The present invention relates to vehicle body closure panels with a counterbalancing hinge having a straight torque rod with end assemblies forming a pivot connection between the closure panel and vehicle body pillars by keys designed to carry the tailgate and define an unbiased tailgate position permitting tailgate removal from the vehicle body.
Vehicle body closure members such as a tailgate are pivotally mounted between body side panels forming the pillars at the rear of the vehicle. The tailgate pivots about a hinge axis between a horizontal, open position and a vertical, closed position. Preferably, the mounting assemblies for the tailgate permit the tailgate to be removed, and this has been accomplished in a known construction when the tailgate is pivoted to a position between the fully open or fully closed position. For example, the tailgate may include hinge pins that extend outwardly along the hinge axis that removably connect into brackets carried on the truck body. When the tailgate is pivoted to a predetermined intermediate position, for example, 15° away from the fully closed position, at least one of the hinge pins slips through a slot in the connecting bracket as the tailgate is lifted at one end from the truck body.
Some of the tailgate mounting assemblies include a spring bias assist for assisting movement and counterbalancing the weight of a tailgate during opening or closing movements. One previously known mechanism in which a torque rod provides spring biasing between the tailgate and the body panel pillars carries the torque rod on assemblies that form the pivots for the tailgate. Since the torque rod forms a portion of the pivot assembly, the torque rod must be installed for the tailgate to pivot and thus complicates the assembly procedure. Moreover, the torque rod may require particularly configured ends that complicate production of the parts before assembly.
A previously known tailgate may use hinge pin trunions for pivoting and the torque rod is preformed and installed into the tailgate in a complex and intricate procedure. For example, during assembly of the tailgate, the stationary end of the rod has to be aligned with an aperture that exposes the end for attachment outside of the tailgate while the anchoring end is aligned with a reinforcement plate located inside the tailgate. All of the aligning must be performed while the torque rod is carried within the interior of the tailgate and the procedure may be difficult and time consuming. Moreover, numerous components are required to assemble the torque rod to the tailgate. Other types of springs used in place of the torque rod are difficult to install within the confines of tailgates made of inner and outer panels joined together before the hinge assembly is mounted. Moreover, such assemblies may be difficult to repair and replacement parts are complex and expensive.
The present invention overcomes the above-mentioned disadvantages by providing a tailgate counterbalancing hinge in a vehicle closure assembly that includes an axially elongated torque rod having first and second end assemblies, each end assembly having a bushing cup carried in a bracket attached to the tailgate and supported by keys attached to the vehicle body. At least one end assembly bushing is readily attachable to, and removable from, the torque rod. The keys may be aligned to define an initial installation position and a removal position.
Preferably, the first end assembly bushing pivots with the tailgate about a first support for pivotally carrying the tailgate adjacent to a body pillar. In that embodiment, the first support preferably includes an insert, and a key, preferably carried by a bracket on a body pillar. The second end assembly has a second support for pivotally carrying the bushing adjacent to a second body pillar. The second support preferably has a key carried by a bracket on a body pillar. In the preferred embodiment, a spriget combines the key with a mount for securing the key to a facing body panel, preferably a body pillar. A pivot body has a slot configured for reception of the key. The pivot body is received in an opening in the bushing cup that carries the pivot body. The torque rod has a first end securely received in the first end assembly for movement with the bushing cup, and a second end securely received in the second end assembly by the pivot body.
Preferably, the torque rod is secured with a set screw at at least one end, and preferably, has a faceted cross-section at at least one end. The faceted cross-section can be any cross-section having at least one surface discontinuity that prevents rotation within a correspondingly shaped, compatible piece. The torque rod cross-section may be longitudinally continuous for ease of manufacture of the torque rod, or a faceted cross-section may be formed only on parts of the rod.
The present invention also comprises a method for assembling a selectively removable tailgate to a vehicle body pillar at each end of the tailgate, wherein the hinge axis includes an axially elongated torque rod with pivot bodies carried in bushing cups held by brackets attached to the tailgate. At least end portions of the rod, preferably with a faceted cross-section are received in parts of the end assemblies. The method includes receiving a first end of the torque rod in a bushing cup with a stem having a faceted cross-section. The method also includes receiving a second end of the torque rod in a cup carrying a pivot body with a stem having a faceted cross-section, retaining the bushing cup with respect to the tailgate, and retaining the cup by slidably receiving the cup with respect to a key, preferably a spriget, fixed to a body pillar. By sliding the bushing cup over a key fixed to the vehicle body pillar by the mount, the pillar pivotally supports a bushing mounted on the tailgate.
