The subject invention relates to a tail which is used to attach the trailing edge of tape from one roll to the leading edge of tape from another roll and to a method of using this tail to join rolls of tape together.
There are numerous applications where a continuous supply of tape material must be provided. When this occurs there needs to be a way of attaching the trailing edge of one roll of tape to the leading edge of another roll of tape without interrupting the feeding of the tape. This can be accomplished by placing a mechanical fastening device on the tape or by adhesively joining the two tapes together. An example of the latter is the system disclosed in U.S. Pat. No. 6,325,324, now U.S. Pat. No. 6,325,324. Here the trailing edge of the tape on each roll is wrapped around a plate to provide an end piece which is thicker than the remainder of the tape. The leading edge of the tape on each roll has an adhesive coating applied to it. The leading edges of both rolls are then fed into a splicer block having a pair of spaced-apart pincher rollers which are separated by a distance which is greater than the thickness of two pieces of tape, but less than the thickness of one piece of tape and the end piece. Thus, when the tape from one of the rolls is pulled through the splicer block, as the trailing end of that roll passes through the pincher rollers the end piece is squeezed against the adhesive at the leading edge of the tape from the other roll, and the two pieces of tape are joined. While simple and inexpensive, this system does not always cause the two pieces of tape to be joined. Because the adhesive is exposed during the entire time the preceding roll of tape is being unwound, it can collect dust and other contaminants and become less adherent. In addition, in order for the adhesive to even be squeezed against the end piece it must be located precisely between the pincher rollers. If the operator does not do this correctly or if the moving tape drags the non-moving tape out of the pincher rollers the rolls will not be joined. In addition, the second roll can only be installed on the device which rotatively carries it in one direction in order that the adhesive side of the tape is facing the moving tape. If adhesive is put on both sides of the tape to make it reversible, the adhesive on the other side may very well stick to the pincher rollers enough that the short period of time the adhesive is exposed to the moving tape may not be enough to release it.
The subject invention overcomes the shortcomings and limitations of the prior art by providing a bulge in a tail that is attached to the trailing edge of the tape on each roll. This bulge has an adhesive coating on both sides. Protective elements are located on the tail on each side of the bulge in a manner that one of the protective elements covers the adhesive coating on each side of the bulge. As a result, when the tail is rolled onto a roll core the adhesive coating is protected by the protective element and will not stick to the roll core or to adjacent layers of the tail or tape. The protective element is configured such that it readily parts from the adhesive coating when the tail is unwound from the roll core.
In addition the leading edge of the tape from the second roll is wrapped around the tape from the first roll to form a loose knot. When the leading edge of the tape from the second roll is adhered to the adhesive on the bulge on the tail on the trailing edge of the second roll the knot is tightened so that the second roll becomes tied to the first roll as well.
In another embodiment of the invention the tail of tape being fed from one roll is joined to the leading edge of tape which will be fed from another roll by placing a marker in the trailing edge of the tape from the first roll and passing the tape from the first roll through a splicer mechanism. A second roll of tape has a leading edge which is looped around the tape from the first roll to form a loose knot. A knot tying mechanism causes the loose knot in the tape from the second roll to be tightened around the tape from the first roll when the marker in the trailing edge of the tape from the first roll passes through the splicer mechanism.
Referring to
The tail 10 includes a tail base 16 which is made from the same or a similar material as the tape 12. The tail base preferably is 4-5 feet long, but its length is not limited. It does need to have a thickness which is similar to the thickness of the tape 12. Located on the tail base 16 near its trailing edge is a bulge 18 having a thickness which is greater than the thickness of the tail base. The bulge has an inside face 20 and an outside face 22, both of which have an adhesive coating.
