exerts pressure on the switch mechanism, causing the switch to make an electrical contact.


In another exemplary embodiment, the switch mechanism is mechanical.


In another exemplary embodiment, the switch mechanism is a solid state pressure sensor.


In another exemplary embodiment, the pressure sensitive interface is differentially sensitive to different pressures applied to the pressure sensitive interface.


In yet another exemplary embodiment of the invention, the pathway is molded into the interior portion of the housing.


In another exemplary embodiment, the viscous fluid is a hydraulic fluid.


In another exemplary embodiment, the pressure sensitive interface is comprised of more than one pressure sensitive interface. The at least one pathway is comprised of one pathway corresponding to each pressure sensitive interface. The tactile switch further comprises additional switch mechanisms corresponding to each pressure sensitive interface.


In another exemplary embodiment, the pressure sensitive interface may be located on any part of the exterior portion of the housing.


In another exemplary embodiment, the pressure sensitive interface has a shape. The shape conforms to a contour of the exterior portion of the housing where the pressure sensitive interface is located.


In yet another exemplary embodiment of the invention, the tactile switch further comprises means to transmit vibration to the exterior housing when the electrical contact is made with the switch mechanism.


In another exemplary embodiment of the invention, the vibration is transmitted to the pressure sensitive interface.


In another exemplary embodiment, the means to transmit vibration is selected from a solenoid and a vibrator, the means being activated by the switch making the electrical contact.


In another exemplary embodiment of the invention, the pathways are sealed.


In yet another exemplary embodiment of the invention, the pressure sensitive interface is directionally sensitive to pressure. The at least one pathway is comprised of one pathway corresponding to each direction in which the pressure sensitive interface is directionally sensitive. The tactile switch further comprises additional switch mechanisms corresponding to each pathway.


In another exemplary embodiment of the invention, the tactile switch further comprises means to transmit vibrations to the exterior housing when the electrical contact is made with one of the switch mechanisms. The vibrations are varied in property depending on which switch mechanism caused the electrical contact.


In another exemplary embodiment of the invention, the vibration property is selected from amplitude and frequency.


In another exemplary embodiment of the invention, the exterior portion of the housing of the mobile electronic device is comprised of a resilient material. The pressure sensitive interface is comprised of the entire exterior portion of the housing.


In another aspect, the present invention embraces a tactile switch on a mobile electronic device having a housing; the tactile switch comprising a pressure sensitive interface on an exterior portion of the housing, a switch mechanism, and means for transferring pressure from the pressure sensitive interface to the switch mechanism such that pressure applied to the pressure sensitive interface causes the switch mechanism to make an electrical contact via the means for transferring pressure. The switch mechanism is at a remote location from the pressure sensitive interface.


In another exemplary embodiment, the means for transferring pressure comprises at least one pathway coupled to the pressure sensitive interface and extending from the pressure sensitive interface to the switch mechanism. The pathway is formed in an interior portion of the housing. The means further comprises viscous fluid substantially filling the pathway.


In another exemplary embodiment, the tactile switch further comprises a reservoir containing the viscous fluid. The reservoir is located between the pressure sensitive interface and the pathway.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically depicts a mobile device with three tactile switches in accordance with an exemplary embodiment of the present invention.



FIGS. 2a and 2b schematically depict a tactile switch in an inactivated state and in an activated state respectively in accordance with an exemplary embodiment of the present invention.



FIGS. 3a and 3b schematically depict another tactile switch in an inactivated state and in an activated state respectively in accordance with another exemplary embodiment of the present invention.



FIGS. 4a and 4b schematically depict a further tactile switch in an inactivated state and in an activated state respectively in accordance with another exemplary embodiment of the present invention.





DETAILED DESCRIPTION

The present invention embraces a tactile switch for an electronic mobile device. FIG. 1 illustrates a mobile electronic device with three tactile switches in accordance with the present invention.


In an exemplary embodiment, referring to FIG. 1, a mobile electronic device (10) is provided with a housing (12) and a touchscreen (14). Pressure sensitive interfaces (22, 32, and 42) for tactile switches according to the present invention are provided as part of the housing or on an exterior portion of the housing (12). For example, pressure sensitive interface (42) is shaped to the contour of the housing of the mobile electronic device (10). Pressure sensitive interface (32) is flush with the housing (12) of the mobile electronic device (10). Pressure sensitive interface (22) is slightly elevated from the housing (12) of the mobile electronic device (10). The pressure sensitive interfaces (32) and (22) will be discussed in more detail in conjunction with FIGS. 2 and 3 respectively below. The housing (12) and the pressure sensitive interfaces (22, 32, 42) may be made of resilient material.


Referring now to FIG. 2a, in an exemplary embodiment of the present invention, the tactile switch (30) is comprised of a pressure sensitive interface (32), a switch mechanism (36) at a remote location from the pressure sensitive interface (32), and a pathway (34) coupled to the pressure sensitive interface (32) and extending from the pressure sensitive interface (32) to the switch mechanism (36). A reservoir (37) is provided between the pressure sensitive interface (32) and the pathway (34). The pathway (34) is formed in an interior portion of the housing. For example, the pathway may be etched or molded into a plastic housing of the mobile electronic device. Alternatively the pathway could be molded in another interior parts of the mobile device, thus saving valuable real estate.


Referring to FIG. 2b, in an exemplary embodiment, viscous fluid (38) fills the reservoir (37) and the pathway (34). In the Figure, the pressure sensitive interface (32) is shown as being depressed, which causes the viscous fluid (38) to exert pressure on the switch mechanism (36), causing the switch mechanism (36) to make an electrical contact.


In another exemplary embodiment, the tactile switch (30) also includes a vibration device (39). The vibration device (39), for example, may be a solenoid or a vibrator. The vibration device (39) is activated when the switch mechanism (36) makes an electrical contact. The vibration device (39) may be mechanically coupled to the pathway (34) such that vibration is transmitted to the pressure sensitive interface (32).


Referring now to FIG. 3a, tactile switch (20) is schematically shown. In an exemplary embodiment, tactile switch (20) is comprised of pressures sensitive interface (22), reservoirs (37a and 37b), pathways (34a and 34b), corresponding to reservoirs (37a and 37b), and switch mechanism (36). In the exemplary embodiment, the pressure sensitive interface (22) is actually comprised of two pressure sensitive interfaces (22a and 22b). Thus, tactile switch (20) is actually two switches or a switch with dual functions.


In another exemplary embodiment, referring to FIG. 3b, pressure sensitive interface (22a) is depressed. Viscous fluid (38) in reservoir (37a) is forced down pathway (34a) to exert pressure on switch mechanism (36). The pathways (34a and 34b) may be formed in an interior portion of the housing. For example, the pathways (34a and 34b) may be etched or molded into a plastic housing of the mobile electronic device. Alternatively the pathways (34a and 34b) could be molded in other interior parts of the mobile device, thus saving valuable real estate.