These and other features of the present invention can best be understood from the following specification and drawings, the following of which is a brief description.
The present invention will be more clearly understood by reference in the following detailed description of a preferred embodiment when read in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout the views, and in which:
Referring first to
Tailgate 20 is pivotally supported between pillars formed by the side panels 16 and 18. Typically, as shown in the cutaway in
The counterbalance hinge assembly 22 includes an axially elongated torque rod 30 that is aligned along a pivot axis between side panels 16 and 18. Torque rod 30 carries a first end assembly 32 and a second end assembly 34 that enable torque rod 30 to be secured with respect to vehicle body 12 at a first, left end, and with respect to tailgate 20 at a second, right end, respectively. It should be noted, however, that the left and right positions of the first and second end assemblies may be reversed without departing from the invention. Of course, other means of mounting end assemblies 32 and 34 at mating portions of body 12 and tailgate 20 can be used without departing from the scope of the present invention.
First end assembly 32 secures torque rod 30 to body 12, while pivotably supporting tailgate 20 at the left body pillar adjacent to left panel 24 of vehicle 10, as shown in
Subassembly 62 also secures torque rod 30 to body 12. For this purpose, preferably, end subassembly 62 also includes a pivot body 52, which is pivotally or rotatably inserted into chamber 42 of bushing 40. Pivot body 52 preferably includes an interior slot 54 and a protruding stem 56. Stem 56 has an interior bore 66 with a configuration that is preferably faceted to receive and retain a complementary faceted end 58 of torque rod 30. Pivot body 52 may also be welded or otherwise attached to end 58 of torque rod 30 without departing from the invention. Stem 56 may also include a set screw 53 that can be tightened against torque rod end 58, even when bore 66 and torque rod end 58 are not complementarily faceted. As shown in
Preferably, bushing 40's stem 44 can be formed, for example, by cold heading, with a retaining shoulder 45 located after stem 44. Preferably, retaining shoulder 45 is inserted in opening 55 of bracket 46 to secure bushing 40 to bracket 46. In another preferred embodiment, a surface 47 of bushing 40 may fit in an enlarged opening 57 in tailgate end panel 23A so as to be aligned with the pivot axis extending through a portion of tailgate end panel 23A. Surface 47, or surface 45 of stem 44, may also be configured on its exterior, or otherwise fastened, to avoid relative rotation between pivot bushing 40 and tailgate end 23A so that pivot bushing 40 pivots with the tailgate 20. For example, surface 45 can have a shape that conforms to the shape of bracket opening 55, whereby relative rotation between surface 45 and opening 55, and thus between bushing 40 and tailgate 20, is prevented. Other bushing mountings may also be used without departing from the present invention.
First end assembly 32 also includes a mounting subassembly 102 for mounting a key 64 that is inserted in slot 54 of pivot body 52 to side panel 16 of vehicle 10. Preferably, mounting subassembly 102 includes a spriget 68 that combines key 64 with a mounting stem 70. Mounting stem 70 is adapted to be inserted in an opening 72 of a bracket 74 that is secured to side panel 16 by bolts, rivets, welding or the like on the pillar adjacent to tailgate 20. Preferably, a fastener, such as a nut or the like, may be positioned beneath bracket 74 for fastening stem 70 to bracket 74, and ultimately to side panel 16 when bracket 74 is screwed to side panel 16 by screws 77. Preferably, opening 72 of bracket 74 is threaded to receive and retain correspondingly threaded stem 70. It should be noted, however, that other attachment means, such as bolts or welding, can be used without departing from the invention.
