The present invention relates to a sensor device and method of tightening and positioning the sensor device to a body portion of a patient.
Psychophysiological parameter sensing at the wrist for mental and physical health status assessment, as described for example in Westerink, J. et al.: “Emotion measurement platform for daily life situations” (2009), is highly dependent on a correct and stable positioning of the sensor. Within the human population the wrist circumference and shape varies by a large margin, making one-size-fits-all sensor strap devices, such as sensor wristbands, impossible to make. As an example, skin conductance sensor wristbands may comprise discrete tension indicators, vitality bracelets, Q-sensors or the like.
However, at the volar side of the wrist the skin conductance is lower than at the standard position on the palm of the hand. For blood volume pulse measurements at the volar side of the wrist the optimal position for the light source and photo detector is in the proximity of an artery. The wrist circumference and shape distribution for the human population spans a large scope. A wristband sensor device therefore cannot be a one-size-fits all, but needs expert positioning at the optimal locations and tailoring the size and shape of the wristband. This is too expensive and complex for a mainstream product.
An object of the present invention is to provide a strap-based sensor device which can be easily and effectively tailored to individual needs of the patient.
This object is achieved by a sensor device as claimed in claim 1 and by a fastening method as claimed in claim 11.
Accordingly, a single strap with integrated sensor(s) can be adjustably fixed to the signal processing unit at both ends. This ensures high precision of the position of the sensor(s) in the wristband with respect to the measuring position at the body.
According to a first aspect, the signal processing unit may comprise a user interface, so that a user or patient wearing the sensor device can monitor and/or control measuring or sensor functions.
According to a second aspect which can be combined with the first aspect, the signal processing unit may comprise a data storage for storing measuring results. Thereby, measuring results can be monitored and stored for later evaluation or assessment of measuring trends.
According to a third aspect which can be combined with the first or second aspect, the strap may comprise at least one marker for positioning the at least one sensor at a predetermined measuring position of a wrist of the body. This facilitates correct positioning and tightening of the strap of the sensor device. According to an exemplary implementation, the predetermined measuring position may be located at the thumb side of the volar side of the wrist.
According to a fourth aspect which can be combined with any one of the first to third aspects, the strap may be adapted to be tightened at both sides of a wrist of the body by the adjustable fastening. This two-sided tightening option ensures correct placement of the electrode(s) and tight but comfortable fit of the strap.
According to a fifth aspect which can be combined with any one of the first to fourth aspects, the strap may be adapted to be inserted in the signal processing unit at one end of the strap and to be adjustably fixed onto a knob portion at the other end of the strap. These fixation options provide easy handling during positioning and tightening of the sensor device.
According to a sixth aspect which can be combined with any one of the first to fifth aspects, the one end of the strap may comprise a segmented portion with a predetermined segmented pattern for removing or adding strap pieces. The segmented pattern facilitates length adjustment of the strap by providing predetermined cutting segments. The segments may be arranged as a cutting pattern, from which strap pieces can be cut away, or may be already separated from one another and can be added or removed piece by piece.
According to a seventh aspect which can be combined with any one of the first to sixth aspects, the strap may comprise at least one recess for accommodating the at least one electrode. Thereby, replacement of a sensor (e.g. electrode) can be facilitated by simply pressing it into the recess.
Further advantageous embodiments are defined below.
The invention will now be described, by way of example, based on embodiments with reference to the accompanying drawings, wherein:
Various embodiments of the present invention will now be described based on a monitoring or sensor device for measuring skin conductance at a wrist of a human or animal patient. Of course, the present invention can be used for measuring other physiological or psychophysiological parameter(s) at the same or other portions of the body. It is clear to the skilled person that the sensor device and particularly the strap can be adapted to the size and shape of other body portions where a desired parameter can be measured.
The sensor device with its electrodes can be positioned and tightened to the patient and monitors the skin conductance of the patient. The skin conductance measurements can be used e.g. for determining if a patient is in a condition where ventilation may or should be changed or for determining if the change of ventilation has been successful. Of course, use for other applications and other measuring parameters is possible as well.
More specifically, a location to obtain the best signal is on the wrist, with one electrode on the line in the middle of the volar side of the wrist, at a distance of about 3-5 cm from the hand and the other electrode is positioned next to the first electrode perpendicular to this line on the side of the thumb. An optimal distance between the electrodes is 5 mm, with a minimum of 1 mm, and a maximum of 10 mm. This distance is measured from the outer edges of the electrodes at the measuring positions 110, 112. Thus, in an exemplary case the electrodes may have a standard diameter of about 15 mm. Then, the spacing or distance between the centers of the electrodes may be about 20 mm.