In another exemplary embodiment, the tactile switch (20) is provided with vibration devices (39a and 39b). The vibration devices (39a and 39b), for example may be solenoids or vibrators. One of the vibration devices (39a or 39b) is activated when the switch mechanism (36) makes an electrical contact, depending on whether pressure sensitive interface (22a or 22b) is depressed. The vibration devices (39a or 39b) may be mechanically coupled to the pathways (34a and 34b) such that vibration is transmitted to the corresponding pressure sensitive interface (22a or 22b).


In another exemplary embodiment, the vibrations are varied in property depending on which pressure sensitive interface (22a or 22b) is depressed. The property variation can be one of frequency or amplitude, which is transmitted to the pressure sensitive interface (22a or 22b) via the viscous fluid (38) in the corresponding pathway (34a or 34b).


In another exemplary embodiment, the tactile switch's pressure sensitive interface is directionally sensitive to pressure. The pathway comprises one pathway corresponding to each direction in which the pressure sensitive interface is directionally sensitive. The tactile switch further is provided with additional switch mechanisms corresponding to each pathway. Referring to FIG. 4a, the tactile switch (50) is provided with a pressure sensitive interface (52) which is directionally sensitive to pressure. In the Figure, the directional sensitivity is designated by arrowheads (59a-59h) on the surface of the pressure sensitive interface (52), however these are present in the Figure for merely illustrative purposes and would not necessarily be present on an actual device. The tactile switch (50) also includes pathways (54a-54d), switch mechanisms (56a and 56b) and viscous fluid (58) in the pathways. Switch mechanisms (56a and 56b) each have two possible electrical contact positions, corresponding to the four pathways (54a-54d). In FIG. 4a, when the pressure sensitive interface (52) is pressed in the direction of the blackened arrow head (59a), viscous fluid (58) flows in pathways (54b and 54c) to exert pressure on the switch mechanisms (56a and 56b) to make an electrical connection. Similarly, in other exemplary embodiments, depressing the pressure sensitive interface (52) in the (59b) direction results in viscous fluid (58) flow in pathway (54c); or in direction (59c) results in viscous fluid (58) flow in pathways (54b and 54c); or in the direction (59d) results in viscous fluid (58) flow in pathways (54d); or in direction (59e) results in viscous fluid (58) flow in pathways (54a and 54d); or in the direction (59f) results in viscous fluid (58) flow in pathways (54a); or in direction (59g) results in viscous fluid (58) flow in pathways (54a and 54c).


Referring now to FIG. 4b, in another exemplary embodiment, on the tactile switch (50), the pressure sensitive interface (52) is depressed the direction of blackened arrow head (52h). This depression causes viscous fluid (58) to flow through pathway (54b) to exert pressure on switch mechanism (56a) to make an electrical contact.


In another exemplary embodiment, in all the foregoing examples, the switch mechanism, when making electrical contact, activates some feature of the electronic mobile device.


The following represent additional exemplary embodiments.


Embodiment 1

A tactile switch on a mobile electronic device having a housing, comprising:


a pressure sensitive interface on an exterior portion of the housing;


a switch mechanism, the switch mechanism being at a remote location from the pressure sensitive interface;


at least one pathway coupled to the pressure sensitive interface and extending from the pressure sensitive interface to the switch mechanism, the pathway being formed in an interior portion of the housing;


a viscous fluid substantially filling the pathway; and


the tactile switch being configured such that when pressure is applied to the pressure sensitive interface, the viscous fluid exerts pressure on the switch mechanism, causing the switch to make an electrical contact.


Embodiment 2

The tactile switch of Embodiment 1, wherein the switch mechanism is mechanical.


Embodiment 3

The tactile switch of Embodiment 1, wherein the switch mechanism is a solid state pressure sensor.


Embodiment 4

The tactile switch of Embodiment 1, wherein the pathway is molded into the interior portion of the housing.


Embodiment 5

The tactile switch of Embodiment 3, wherein the pressure sensitive interface is differentially sensitive to different pressures applied to the pressure sensitive interface.


Embodiment 6

The tactile switch of Embodiment 1, wherein the viscous fluid is a hydraulic fluid.


Embodiment 7

The tactile switch of Embodiment 1, wherein the pressure sensitive interface comprises more than one pressure sensitive interface; wherein the at least one pathway comprises one pathway corresponding to each pressure sensitive interface; the tactile switch further comprising additional switch mechanisms corresponding to each pressure sensitive interface.


Embodiment 8

The tactile switch of Embodiment 1, wherein the pressure sensitive interface may be located on any part of the exterior portion of the housing.


Embodiment 9

The tactile switch of Embodiment 1, wherein the pressure sensitive interface has a shape, the shape conforming to a contour of the exterior portion of the housing where the pressure sensitive interface is located.


Embodiment 10

The tactile switch of Embodiment 1, further comprising means to transmit vibration to the exterior housing when the electrical contact is made with the switch mechanism.


Embodiment 11

The tactile switch of Embodiment 10, wherein the vibration is transmitted to the pressure sensitive interface.


Embodiment 12

The tactile switch of Embodiment 10, wherein the means to transmit vibration is selected from a solenoid and a vibrator, the means being activated by the switch making the electrical contact.


Embodiment 13

The tactile switch of Embodiment 1, wherein the pathways are sealed.


Embodiment 14

The tactile switch of Embodiment 1, wherein the pressure sensitive interface is directionally sensitive to pressure, and wherein the at least one pathway comprises one pathway corresponding to each direction in which the pressure sensitive interface is directionally sensitive; the tactile switch further comprising additional switch mechanisms corresponding to each pathway.


Embodiment 15

The tactile switch of Embodiment 14, further comprising means to transmit vibrations to the exterior housing when the electrical contact is made with one of the switch mechanisms, the vibrations being varied in property depending on which switch mechanism caused the electrical contact.


Embodiment 16

The tactile switch of Embodiment 15, wherein the property is selected from amplitude and frequency.


Embodiment 17

The tactile switch of Embodiment 1, wherein the exterior portion of the housing of mobile electronic device is comprised of a resilient material; and wherein the pressure sensitive interface is comprised of the entire exterior portion of the housing.


Embodiment 18

A tactile switch on a mobile electronic device having a housing, comprising:


a pressure sensitive interface on an exterior portion of the housing;


a switch mechanism, the switch mechanism being at a remote location from the pressure sensitive interface;


means for transferring pressure from the pressure sensitive interface to the switch mechanism, such that pressure applied to the pressure sensitive interface causes the switch mechanism to make an electrical contact.


