Take-away mechanism for mail or other flat article handling system

Information

  • Patent Grant
  • 6378692
  • Patent Number
    6,378,692
  • Date Filed
    Monday, October 4, 1999
    25 years ago
  • Date Issued
    Tuesday, April 30, 2002
    22 years ago
Abstract
A take-away mechanism is provided from a singulation mechanism in a system for handling substantially flat articles of varying size, weight and thickness, and in particular for handling mixed mail. The take-away mechanism includes at least one and preferably more belts which are preferably driven at a rate higher than the rate at which articles are fed to the take-away mechanism, which belt(s) preferably have surfaces in contact with the article of material having a high coefficient of friction. At least two components are provided for applying pressure to articles as they are passed over the belt, the components preferably being spaced along the belt by a distance less than the shortest length of an article to be handled. One of the components may be two or more independently biased rollers and one of the components may be two or more independently biased fingers, the rear component being the rollers and the forward component being fingers for the preferred embodiment. Where there are a plurality of belts, the pressure members are preferably mounted so as to contact articles at a point between adjacent belts rather than over belts.
Description




FIELD OF THE INVENTION




This invention relates to handling systems for mail or other substantially flat articles, and more particular to a take-away mechanism from a singulator for such system, which mechanism is adapted to handle articles of varying thicknesses, sizes and weights, is adapted to control spacing between articles/mail pieces leaving the take-away mechanism, and may provide a doubles resolver function.




BACKGROUND OF THE INVENTION




Mixed mail received at a post office or other location must be sorted and/or otherwise processed so as to be directable to a desired location. To accomplish this function, random items of incoming mail are typically stacked, either manually or otherwise, for feeding to a first mechanism which singulates the mixed mail so that only a single piece of such mail, which is properly oriented and spaced, is passed on to the sorting or other processing mechanism of a mail handling system. The singulation mechanism may include both a singulation head and a take-away mechanism from such head. The functioning of these two components must be coordinated to resolve doubles, to avoid jams, to avoid damaging the mail, and to assure proper spacing being between successive pieces of mail leaving the take-away mechanism.




While many mechanisms currently on the market do an adequate job of singulating and taking away certain types of mail, increasing demands are being placed on such systems, both as to the range in size, thickness and weight of the mail pieces to be handled and as to the speed at which such systems are to operate, while still maintaining high controllability on the outputted mail, low jam rate, substantially no damage to the mail being handled, and substantial elimination of doubles passing into the sorting or other equipment beyond the take-away mechanism. For example, a specification for mail pieces to be handled in such a high performance system might include pieces ranging in thickness from 0.007″ to 1.25″, pieces ranging in weight from 0.03 oz to 6.0 lbs, and pieces ranging in size from 3.5″×5.0″ or 4″×4″ to 15″×15″. These variations in thickness, weight and size must be handled without sacrificing throughput, which may be up to approximately 14,500 mail pieces per hour, although this maximum rate may vary somewhat with the size of the pieces being processed, and while still maintaining separation between mail pieces within close tolerances to prevent operational problems on down stream equipment. A system capable of reliably achieving this level of performance without jams and other problems does not currently exist and, in particular, a take-away mechanism from the singulator of such a system for facilitating such performance is not currently available. Similar problems can arise in systems for handling packages on other substantially flat articles of varying size, thickness and weight.




SUMMARY OF THE INVENTION




In accordance with the above, this invention provides a take-away mechanism from a singulator of a handling system for substantially flat articles such as mixed mail, the mechanism being particularly adapted for use with articles that are of varying thickness, size and weight. The mechanism includes a drive member extending for a selected length in a direction from which articles exit the singulator; a driver moving the drive member in such direction and away from the singulator at a selected rate; and first and second components spaced from each other along the length of the drive member and mounted to both permit a piece of mail to pass between each component and the drive member and to apply selected pressure to the article against the drive member, the components combining to apply pressure along at least a substantial portion of the length of the drive member. The drive member is at least one belt and includes at least three spaced belts for a preferred embodiment, the driver including at least one roller over which the belts pass, all belts being driven by a common driver. For a preferred embodiment, the belts are timing belts and the drivers include a plurality of rollers, at least one of which is driven, each of which rollers has at least three grooves formed therein, each timing belt fitting in a corresponding groove in each roller. At least one of the components, and preferably both components, include at least two pressure members mounted to substantially apply pressure between the belts of the drive member, but not over the belts. For a preferred embodiment, at least one drive belt is formed of or covered by a material with a high coefficient of friction.




The driver preferably includes a servo motor, detectors for detecting articles at selected locations along the mechanism and controls responsive to the detectors for operating the servo motor to selectively control spacing of articles exiting the mechanism. The servo motor is preferably a start-stop servo motor, the controls stopping and starting the motor, and thus the drive member, to control article spacing. The detectors are at least at an exit end of the mechanism and at a location along the member near the rear-most one of the components.




The drive member is preferably formed so as to minimize slippage between the member and articles pressed thereagainst, the drive member having a surface in contact with articles which is of a material with a high coefficient of friction for preferred embodiments.




The driver preferably moves the drive member at a rate higher than the rate at which the singulator discharges articles to the take-away mechanism, this rate being approximately 15% to 20% faster for preferred embodiments.




For preferred embodiments, at least one of the first and second components is at least one wheel biased against the drive member. Each of the wheels may be mounted at the end of a spring biased arm, which arm is angled at an angle, for example approximately 45°, in the direction of drive member movement. Each wheel has a surface in contact with the articles, which surface may for some embodiments be of a material having a significant coefficient of friction. Each of the wheels may be substantially free spinning) and each of the wheels are preferably independently biased. For a preferred embodiment, the at least one wheel forms a rear or trailing one of the components.