Referring again to
Pivot bushing 90 stem 94 preferably has a bore 92 that is adapted to receive, preferably in a press fit, faceted fit, or otherwise securing engagement, a right end 87 of torque rod 30. Pivot bushing 90 is mounted within an opening 85 of tailgate bracket 86. Preferably, opening 85 is formed in bracket 86 and aligned with a larger opening 91 in tailgate end 23B. Preferably, stem 94 of pivot bushing 90 is locked in correspondingly configured opening 85 of tailgate bracket 86. Stem 94 may be, for example, semi-cylindrical, whereby the configuration of opening 85 is also be semi-cylindrical to non-rotatably retain pivot bushing 90 in end bracket 86. Pivot bushing 90 may also be retained in opening 85 by a retainer engaging stem 94. Subassembly 63 further includes a bushing insert 80 that is inserted within pivot bushing 90. Bushing insert 80, in turn, includes a cylindrical body surface 82 that engages the interior of pivot bushing 90, and a radial slot 84 that interrupts body surface 82 and that is aligned with a slot 83 cut in the body of pivot bushing 90.
Second end assembly 34 also includes a mounting assembly 103 for mounting a second key 78 that is received in slot 83 of pivot bushing 90 and in slot 84 of bushing insert 80. As shown in
End assemblies 32 and 34 are constructed in a similar manner. Although certain components in assemblies 32 and 34 relating to the installation, rotation and removal of tailgate 20 may differ, other parts used in these assemblies are duplicates that can be used on either side of vehicle 10. For example, mounting subassemblies 102 and 103 include duplicate parts. Subassembly 102 preferably includes spriget 68, which combines key 64 with mounting stem 70 for securing key 64 to side panel 16 by means of a bracket 74 screwed to panel 16. Similarly, subassembly 103 preferably includes spriget 101, which combines key 78 with mounting stem 79 for securing key 78 to side panel 18 by means of a bracket 73 screwed to panel 18. Here, the only difference in these components is the alignment of key 64 versus the alignment of key 78 to facilitate the installation and removal of tailgate 20. In this regard, it should be noted that in
When assembled as shown in
Preferably, stem 94 is correspondingly sized to fit in opening 85 of tailgate panel attachment bracket 86 that is attached to the end panel 23B of tailgate 20 over an opening 91 (
Rather than trying to form a properly sized and configured opening in tailgate panel 23A, bracket 48 is similarly provided with opening 55, which is positioned next to enlarged opening 57 (
Upper flange 48 is preferably bolted to tailgate 20 by a bolt and nut, 60 and 100, respectively, although welds or other fasteners could also be used without departing from the present invention. Opening 55 may be configured to avoid relative rotation between stem 44 and installation bracket 46 so that, when assembled, installation bracket 46 and pivot bushing 40 pivot with the tailgate 20. Stem 56 of pivot body 52 also includes chamber 66 that receives end 58 of the torque rod 30, as shown, so that pivot body 52 is effectively locked to the torque rod 30.
As a result, the parts of hinge assembly 22 may be assembled by attaching the torsion rod assembly 63 to the tailgate 20 and the mounting assembly 62 to the left side panel 16, respectively. The parts can be positioned before spring tension is applied to the counterbalance hinge assembly 22 by tightening set screw 96. First, bushings 40 and 90 are attached to brackets 46 and 86, and the brackets are attached to tailgate 20, preferably by welding, so that configured openings 55 and 85 are aligned over openings 57 and 91 in the ends of tailgate 20. Preferably, this enables configured openings 55 and 85 to be sized, shaped and positioned after tailgate 20 has been manufactured. This overcomes the difficulty of shaping, sizing and aligning the apertures of the original tailgate panel stampings. Set screw 96 is initially installed in a pre-production or fabrication assembly procedure, and left loose for tightening at the assembly plant. Torque rod 30, carrying pivot body 52 at end 58, is positioned so that end 87 is inserted through openings 55 and 57 to extend through tailgate 20. Torque rod 30 is inserted through bushing 90, already attached, for example, by welding or mechanical connection, to bracket 86 in a prior, pre-production or fabrication operation. The preferred mechanical connection may expand or turn the stem walls beyond the perimeter of opening 91 or 85 receiving stem 94. Set screw 96 is then tightened after end 87 of torque rod 30 is inserted into bore 92 in stem 94 of bushing 90.
With tailgate 20 holding torque rod 30 and subassemblies 62 and 63, and mounting subassemblies 102 and 103 mounted on a body side panels 16 and 18, respectively, tailgate 20 is positioned for installation. First, key 64 axis is aligned vertically, and tailgate 20 is moved so that pivot body 52 receives key 64 in its slot 54. Then tailgate 20 is pivoted to align slot 84 with key 78, mounted at an intermediate angle, for example 10° from the vertical. The tilted tailgate 20 is then lowered to engage key 78 in aligned slots 84 and 83 in bushing 90.