Embodiment 19

The tactile switch of 18, wherein the means for transferring pressure comprises,


at least one pathway coupled to the pressure sensitive interface and extending from the pressure sensitive interface to the switch mechanism, the pathway being formed in an interior portion of the housing; and


viscous fluid substantially filling the pathway.


Embodiment 20

The tactile switch of Embodiment 18, wherein the switch mechanism is mechanical.


Embodiment 21

The tactile switch of Embodiment 18, wherein the switch mechanism is a solid state pressure sensor.


Embodiment 22

The tactile switch of Embodiment 19, wherein the pathway is molded into the interior portion of the housing.


Embodiment 23

The tactile switch of Embodiment 21, wherein the pressure sensitive interface is differentially sensitive to different pressures applied to the pressure sensitive interface.


Embodiment 24

The tactile switch of Embodiment 19, wherein the viscous fluid is a hydraulic fluid.


Embodiment 25

The tactile switch of Embodiment 19, wherein the pressure sensitive interface comprises more than one pressure sensitive interface; and wherein the at least one pathway comprises one pathway corresponding to each pressure sensitive interface; the tactile switch further comprising additional switch mechanisms corresponding to each pressure sensitive interface.


Embodiment 26

The tactile switch of Embodiment 18, wherein the pressure sensitive interface may be located on any part of the exterior portion of the housing.


Embodiment 27

The tactile switch of Embodiment 18, wherein the pressure sensitive interface has a shape, the shape conforming to a contour of the exterior portion of the housing where the pressure sensitive interface is located.


Embodiment 28

The tactile switch of Embodiment 18, further comprising means to transmit vibration to the exterior housing when the electrical contact is made with the switch mechanism.


Embodiment 29

The tactile switch of Embodiment 28, wherein the vibration is transmitted to the pressure sensitive interface.


Embodiment 30

The tactile switch of Embodiment 28, wherein the means to transmit vibration is selected from a solenoid and a vibrator, the means being activated by the switch making the electrical contact.


Embodiment 31

The tactile switch of Embodiment 19, wherein the pathways are sealed.


Embodiment 32

The tactile switch of Embodiment 19, wherein the pressure sensitive interface is directionally sensitive to pressure, and wherein the at least one pathway comprises one pathway corresponding to each direction in which the pressure sensitive interface is directionally sensitive; the tactile switch further comprising additional switch mechanisms corresponding to each pathway.


Embodiment 33

The tactile switch of Embodiment 32, further comprising means to transmit vibrations to the exterior housing when the electrical contact is made by one of the switch mechanisms, the vibrations being varied in property depending on which switch mechanism caused the electrical contact.


Embodiment 34

The tactile switch of Embodiment 33, wherein the property is selected from amplitude and frequency.


Embodiment 35

The tactile switch of Embodiment 18, wherein the exterior portion of the housing of mobile electronic device is comprised of a resilient material; and wherein the pressure sensitive interface is comprised of the entire exterior portion of the housing.


Embodiment 36

The tactile switch of Embodiment 1, further comprising a reservoir containing the viscous fluid located between the pressure sensitive interface and the pathway.


Embodiment 37

The tactile switch of Embodiment 19, further comprising a reservoir containing the viscous fluid located between the pressure sensitive interface and the pathway.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:

  • To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications:
  • U.S. Pat. Nos. 6,832,725; 7,128,266;
  • U.S. Pat. Nos. 7,159,783; 7,413,127;
  • U.S. Pat. Nos. 7,726,575; 8,294,969;
  • U.S. Pat. Nos. 8,317,105; 8,322,622;
  • U.S. Pat. Nos. 8,366,005; 8,371,507;
  • U.S. Pat. Nos. 8,376,233; 8,381,979;
  • U.S. Pat. Nos. 8,390,909; 8,408,464;
  • U.S. Pat. Nos. 8,408,468; 8,408,469;
  • U.S. Pat. Nos. 8,424,768; 8,448,863;
  • U.S. Pat. Nos. 8,457,013; 8,459,557;
  • U.S. Pat. Nos. 8,469,272; 8,474,712;
  • U.S. Pat. Nos. 8,479,992; 8,490,877;
  • U.S. Pat. Nos. 8,517,271; 8,523,076;
  • U.S. Pat. Nos. 8,528,818; 8,544,737;
  • U.S. Pat. Nos. 8,548,242; 8,548,420;
  • U.S. Pat. Nos. 8,550,335; 8,550,354;
  • U.S. Pat. Nos. 8,550,357; 8,556,174;
  • U.S. Pat. Nos. 8,556,176; 8,556,177;
  • U.S. Pat. Nos. 8,559,767; 8,599,957;
  • U.S. Pat. Nos. 8,561,895; 8,561,903;
  • U.S. Pat. Nos. 8,561,905; 8,565,107;
  • U.S. Pat. Nos. 8,571,307; 8,579,200;
  • U.S. Pat. Nos. 8,583,924; 8,584,945;
  • U.S. Pat. Nos. 8,587,595; 8,587,697;
  • U.S. Pat. Nos. 8,588,869; 8,590,789;
  • U.S. Pat. Nos. 8,596,539; 8,596,542;
  • U.S. Pat. Nos. 8,596,543; 8,599,271;
  • U.S. Pat. Nos. 8,599,957; 8,600,158;
  • U.S. Pat. Nos. 8,600,167; 8,602,309;
  • U.S. Pat. Nos. 8,608,053; 8,608,071;
  • U.S. Pat. Nos. 8,611,309; 8,615,487;
  • U.S. Pat. Nos. 8,616,454; 8,621,123;
  • U.S. Pat. Nos. 8,622,303; 8,628,013;
  • U.S. Pat. Nos. 8,628,015; 8,628,016;
  • U.S. Pat. Nos. 8,629,926; 8,630,491;
  • U.S. Pat. Nos. 8,635,309; 8,636,200;
  • U.S. Pat. Nos. 8,636,212; 8,636,215;
  • U.S. Pat. Nos. 8,636,224; 8,638,806;
  • U.S. Pat. Nos. 8,640,958; 8,640,960;
  • U.S. Pat. Nos. 8,643,717; 8,646,692;
  • U.S. Pat. Nos. 8,646,694; 8,657,200;
  • U.S. Pat. Nos. 8,659,397; 8,668,149;
  • U.S. Pat. Nos. 8,678,285; 8,678,286;
  • U.S. Pat. Nos. 8,682,077; 8,687,282;
  • U.S. Pat. Nos. 8,692,927; 8,695,880;
  • U.S. Pat. Nos. 8,698,949; 8,717,494;
  • U.S. Pat. Nos. 8,717,494; 8,720,783;
  • U.S. Pat. Nos. 8,723,804; 8,723,904;
  • U.S. Pat. No. 8,727,223; U.S. Pat. No. D702,237;
  • U.S. Pat. Nos. 8,740,082; 8,740,085;
  • U.S. Pat. Nos. 8,746,563; 8,750,445;
  • U.S. Pat. Nos. 8,752,766; 8,756,059;
  • U.S. Pat. Nos. 8,757,495; 8,760,563;
  • U.S. Pat. Nos. 8,763,909; 8,777,108;
  • U.S. Pat. Nos. 8,777,109; 8,779,898;
  • U.S. Pat. Nos. 8,781,520; 8,783,573;
  • U.S. Pat. Nos. 8,789,757; 8,789,758;
  • U.S. Pat. Nos. 8,789,759; 8,794,520;
  • U.S. Pat. Nos. 8,794,522; 8,794,526;
  • U.S. Pat. Nos. 8,798,367; 8,807,431;
  • U.S. Pat. Nos. 8,807,432; 8,820,630;
  • International Publication No. 2013/163789;
  • International Publication No. 2013/173985;
  • International Publication No. 2014/019130;
  • International Publication No. 2014/110495;
  • U.S. Patent Application Publication No. 2008/0185432;
  • U.S. Patent Application Publication No. 2009/0134221;
  • U.S. Patent Application Publication No. 2010/0177080;
  • U.S. Patent Application Publication No. 2010/0177076;
  • U.S. Patent Application Publication No. 2010/0177707;
  • U.S. Patent Application Publication No. 2010/0177749;
  • U.S. Patent Application Publication No. 2011/0202554;
  • U.S. Patent Application Publication No. 2012/0111946;
  • U.S. Patent Application Publication No. 2012/0138685;
  • U.S. Patent Application Publication No. 2012/0168511;
  • U.S. Patent Application Publication No. 2012/0168512;
  • U.S. Patent Application Publication No. 2012/0193423;
  • U.S. Patent Application Publication No. 2012/0203647;
  • U.S. Patent Application Publication No. 2012/0223141;
  • U.S. Patent Application Publication No. 2012/0228382;
  • U.S. Patent Application Publication No. 2012/0248188;
  • U.S. Patent Application Publication No. 2013/0043312;
  • U.S. Patent Application Publication No. 2013/0056285;
  • U.S. Patent Application Publication No. 2013/0070322;
  • U.S. Patent Application Publication No. 2013/0075168;
  • U.S. Patent Application Publication No. 2013/0082104;
  • U.S. Patent Application Publication No. 2013/0175341;
  • U.S. Patent Application Publication No. 2013/0175343;
  • U.S. Patent Application Publication No. 2013/0200158;
  • U.S. Patent Application Publication No. 2013/0256418;
  • U.S. Patent Application Publication No. 2013/0257744;
  • U.S. Patent Application Publication No. 2013/0257759;
  • U.S. Patent Application Publication No. 2013/0270346;
  • U.S. Patent Application Publication No. 2013/0278425;
  • U.S. Patent Application Publication No. 2013/0287258;
  • U.S. Patent Application Publication No. 2013/0292475;
  • U.S. Patent Application Publication No. 2013/0292477;
  • U.S. Patent Application Publication No. 2013/0293539;
  • U.S. Patent Application Publication No. 2013/0293540;
  • U.S. Patent Application Publication No. 2013/0306728;
  • U.S. Patent Application Publication No. 2013/0306730;
  • U.S. Patent Application Publication No. 2013/0306731;
  • U.S. Patent Application Publication No. 2013/0307964;
  • U.S. Patent Application Publication No. 2013/0308625;
  • U.S. Patent Application Publication No. 2013/0313324;
  • U.S. Patent Application Publication No. 2013/0313325;
  • U.S. Patent Application Publication No. 2013/0341399;
  • U.S. Patent Application Publication No. 2013/0342717;
  • U.S. Patent Application Publication No. 2014/0001267;
  • U.S. Patent Application Publication No. 2014/0002828;
  • U.S. Patent Application Publication No. 2014/0008430;
  • U.S. Patent Application Publication No. 2014/0008439;
  • U.S. Patent Application Publication No. 2014/0025584;
  • U.S. Patent Application Publication No. 2014/0027518;
  • U.S. Patent Application Publication No. 2014/0034734;
  • U.S. Patent Application Publication No. 2014/0036848;
  • U.S. Patent Application Publication No. 2014/0039693;
  • U.S. Patent Application Publication No. 2014/0042814;
  • U.S. Patent Application Publication No. 2014/0049120;
  • U.S. Patent Application Publication No. 2014/0049635;
  • U.S. Patent Application Publication No. 2014/0061305;
  • U.S. Patent Application Publication No. 2014/0061306;
  • U.S. Patent Application Publication No. 2014/0063289;
  • U.S. Patent Application Publication No. 2014/0066136;
  • U.S. Patent Application Publication No. 2014/0067692;
  • U.S. Patent Application Publication No. 2014/0070005;
  • U.S. Patent Application Publication No. 2014/0071840;
  • U.S. Patent Application Publication No. 2014/0074746;
  • U.S. Patent Application Publication No. 2014/0075846;
  • U.S. Patent Application Publication No. 2014/0076974;
  • U.S. Patent Application Publication No. 2014/0078341;
  • U.S. Patent Application Publication No. 2014/0078342;
  • U.S. Patent Application Publication No. 2014/0078345;
  • U.S. Patent Application Publication No. 2014/0084068;
  • U.S. Patent Application Publication No. 2014/0097249;
  • U.S. Patent Application Publication No. 2014/0098792;
  • U.S. Patent Application Publication No. 2014/0100774;