In the preferred embodiment illustrated, the bulge is formed by placing a piece of double-sided tape 24, with a the protective film removed from both sides, on the first side 26 of the tail base 16. This provides the adhesive coating on the outside face 22 of the bulge. The length of the piece of double-sided tape 24 is important, as will be explained later. Another piece of double-sided tape 28, which is slightly shorter than the piece of double-sided tape 24, is placed on the second side 30 of the tail base 16 directly across from and centered over the piece of tape 24. The protective film is removed from both sides of the piece of double-sided tape 28 also. An obstruction piece 32 is placed on top of the piece of double-sided tape 28 and the obstruction piece in turn is covered with another piece of double-sided tape 34 which has the protective film removed from both sides. The obstruction piece is thicker than the tail base 16 or the double-sided tape 24, 28, 34 and it is flexible. The obstruction piece 32 and the piece of double-sided tape 34 have the same length as a piece of double-sided tape 28. A cover 36, made from the same material as the tail base and having the same length as the piece of double-sided tape 24, is then placed over the piece of double-sided tape 34. Since the cover 36 is longer than the pieces of double-sided tape 28 and 34 and the obstruction piece 32, it extends outwardly from each side of them. This permits the ends of the cover 36 to be attached to the tail base in order to make a smooth transition between the bulge and the remainder of the tail base. If the cover and the tail base are a heat-sealable material they can be heat sealed together. Otherwise they can be joined with an adhesive. Finally, another piece of double-sided tape 38, having the same length as the cover 36, is located on top of the cover. The film is removed from both sides of the piece of double-sided tape 38. This provides the adhesive surface on the inside face 20 of the bulge. Thus, there is an exposed adhesive surface on both sides of the bulge.
Located on the first side 26 of the tail base 16, towards its trailing edge from the bulge 18, is a first protective element 40. The protective element 40 will cover the exposed adhesive on the inside face 20 of the bulge when the tail 10 is wrapped onto the roll core. The length of the first protective element 40 is slightly greater than the length of the bulge 18, as will be more fully explained later. In the embodiment illustrated, the first protective element includes a piece of double-sided tape 42 with the protective film removed from both sides. Another piece of protective film 44, which is wider, is placed on top of the piece of double-sided tape 42.
In the embodiment illustrated a portion of the first protective element 40a is placed on the leading edge side of the bulge 18 also. The protective element 40a includes a piece of double-sided tape 42a and a piece of wide protective film 44a. Placing a portion of the first protective element on the other side of the bulge is not required, but it may be useful for reasons that will be described later.
Located on the second side 30 of the tail base 16, towards its leading edge from the bulge, is a second protective element 46. The second protective element 46 preferably has substantially the same length as the first protective element 40. All that is required, however, is that it be longer than the bulge. The second protective element 46 includes a piece of double-sided tape 48, with the protective film removed from both sides. This piece of double-sided tape 48 is covered with a wider piece of protective film 50.
Located on either side of the tail base 16, at its leading edge, is a piece of double-sided tape 52. The protective film is removed from this piece of double-sided tape when the tail 10 is joined to the trailing edge of the tape 12.
Once the tail 10 is attached to the trailing end of the tape 12 the tail and tape are wound on top of itself onto a roll core 14,
As the tail 10 is wound onto the roll core 14 the first protective element 40 faces outwardly from the roll. The length of the first protective element should be equal to or slightly greater than the circumference of the roll core. Thus, the first protective element extends entirely around the roll. As the tail continues to be wound onto the roll core, the inside face 20 of the bulge will overlie the protective element 40. Since the length of the bulge is less than the length of the first protective element the first protective element completely covers the inside face of the bulge. The protective film that is used to cover double-sided tape has a higher rate of adhesion on its inside surface than it does on its outside surface. Thus, when the tail is later unwound from the roll core the protective film will remain adhered to the protective element and will readily pull away from the adhesive layer on the bulge exposing the adhesive layer.
At this point the outside face 22 of the bulge faces outwardly from the roll. As the tail continues to be wound onto the roll the second protective element 46 overlies the outside face 22 of the bulge and the protective film covers the adhesive on this side of the bulge.
The second portion 40a of the first protective element is placed on the tail base 12 a spaced distance from the trailing edge of the bulge which ensures that the leading edge of the double-sided tape 24 does not extend past the end of the protective film 50.
Referring now to
The leading edge of the tape 12a from a first roll is fed through the passageway 57 and around one of the guide rollers 58. It is then passed through the guide orifice 62, between the coils of the springs 66, and through the pincher rollers 68. The leading edge of the tape 12b from a second roll is then inserted through the passageway 57, around the other guide roller 58 and through the guide orifice 62. The second tape 12b is then looped around the first tape and pins 64 and back through itself to form a loose half-hitch knot 70. The second tape is then placed between the coils of the springs 66 and through the pincher rollers 68. The first tape 12a is then pulled off of the roll by a device which applies the tape. The distance between the pinch rollers 68 allows the first tape 12a to run freely without effecting the stationary second tape 12b. The spring 66 creates a resistance against the movement of the second tape which also prevents it from moving with the first tape.