The assembly discussed above provides a mechanism for removably mounting a closure member, such as tailgate 20, between spaced apart body side panels, such as side panels 16 and 18, of a vehicle body that is generally consistent with the structures claimed in U.S. Pat. No. 5,988,724, but showing how the hinge can be simplified and the assembly improved by using a linear torque rod extending across both sides (lateral ends) of the tailgate. For example, each of the brackets 46 and 86 is a hinge bracket and is associated with a pivot bushing 40 and 90, respectively. In addition, the pivot bushings form a vehicle body hinge pin (lateral side) rotatably or pivotably engaged in the bushing, with the pivot bodies 90 and 52, and while sprigets 68 and 101 form a vehicle body hinge pin mounting for the side panels at the ends of the tailgate. The end assemblies 32 and 34 provide means for connecting the torque rod in driving engagement with the vehicle body hinge pin within the bushing and independently of the rotatable support of the tailgate by the bushing forming the hinge pin. Like the previously patented torque rod configured for mounting on a single end of the tailgate, the present invention permits a bushing to be received laterally downwardly over at least a portion of a vehicle body hinge pin where the closure member is in the removal position. Accordingly, the torque rod is twisted in tension when the closure member is pivoted to either the closed or open positions from the removal position. This tension provides a counterbalancing effort to assist with pivotal movement of the closure member. Nevertheless, the assembly permits facile removal of the closure member from the vehicle body when the closure member is in the removal position.
Although the present invention has been described in terms of a particular embodiment, it is not intended that the invention be limited to that embodiment. Modifications of the embodiment within the spirit of the invention will be apparent to those skilled in the art. The scope of the invention is defined by the claims that follow.
This application claims the benefit of Provisional Application No. 60/552,063, filed Mar. 10, 2004, the entire contents of which are hereby incorporated by reference in this application.
Number | Name | Date | Kind |
---|---|---|---|
2395456 | Bunker | Feb 1946 | A |
2733476 | Eck | Feb 1956 | A |
2799891 | Ragsdale | Jul 1957 | A |
2810153 | Semar | Oct 1957 | A |
2984517 | Farrow et al. | May 1961 | A |
3031225 | Saffer et al. | Apr 1962 | A |
3085286 | Whitehouse et al. | Apr 1963 | A |
3122775 | Pulleyblank | Mar 1964 | A |
3146847 | Rutman et al. | Sep 1964 | A |
3166783 | Mackie et al. | Jan 1965 | A |
3336070 | Jackson | Aug 1967 | A |
3370317 | Marchione | Feb 1968 | A |
3402508 | Kessler | Sep 1968 | A |
3643378 | Velavicius et al. | Feb 1972 | A |
3649067 | Louton, Jr. | Mar 1972 | A |
3695678 | Gergoe | Oct 1972 | A |
3699716 | Wanlass | Oct 1972 | A |
3787923 | Peterson | Jan 1974 | A |
4143904 | Cooper et al. | Mar 1979 | A |
4291501 | Steinberg et al. | Sep 1981 | A |
4378658 | DeLorean | Apr 1983 | A |
4589164 | Leonard | May 1986 | A |
4701977 | Hori et al. | Oct 1987 | A |
4702511 | Olins | Oct 1987 | A |
4787809 | Zroslik | Nov 1988 | A |
4845811 | Fargnier | Jul 1989 | A |
4905347 | Worth | Mar 1990 | A |
5039154 | Lewis | Aug 1991 | A |
5358301 | Konchan et al. | Oct 1994 | A |
D370453 | Shortman et al. | Jun 1996 | S |
5606773 | Shappell | Mar 1997 | A |
5641262 | Dunlop et al. | Jun 1997 | A |
5787549 | Soderlund | Aug 1998 | A |
5988724 | Wolda | Nov 1999 | A |
6283463 | Park | Sep 2001 | B1 |
6769729 | Bruford et al. | Aug 2004 | B1 |
6793263 | Bruford et al. | Sep 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050200150 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
60552063 | Mar 2004 | US |