  • U.S. Patent Application Publication No. 2014/0100813;
  • U.S. Patent Application Publication No. 2014/0103115;
  • U.S. Patent Application Publication No. 2014/0104413;
  • U.S. Patent Application Publication No. 2014/0104414;
  • U.S. Patent Application Publication No. 2014/0104416;
  • U.S. Patent Application Publication No. 2014/0104451;
  • U.S. Patent Application Publication No. 2014/0106594;
  • U.S. Patent Application Publication No. 2014/0106725;
  • U.S. Patent Application Publication No. 2014/0108010;
  • U.S. Patent Application Publication No. 2014/0108402;
  • U.S. Patent Application Publication No. 2014/0108682;
  • U.S. Patent Application Publication No. 2014/0110485;
  • U.S. Patent Application Publication No. 2014/0114530;
  • U.S. Patent Application Publication No. 2014/0124577;
  • U.S. Patent Application Publication No. 2014/0124579;
  • U.S. Patent Application Publication No. 2014/0125842;
  • U.S. Patent Application Publication No. 2014/0125853;
  • U.S. Patent Application Publication No. 2014/0125999;
  • U.S. Patent Application Publication No. 2014/0129378;
  • U.S. Patent Application Publication No. 2014/0131438;
  • U.S. Patent Application Publication No. 2014/0131441;
  • U.S. Patent Application Publication No. 2014/0131443;
  • U.S. Patent Application Publication No. 2014/0131444;
  • U.S. Patent Application Publication No. 2014/0131445;
  • U.S. Patent Application Publication No. 2014/0131448;
  • U.S. Patent Application Publication No. 2014/0133379;
  • U.S. Patent Application Publication No. 2014/0136208;
  • U.S. Patent Application Publication No. 2014/0140585;
  • U.S. Patent Application Publication No. 2014/0151453;
  • U.S. Patent Application Publication No. 2014/0152882;
  • U.S. Patent Application Publication No. 2014/0158770;
  • U.S. Patent Application Publication No. 2014/0159869;
  • U.S. Patent Application Publication No. 2014/0160329;
  • U.S. Patent Application Publication No. 2014/0166755;
  • U.S. Patent Application Publication No. 2014/0166757;
  • U.S. Patent Application Publication No. 2014/0166759;
  • U.S. Patent Application Publication No. 2014/0166760;
  • U.S. Patent Application Publication No. 2014/0166761;
  • U.S. Patent Application Publication No. 2014/0168787;
  • U.S. Patent Application Publication No. 2014/0175165;
  • U.S. Patent Application Publication No. 2014/0175169;
  • U.S. Patent Application Publication No. 2014/0175172;
  • U.S. Patent Application Publication No. 2014/0175174;
  • U.S. Patent Application Publication No. 2014/0191644;
  • U.S. Patent Application Publication No. 2014/0191913;
  • U.S. Patent Application Publication No. 2014/0197238;
  • U.S. Patent Application Publication No. 2014/0197239;
  • U.S. Patent Application Publication No. 2014/0197304;
  • U.S. Patent Application Publication No. 2014/0203087;
  • U.S. Patent Application Publication No. 2014/0204268;
  • U.S. Patent Application Publication No. 2014/0214631;
  • U.S. Patent Application Publication No. 2014/0217166;
  • U.S. Patent Application Publication No. 2014/0217180;
  • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
  • U.S. patent application Ser. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.);
  • U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson);
  • U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.);
  • U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield);
  • U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin);
  • U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.);
  • U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini);
  • U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.);
  • U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.);
  • U.S. patent application Ser. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.);
  • U.S. patent application Ser. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.);
  • U.S. patent application Ser. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang);
  • U.S. patent application Ser. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.);
  • U.S. patent application Ser. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.);
  • U.S. patent application Ser. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini);
  • U.S. patent application Ser. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon);
  • U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini);
  • U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher);
  • U.S. patent application Ser. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck);
  • U.S. patent application Ser. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.);
  • U.S. patent application Ser. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.);
  • U.S. patent application Ser. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl);
  • U.S. patent application Ser. No. 14/094,087 for Method and System for Communicating Information in an Digital Signal, filed Dec. 2, 2013 (Peake et al.);
  • U.S. patent application Ser. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian);
  • U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
  • U.S. patent application Ser. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.);
  • U.S. patent application Ser. No. 14/165,980 for System and Method for Measuring Irregular Objects with a Single Camera filed Jan. 28, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.);
  • U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
  • U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/250,923 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 11, 2014, (Deng et al.);
  • U.S. patent application Ser. No. 14/257,174 for Imaging Terminal Having Data Compression filed Apr. 21, 2014, (Barber et al.);
  • U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);
  • U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/274,858 for Mobile Printer with Optional Battery Accessory filed May 12, 2014 (Marty et al.);
  • U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);
  • U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/300,276 for METHOD AND SYSTEM FOR CONSIDERING INFORMATION ABOUT AN EXPECTED RESPONSE WHEN PERFORMING SPEECH RECOGNITION, filed Jun. 10, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/305,153 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 16, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/310,226 for AUTOFOCUSING OPTICAL IMAGING DEVICE filed Jun. 20, 2014 (Koziol et al.);
  • U.S. patent application Ser. No. 14/327,722 for CUSTOMER FACING IMAGING SYSTEMS AND METHODS FOR OBTAINING IMAGES filed Jul. 10, 2014 (Oberpriller et al,);
  • U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/329,303 for CELL PHONE READING MODE USING IMAGE TIMER filed Jul. 11, 2014 (Coyle);
  • U.S. patent application Ser. No. 14/333,588 for SYMBOL READING SYSTEM WITH INTEGRATED SCALE BASE filed Jul. 17, 2014 (Barten);