As the bulge 18 in the first tape passes through the pincher rollers,
In another embodiment of the invention, shown in
Rotatably mounted at the bottom of the frame 82, on the same side as the pathway 88, are a pair of arms 100. Posts 102 extend outwardly from the extremities of the arms. The arms are movable between a first position,
A spring 112 extends between the top of the frame and the inner ends 108 of the levers and causes the levers to normally be oriented such that the arms are in the second position. The spring is connected to the inner ends of the levers by a cable 109 which extends from one lever through a pulley 111 which is attached to the spring to the other lever. Thus, each arm can move independently of the other arm.
Located on the outer ends 110 of the levers 106 are cylindrical bearings 114 which can be rotated. Rotatably attached to each side of the frame is a catch 116. The catches rotate between latched positions,
The catches are moved from their latched to unlatched positions by means of a release mechanism 118. A bar 120 is rotatably mounted to the back side of the frame intermediate its ends. One end of the bar 118 carries the movable roller 90 and the other end is attached to an activation arm 122. When the movable roller is moved away from the fixed roller 92 the bar 112 is rotated and the extremity of the activation arm is raised. The extremity of the activation arm is connected to the catches through a linkage 124 such that when the extremity of the activation arm is raised the catches are moved out of their latched positions and the levers are released.
The tape used with the splicer mechanism 80 has a bulge 126 located in its tail,
When the bulge 126 in the trailing edge of the tape 124 passes between the rollers 90 and 92, the movable roller 90 is moved sideways which acts as a trigger and causes the bar 120 to rotate and raise the activation arm 122 to release the catches 116 from the bearings 114 on the levers 106. The spring 112 then causes the arms 100 to rotate and the arms pull the slip knots 130 and 134 away from the tape 124 to tighten the loose knot 132 onto the tape 124,
If one of the slip knots pulls free of its post before the other, which will almost always occur, the associated arm will have less resistance to being pulled towards the second position by the spring 112. The pulley 111 then allows this arm to move toward the first position quicker which slows down the movement of the other arm until the slip knot on it can pull free.
Referring now to
In another alternative embodiment, shown in
Referring now to
Referring now also to
Located on the tie block 148 is a sensor 172 which senses a marker located on the tape as the marker passes through the slot 150, as will be more fully explained later. The sensor activates a solenoid 174 having a piston 176 which is connected to one end of a lever 178 that is rotatably mounted inside the frame on a pin 180. The other end of lever 178 is connected to the slider 170. When the solenoid 174 is activated it rotates the lever 178 and moves the moveable roller 154 to the pinched position against the fixed roller 156. A spring 182 urges the moveable roller 154 to its released position when the solenoid 174 is not activated.
A tensioning device includes an arm 184 having a post 186 projecting from its distal extremity is rotatably mounted on the frame next to the tie block 148. The arm 184 is moveable between a first position,
The tape used with this splicer mechanism has a marker 190 located proximate its trailing edge. The marker is configured to be sensed by the sensor 172. The sensor and marker could be any type of sensing system available, such as an optical or electrical sensor. In the embodiment illustrated the sensor is a proximity switch and the marker is a strip of thin metal film which is incorporated in or wrapped around the tape.
Referring now to
When the marker 190 at the trailing edge of the first tape 184 passes through the tie block 148 it is sensed by the sensor 172. The sensor then activates the solenoid 174 which causes the lever 178 to be rotated and move the moveable roller 154 to its pinching position. When this occurs the first tape 184 causes the rollers 154, 156 to rotate which in turn causes the second tape to move along with the first tape. As the second tape starts to move the loose knot 201 is lifted off of the tie block 148,
The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
This application is a continuation-in-part of application Ser. No. 10/623,136, filed Jul. 17, 2003 which is a continuation-in-part of application Ser. No. 09/963,190, filed Sep. 25, 2001, now U.S. Pat. No. 6,596,111.
Number | Date | Country | |
---|---|---|---|
Parent | 10623136 | Jul 2003 | US |
Child | 11051066 | Feb 2005 | US |
Parent | 09963190 | Sep 2001 | US |
Child | 10623136 | Jul 2003 | US |