In another embodiment, a ground electrode can be placed anywhere along the strap and preferably be much larger than the active electrode. The active electrode preferably is circular, may have a diameter of 1 cm and can be placed 2 cm from the center of the volar side of the wrist at the side of the thumb. As another option, the ground electrode may consist of conductive cloth covering a large portion of the inside of the strap.
The skin conductance can be measured by measuring the voltage drop over the two electrodes in a serial circuit containing a stable reference voltage source, a reference resistance which should be stable to thermal fluctuations, and the human skin contacted by the electrodes made of a conductive and skin compatible or non-irritant or non allergic material capable of bridging the electronic/ionic interface without or with little capacitive or resistive interference. The electrodes may be standard skin conductance electrodes as used by skin conductance experts.
As another option, the measured skin conductance could be combined with other physiological parameters (such as SpO2, PetCO2, respiration rate, respiration rate variability, et cetera) and/or ventilator settings to give a final advice or indication or control output. The final advice can be in the form of a numerical value (e.g. 1 (e.g. relaxed) to 10 (e.g. serious discomfort)), a traffic light color (red-yellow/orange-green), or output instruction message like “ready for extubation”, “stop the SBT”, “start an STB”, “reduce ventilation” or “increase ventilation”. Of course, this is likely to be only one of the possible usages. An alternative focus could be put on stress at work, and the prevention of prolonged stress related ailments, such as burnout, adrenal fatigue. A further usage could be aggression prevention for psychiatric patients, where the device offers an early warning of rising anger.
The skin conductance can be measured by measuring the voltage drop over the two electrodes in a serial circuit containing a stable reference voltage generated from a voltage source 65 (e.g. battery) of preferably 1.2V (but not more than 5V), a reference resistance of typical 3.3 MSΩ or 10 MSΩ, and the human skin contacted by the two electrodes made of a conductive material, having a diameter of 1 cm. The electrical circuit or connections may be provided on a flexible circuit foil 64 and may be protected by the coverage on which a user interface 61 may be arranged. The voltage is amplified and digitized by an analogue to digital converter (not shown) with e.g. 12 to 16 bit precision, using a stable reference voltage of 3.0V.
In step S110 the sensor electrodes 66 are put at an optimal position of the volar side of the wrist, e.g., as indicated by the measuring positions 110, 120 of
In summary, the present invention relates to a sensor device and method for tightening and positioning the sensor device with a wristband or strap for a range of wrist sizes and shapes or other body portions, such that the optimal sensor position is obtained and maintained during ambulatory use, which provides two-sided fastening of the strap. The strap has a marker that is positioned by the wearer at a predetermined measuring position, e.g., on the middle of the volar side of the wrist. The wrist is then put on the table to fix its position, and the strap is tightened on both sides of the wrist. This ensures a precision of at least 5 mm of the position of the sensors in the strap.
While the invention has been illustrated and described in detail in the drawings and the foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. The invention is not limited to the disclosed embodiments. From reading the present disclosure, other modifications will be apparent to persons skilled in the art. Such modifications may involve other features which are already known in the art and which may be used instead of or in addition to features already described herein. In particular, other variable fixing mechanisms may be provided at both sides or ends of the strap 62. The sensing device with two-sided fixation of the senor strap may be adapted for measuring skin conductance or other parameters at other body portions, e.g., the ankle(s).
Variations to the disclosed embodiments can be understood and effected by those skilled in the art, from a study of the drawings, the disclosure and the appended claims. In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality of elements or steps. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Any reference signs in the claims should not be construed as limiting the scope thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2012/056420 | 11/11/2012 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/080075 | 6/6/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4295472 | Adams | Oct 1981 | A |
4847729 | Hee | Jul 1989 | A |
6272836 | Fat | Aug 2001 | B1 |
20050177051 | Almen | Aug 2005 | A1 |
20050234351 | Nishii | Oct 2005 | A1 |
20070191718 | Nakamura | Aug 2007 | A1 |
20090048526 | Aarts | Feb 2009 | A1 |
20090143689 | Berry et al. | Jun 2009 | A1 |
20090168612 | Robin | Jul 2009 | A1 |
20100076331 | Chan | Mar 2010 | A1 |
20100268056 | Picard et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
102008013731 | Sep 2009 | DE |
2196144 | Jun 2010 | EP |
2316298 | May 2011 | EP |
2685189 | Jun 1993 | FR |
61121115 | Jul 1986 | JP |
2002369806 | Dec 2002 | JP |
2003144209 | May 2003 | JP |
2010220948 | Oct 2010 | JP |
WO9012519 | Nov 1990 | WO |
Entry |
---|
Westerink, J. et al., “Emotion Measurement Platform for Daily Life Situations”, . IEEE, vol. 978, No. 1, pp. 4244-4799, 2009. |
Number | Date | Country | |
---|---|---|---|
20140323840 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61564366 | Nov 2011 | US |