  • U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/336,188 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES, Filed Jul. 21, 2014 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);
  • U.S. patent application Ser. No. 14/340,716 for an OPTICAL IMAGER AND METHOD FOR CORRELATING A MEDICATION PACKAGE WITH A PATIENT, filed Jul. 25, 2014 (Ellis);
  • U.S. patent application Ser. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang);
  • U.S. patent application Ser. No. 14/336,188 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES, Filed Jul. 21, 2014 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/355,613 for Optical Indicia Reading Terminal with Color Image Sensor filed May 1, 2014 (Lu et al.);
  • U.S. patent application Ser. No. 14/370,237 for WEB-BASED SCAN-TASK ENABLED SYSTEM AND METHOD OF AND APPARATUS FOR DEVELOPING AND DEPLOYING THE SAME ON A CLIENT-SERVER NETWORK filed Jul. 2, 2014 (Chen et al.);
  • U.S. patent application Ser. No. 14/370,267 for INDUSTRIAL DESIGN FOR CONSUMER DEVICE BASED SCANNING AND MOBILITY, filed Jul. 2, 2014 (Ma et al.);
  • U.S. patent application Ser. No. 14/376,472, for an ENCODED INFORMATION READING TERMINAL INCLUDING HTTP SERVER, filed Aug. 4, 2014 (Lu);
  • U.S. patent application Ser. No. 14/379,057 for METHOD OF USING CAMERA SENSOR INTERFACE TO TRANSFER MULTIPLE CHANNELS OF SCAN DATA USING AN IMAGE FORMAT filed Aug. 15, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/460,387 for APPARATUS FOR DISPLAYING BAR CODES FROM LIGHT EMITTING DISPLAY SURFACES filed Aug. 15, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/460,829 for ENCODED INFORMATION READING TERMINAL WITH WIRELESS PATH SELECTION CAPABILITY, filed Aug. 15, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/446,387 for INDICIA READING TERMINAL PROCESSING PLURALITY OF FRAMES OF IMAGE DATA RESPONSIVELY TO TRIGGER SIGNAL ACTIVATION filed Jul. 30, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);
  • U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);
  • U.S. patent application Ser. No. 29/492,903 for an INDICIA SCANNER, filed Jun. 4, 2014 (Zhou et al.); and
  • U.S. patent application Ser. No. 29/494,725 for an IN-COUNTER BARCODE SCANNER, filed Jun. 24, 2014 (Oberpriller et al.).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A method of manufacturing a tactile switch mechanism on a mobile electronic device having a housing, the method comprising steps of: forming at least one pathway in an interior portion of the housing;substantially filling the at least one pathway with a viscous fluid;forming a pressure sensitive interface on an exterior portion of the housing;providing a switch mechanism at a remote location from the pressure sensitive interface;coupling the at least one pathway and the switch mechanism such that, when pressure is applied to the pressure sensitive interface, the viscous fluid exerts pressure on the switch mechanism causing the switch mechanism to make an electrical contact; andmechanically associating a vibration device to the at least one pathway such that vibration is transmitted to the pressure sensitive interface via the viscous fluid when the switch mechanism makes the electrical contact.
  • 2. The method of claim 1, comprising forming the pressure sensitive interface in a shape which conforms to a contour of the exterior of the housing where the pressure sensitive interface is located.
  • 3. The method of claim 1, comprising forming the pressure sensitive interface with a first portion coupled to a first pathway and a second portion coupled to a second pathway, wherein the vibration device transmits vibration to the first portion via the viscous fluid in the first pathway upon the first portion being pressed and to the second portion via the viscous fluid in the second pathway upon the second portion being pressed.
  • 4. The method of claim 3, wherein the vibration is transmitted to the pressure sensitive portion at a first frequency and/or a first amplitude upon pressure being applied to the first portion and at a second frequency and/or a second amplitude upon pressure being applied to the second portion.
  • 5. The method of claim 1, wherein the switch mechanism is a solid state pressure sensor.
  • 6. The method of claim 1, wherein the viscous fluid is a hydraulic fluid.
  • 7. The method of claim 1, wherein the pathway is molded into the interior portion of the housing.
  • 8. A method of manufacturing a tactile switch mechanism on a mobile electronic device having a housing, the method comprising steps of: forming a pressure sensitive interface on an exterior portion of the housing, the pressure sensitive interface comprising a first portion and a second portion;forming a first pathway and a second pathway in an interior portion of the housing;substantially filling the first pathway and the second pathway with a viscous fluid;providing a switch mechanism at a remote location from the pressure sensitive interface;coupling the first pathway and the switch mechanism such that, when pressure is applied to the first portion of the pressure sensitive interface, the viscous fluid exerts pressure on the switch mechanism causing the switch mechanism to make an electrical contact;coupling the second pathway and the switch mechanism such that when pressure is applied to the second portion of the pressure sensitive interface, the viscous fluid exerts pressure on the switch mechanism, causing the switch mechanism to make an electrical contact;mechanically associating a first vibration device to the first pathway such that vibration is transmitted to the first portion of the pressure sensitive interface via the viscous fluid when the switch mechanism makes the electrical contact; andmechanically associating a second vibration device to the second pathway such that vibration is transmitted to the second portion of the pressure sensitive interface via the viscous fluid when the switch mechanism makes the electrical contact.
  • 9. The method of claim 8, comprising forming the pressure sensitive interface in a shape which conforms to a contour of the exterior of the housing where the pressure sensitive interface is located.
  • 10. The method of claim 8, wherein the viscous fluid is a hydraulic fluid.
  • 11. The method of claim 8, wherein the switch mechanism is a solid state pressure sensor.
  • 12. The method of claim 8, wherein the first pathway and the second pathway are molded into the interior portion of the housing.
  • 13. The method of claim 8, wherein the vibration is transmitted to the pressure sensitive interface at a first frequency and/or at a first amplitude upon pressure being applied to the first portion and at a second frequency and/or a second amplitude upon pressure being applied to the second portion.
  • 14. The method of claim 8, wherein the pressure sensitive interface is directionally sensitive to different pressures applied to the pressure sensitive interface, the first pathway corresponding to a first direction of pressure applied to the pressure sensitive interface and the second pathway corresponding to a second direction of pressure applied to the pressure sensitive interface.
  • 15. A method of actuating a tactile switch on a mobile electronic device having a housing, the method comprising: causing a switch mechanism of the tactile switch to make an electrical contact when pressure is applied to a pressure sensitive interface on an exterior portion of the housing, wherein the switch mechanism is provided at a remote location from the pressure sensitive interface, and wherein a viscous fluid exerts pressure on the switch mechanism; andtransmitting vibration from a vibration device to the pressure sensitive interface through at least one pathway when the switch mechanism makes the electrical contact, wherein the at least one pathway is substantially filled with the viscous fluid.
  • 16. The method of claim 15, wherein the switch mechanism is mechanical, and the switch mechanism is a solid state pressure sensor.
  • 17. The method of claim 15, wherein the at least one pathway is molded into an interior portion of the housing.
  • 18. The method of claim 15, wherein the pressure sensitive interface is differentially sensitive to different pressures applied to the pressure sensitive interface.
  • 19. The method of claim 15, wherein: the pressure sensitive interface comprises more than one pressure sensitive interface;the at least one pathway comprises one pathway corresponding to each pressure sensitive interface; andthe tactile switch comprises additional switch mechanisms corresponding to each pressure sensitive interface.
  • 20. The method of claim 15, wherein the at least one pathway extends from the pressure sensitive interface to the switch mechanism.
US Referenced Citations (659)
Number Name Date Kind
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7726575 Wang et al. Jun 2010 B2
8174372 Da Costa May 2012 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8736909 Sato et al. May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9061527 Tobin et al. Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9076459 Braho et al. Jul 2015 B2
9079423 Bouverie et al. Jul 2015 B2
9080856 Laffargue Jul 2015 B2
9082023 Feng et al. Jul 2015 B2
9084032 Rautiola et al. Jul 2015 B2
9087250 Coyle Jul 2015 B2
9092681 Havens et al. Jul 2015 B2
9092682 Wilz et al. Jul 2015 B2
9092683 Koziol et al. Jul 2015 B2
9093141 Liu Jul 2015 B2
9098763 Lu et al. Aug 2015 B2
9104929 Todeschini Aug 2015 B2
9104934 Li et al. Aug 2015 B2
9107484 Chaney Aug 2015 B2
9111159 Liu et al. Aug 2015 B2
9111166 Cunningham Aug 2015 B2
9135483 Liu et al. Sep 2015 B2
9137009 Gardiner Sep 2015 B1
9141839 Xian et al. Sep 2015 B2
9147096 Wang Sep 2015 B2
9148474 Skvoretz Sep 2015 B2
9158000 Sauerwein Oct 2015 B2
9158340 Reed et al. Oct 2015 B2
9158953 Gillet et al. Oct 2015 B2
9159059 Daddabbo et al. Oct 2015 B2
9165174 Huck Oct 2015 B2
9171543 Emerick et al. Oct 2015 B2
9183425 Wang Nov 2015 B2
9189669 Zhu et al. Nov 2015 B2
9195844 Todeschini et al. Nov 2015 B2
9202458 Braho et al. Dec 2015 B2
9208366 Liu Dec 2015 B2
9208367 Wang Dec 2015 B2
9219836 Bouverie et al. Dec 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224024 Bremer et al. Dec 2015 B2
9224027 Van Horn et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9235553 Fitch et al. Jan 2016 B2
9239950 Fletcher Jan 2016 B2
9245492 Ackley et al. Jan 2016 B2
9443123 Hejl Jan 2016 B2
9248640 Heng Feb 2016 B2
9250652 London et al. Feb 2016 B2
9250712 Todeschini Feb 2016 B1
9251411 Todeschini Feb 2016 B2
9258033 Showering Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9262660 Lu et al. Feb 2016 B2
9262662 Chen et al. Feb 2016 B2
9269036 Bremer Feb 2016 B2
9270782 Hala et al. Feb 2016 B2
9274812 Doren et al. Mar 2016 B2
9275388 Havens et al. Mar 2016 B2
9277668 Feng et al. Mar 2016 B2
9280693 Feng et al. Mar 2016 B2
9286496 Smith Mar 2016 B2
9297900 Jiang Mar 2016 B2
9298964 Li et al. Mar 2016 B2
9301427 Feng et al. Mar 2016 B2
9304376 Anderson Apr 2016 B2
9310609 Rueblinger et al. Apr 2016 B2
9313377 Todeschini et al. Apr 2016 B2
9317037 Byford et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342723 Liu et al. May 2016 B2
9342724 McCloskey May 2016 B2
9361882 Ressler et al. Jun 2016 B2
9365381 Colonel et al. Jun 2016 B2
9373018 Colavito et al. Jun 2016 B2
9375945 Bowles Jun 2016 B1
9378403 Wang et al. Jun 2016 B2
D760719 Zhou et al. Jul 2016 S
9360304 Chang et al. Jul 2016 B2
9383848 Daghigh Jul 2016 B2
9384374 Bianconi Jul 2016 B2
9390596 Todeschini Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9411386 Sauerwein Aug 2016 B2
9412242 Van Horn et al. Aug 2016 B2
9418269 Havens et al. Aug 2016 B2
9418270 Van Volkinburg et al. Aug 2016 B2
9423318 Lui et al. Aug 2016 B2
D766244 Zhou et al. Sep 2016 S
9443222 Singel et al. Sep 2016 B2
9454689 McCloskey et al. Sep 2016 B2
9464885 Lloyd et al. Oct 2016 B2
9465967 Xian et al. Oct 2016 B2
9478113 Xie et al. Oct 2016 B2
9478983 Kather et al. Oct 2016 B2
D771631 Fitch et al. Nov 2016 S
9481186 Bouverie et al. Nov 2016 B2
9488986 Solanki Nov 2016 B1
9489782 Payne et al. Nov 2016 B2
9490540 Davies et al. Nov 2016 B1
9491729 Rautiola et al. Nov 2016 B2
9497092 Gomez et al. Nov 2016 B2
9507974 Todeschini Nov 2016 B1
9519814 Cudzilo Dec 2016 B2
9521331 Bessettes et al. Dec 2016 B2
9530038 Xian et al. Dec 2016 B2
D777166 Bidwell et al. Jan 2017 S
9558386 Yeakley Jan 2017 B2
9572901 Todeschini Feb 2017 B2
9606581 Howe et al. Mar 2017 B1
D783601 Schulte et al. Apr 2017 S
D785617 Bidwell et al. May 2017 S
D785636 Oberpriller et al. May 2017 S
9646189 Lu et al. May 2017 B2
9646191 Unemyr et al. May 2017 B2
9652648 Ackley et al. May 2017 B2
9652653 Todeschini et al. May 2017 B2
9656487 Ho et al. May 2017 B2
9659198 Giordano et al. May 2017 B2
D790505 Vargo et al. Jun 2017 S
D790546 Zhou et al. Jun 2017 S
D790553 Fitch et al. Jun 2017 S
9680282 Hanenburg Jun 2017 B2
9697401 Feng et al. Jul 2017 B2
9701140 Alaganchetty et al. Jul 2017 B1
9892876 Bandringa Feb 2018 B2
20070063048 Havens et al. Mar 2007 A1
20080068224 Holland Mar 2008 A1
20090134221 Zhu et al. May 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20120111946 Golant May 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193211 Ciesla et al. Aug 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120223824 Rothkopf Sep 2012 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130175341 Keamey et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292237 Arai et al. Nov 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130332524 Fiala et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140100813 Showering Jan 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140121438 Long et al. May 2014 A1
20140121445 Fontenot et al. May 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140248958 Yamagishi Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150071818 Scheuren et al. Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150169925 Chen et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150310243 Ackley Oct 2015 A1
20150310389 Crimm et al. Oct 2015 A1
20150327012 Bian et al. Nov 2015 A1
20150378435 Ciesla et al. Dec 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160062473 Bouchat et al. Mar 2016 A1
20160092805 Geisler et al. Mar 2016 A1
20160101936 Chamberlin Apr 2016 A1
20160102975 McCloskey et al. Apr 2016 A1
20160104019 Todeschini et al. Apr 2016 A1
20160104274 Jovanovski et al. Apr 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160117627 Raj et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171597 Todeschini Jun 2016 A1
20160171666 McCloskey Jun 2016 A1
20160171720 Todeschini Jun 2016 A1
20160171775 Todeschini et al. Jun 2016 A1
20160171777 Todeschini et al. Jun 2016 A1
20160174674 Oberpriller et al. Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160178685 Young et al. Jun 2016 A1
20160178707 Young et al. Jun 2016 A1
20160179132 Harr et al. Jun 2016 A1
20160179143 Bidwell et al. Jun 2016 A1
20160179368 Roeder Jun 2016 A1
20160179378 Kent et al. Jun 2016 A1
20160180130 Bremer Jun 2016 A1
20160180133 Oberpriller et al. Jun 2016 A1
20160180136 Meier et al. Jun 2016 A1
20160180594 Todeschini Jun 2016 A1
20160180663 McMahan et al. Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160180713 Bernhardt et al. Jun 2016 A1
20160185136 Ng et al. Jun 2016 A1
20160185291 Chamberlin Jun 2016 A1
20160186926 Oberpriller et al. Jun 2016 A1
20160188861 Todeschini Jun 2016 A1
20160188939 Sailors et al. Jun 2016 A1
20160188940 Lu et al. Jun 2016 A1
20160188941 Todeschini et al. Jun 2016 A1
20160188942 Good et al. Jun 2016 A1
20160188943 Linwood Jun 2016 A1
20160188944 Wilz et al. Jun 2016 A1
20160189076 Mellott et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160189088 Pecorari et al. Jun 2016 A1
20160189092 George et al. Jun 2016 A1
20160189284 Mellott et al. Jun 2016 A1
20160189288 Todeschini Jun 2016 A1
20160189366 Chamberlin et al. Jun 2016 A1
20160189443 Smith Jun 2016 A1
20160189447 Valenzuela Jun 2016 A1
20160189489 Au et al. Jun 2016 A1
20160191684 DiPiazza et al. Jun 2016 A1
20160192051 DiPiazza et al. Jun 2016 A1
20160125873 Braho et al. Jul 2016 A1
20160202951 Pike et al. Jul 2016 A1
20160202958 Zabel et al. Jul 2016 A1
20160202959 Doubleday et al. Jul 2016 A1
20160203021 Pike et al. Jul 2016 A1
20160203429 Mellott et al. Jul 2016 A1
20160203797 Pike et al. Jul 2016 A1
20160203820 Zabel et al. Jul 2016 A1
20160204623 Haggert et al. Jul 2016 A1
20160204636 Allen et al. Jul 2016 A1
20160204638 Miraglia et al. Jul 2016 A1
20160217946 Maggiore Jul 2016 A1
20160316190 McCloskey et al. Jul 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Sewell et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20160323310 Todeschini et al. Nov 2016 A1
20160325677 Fitch et al. Nov 2016 A1
20160327614 Young et al. Nov 2016 A1
20160327930 Charpentier et al. Nov 2016 A1
20160328762 Pape Nov 2016 A1
20160330218 Hussey et al. Nov 2016 A1
20160343163 Venkatesha et al. Nov 2016 A1
20160343176 Ackley Nov 2016 A1
20160364914 Todeschini Dec 2016 A1
20160370220 Ackley et al. Dec 2016 A1
20160372282 Bandringa Dec 2016 A1
20160373847 Vargo et al. Dec 2016 A1
20160377414 Thuries et al. Dec 2016 A1
20160377417 Jovanovski et al. Dec 2016 A1
20170010141 Ackley Jan 2017 A1
20170010328 Mullen et al. Jan 2017 A1
20170010780 Waldron et al. Jan 2017 A1
20170016714 Laffargue et al. Jan 2017 A1
20170018094 Todeschini Jan 2017 A1
20170046603 Lee et al. Feb 2017 A1
20170047864 Stang et al. Feb 2017 A1
20170053146 Liu et al. Feb 2017 A1
20170053147 Geramine et al. Feb 2017 A1
20170053647 Nichols et al. Feb 2017 A1
20170055606 Xu et al. Mar 2017 A1
20170060316 Larson Mar 2017 A1
20170061961 Nichols et al. Mar 2017 A1
20170064634 Van Horn et al. Mar 2017 A1
20170083730 Feng et al. Mar 2017 A1
20170091502 Furlong et al. Mar 2017 A1
20170091706 Lloyd et al. Mar 2017 A1
20170091741 Todeschini Mar 2017 A1
20170091904 Ventress Mar 2017 A1
20170092908 Chaney Mar 2017 A1
20170094238 Germaine et al. Mar 2017 A1
20170098947 Wolski Apr 2017 A1
20170100949 Celinder et al. Apr 2017 A1
20170108838 Todeschini et al. Apr 2017 A1
20170108895 Chamberlin et al. Apr 2017 A1
20170118355 Wong et al. Apr 2017 A1
20170123598 Phan et al. May 2017 A1
20170124369 Rueblinger et al. May 2017 A1
20170124396 Todeschini et al. May 2017 A1
20170124687 McCloskey et al. May 2017 A1
20170126873 McGary et al. May 2017 A1
20170126904 d'Armancourt et al. May 2017 A1
20170139012 Smith May 2017 A1
20170140329 Bernhardt et al. May 2017 A1
20170140731 Smith May 2017 A1
20170147847 Berggren et al. May 2017 A1
20170150124 Thuries May 2017 A1
20170169198 Nichols Jun 2017 A1
20170171035 Lu et al. Jun 2017 A1
20170171703 Maheswaranathan Jun 2017 A1
20170171803 Maheswaranathan Jun 2017 A1
20170180359 Wolski et al. Jun 2017 A1
20170180577 Nguon et al. Jun 2017 A1
20170181299 Shi et al. Jun 2017 A1
20170190192 Delario et al. Jul 2017 A1
20170193432 Bernhardt Jul 2017 A1
20170193461 Jonas et al. Jul 2017 A1
20170193727 Van Horn et al. Jul 2017 A1
20170200108 Au et al. Jul 2017 A1
20170200275 McCloskey et al. Jul 2017 A1
Foreign Referenced Citations (9)
Number Date Country
2540043 Jan 2017 GB
2009-053857 Mar 2009 JP
2006000749 Jan 2006 WO
2012054781 Apr 2012 WO
2013173985 Nov 2013 WO
2013163789 Nov 2013 WO
2014019130 Feb 2014 WO
2014110495 Jul 2014 WO
2016119801 Aug 2016 WO
Non-Patent Literature Citations (11)
Entry
Combined Search and Examination Report in dated Oct. 28, 2016, pp. 1-11.
Applicant Initiated Interview Summary (PTOL-413) dated Sep. 21, 2017 for U.S. Appl. No. 14/740,320.
Final Rejection dated Jul. 17, 2017 for U.S. Appl. No. 14/740,320.
Non-Final Rejection dated Jan. 12, 2017 for U.S. Appl. No. 14/740,320.
Notice of Allowance and Fees Due (PTOL-85) dated Sep. 21, 2017 for U.S. Appl. No. 14/740,320.
U.S. Patent Application for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.), U.S. Appl. No. 13/367,978.
U.S. Patent Application for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.), U.S. Appl. No. 14/446,391.
U.S. Patent Application for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned., U.S. Appl. No. 14/277,337.
U.S. Patent Application for System and Method for Measuring Irregular Objects with a Single Camera filed Jan. 28, 2014 (Li et al.), U.S. Appl. No. 14/165,980.
U.S. Patent Application for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.), U.S. Appl. No. 14/283,282.
U.S. Patent Application Reading Apparatus Having Partial Frame Operating Mode filed Apr. 11, 2014, (Deng et al.), U.S. Appl. No. 14/250,923.
Related Publications (1)
Number Date Country
20180182580 A1 Jun 2018 US
Continuations (1)
Number Date Country
Parent 14740320 Jun 2015 US
Child 15893917 US