At least one of the first and second component may also be at least one finger biased against the member/belt, the fingers preferably being independently biased when there are a plurality of fingers. For a preferred embodiment, the at least one finger forms a forward or leading one of the components.




For a preferred embodiment, the articles are pieces of mixed mail and the components are biased to permit mail having variations in thickness between approximately 0.007 inches and 1.25 inches to pass between the drive member and the components. The spacing between the first and second component in the direction of travel is preferably less than the length of the shortest article being taken away by the mechanism.




The foregoing and other objects, features and advantages of the invention will be apparent from the following, more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawings.











IN THE DRAWINGS





FIG. 1

is a semi-schematic top view of a singulation mechanism of a type in which the take away mechanism of this invention might be utilized, including the take away mechanism.





FIG. 2

is a rear top perspective view of the singulation mechanism in FIG.


1


.





FIG. 3

is a front bottom perspective view of a doubles resolver head and of the take away mechanism for the mechanism of

FIG. 1

, the singulation head not being shown in this view.











DETAILED DESCRIPTION




Referring to the figures, End in particular to

FIGS. 1 and 2

, the singulation mechanism


10


of this invention includes a singulation head


12


, a vacuum doubles resolver head


14


and the take away mechanism


16


of this invention. Mail pieces


18


of varying sizes, thicknesses and weights, a general ranges for which have been previously described, are stacked on a suitable platform and pressed against a moving belt


20


of singulator head


12


in a manner discussed in greater detail in co-pending application Ser. No. 09/411,961, filed concurrently herewith, entitled “Singulation Mechanism.” The singulation head of the co-pending application also includes a pair of vacuum chambers V


1


and V


2


behind belt


20


, with belt


20


having openings


22


formed therein through which vacuum pressure may be applied to mail pieces


18


pressed thereagainst. Belt


20


passes over a series of rollers


24


A-


24


E with one of these rollers, roller


24


A for an illustrative embodiment, being driven to move the belt. Belt


20


is preferably of a material having a low coefficient of friction so that the belt is effective to move mail pressed thereagainst only when a vacuum chamber V


1


, V


2


adjacent to the belt is energized.




In operation, V


1


is initially energized to grab the rear or trailing side portion of the piece of mail


18


adjacent to belt


20


and to move this piece of mail with the belt with rapid acceleration toward take-away mechanism


16


as the belt moves in this direction. When the leading edge of the piece of mail is detected by detector D


1


, indicating that the piece of mail is at substantially the leading end of the singulation head, V


1


is turned off and V


2


is turned on. As is discussed in greater detail in the copending application, this momentarily slows the piece of mail being moved and then grabs it and moves it at high acceleration, thereby shaking free any double which may have attached itself to the piece of mail being moved. Any double not removed by this maneuver is grabbed and delayed by vacuum resolver head


14


positioned at the leading end of singulation head


12


. These operations result in a single piece of mail being applied to the take away mechanism


16


of this invention.




Take away mechanism


16


performs several functions. First, it rapidly removes the single piece of mail from singulation head


12


and accelerates it on to downstream equipment where sorting or other operations may be performed. Second, since a certain minimum spacing between mail pieces is required for downstream equipment to accurately perform sorting and/or other required functions, take away mechanism


16


assures a desired spacing between adjacent pieces of mail exiting take away mechanism


16


. For an illustrative embodiment, this spacing may either be leading edge to leading edge for mail pieces or the spacing between the trailing edge of the lead piece and the leading edge of the following piece. While the former spacing may vary with the size of the mail pieces being fed, being for example 13 to 15 inches for a minimum size mail piece (i.e. a 4 to 5 inch piece) and perhaps 25 inches for a maximum size piece (i.e. a 15 inch piece). For an illustrative embodiment, the spacing between pieces may be 9 to 10 inches. Finally, take away mechanism


16


may, if required, also be utilized to perform a doubles resolver function.




To perform these functions, mechanism


16


consists of three belts


30


A-


30


C, each of which is mounted in a corresponding groove


32


A-


32


C of a roller


34


A-


34


C, one of which rollers, for example roller


34


A is driven by a precision stepper motor


36


capable of starting and stopping with nanosecond precision. A backing, plate


38


attached to a support bracket


40


may be mounted behind belts


30


over the portion of the travel path for the belts where they support mail. Each of the grooves


32


preferably has teeth


44


formed therein, which teeth interact with corresponding teeth


46


on belts


30


to provide precise, slip-free drive and to facilitate stopping and starting of the belts in response to the stopping and starting of servo motor


36


.




Belts


30


are preferably formed of a material such as Lynnetex™ natural rubber or some other material having a relatively high coefficient of friction. Alternatively, the belts may have an outer layer formed of the high coefficient of friction material with a timing belt backing. In order to assure against jams and to facilitate the passage of any doubles through the system, belts


30


are driven by servo motor


36


at a higher rate then belt


20


is driven by its drive motor. For example, for an illustrative embodiment, belts


30


are driven at a rate approximately 15% to 20% higher than the rate at which belts


20


are driven, belts


30


being driven at 102 in/sec and belt


20


driven at 78.54 in/sec for one illustrative embodiment and at approximately 100 in/sec and 85 in/sec respectively for a more preferred illustrative embodiment. The exact speed at which the belts are driven, and the differential in their drive rate, will vary with application, and in particular with the size of the mail pieces being handled.




Since mail can bow when being fed by belts


30


or, even with the high friction surface of the belts, can slip relative to the belts, interfering with the rapid and precise transfer of the mail and permitting potential skewing thereof, it is important that pressure be applied to the mail pieces on the side opposite thereof from the belts, through at least most of the take away mechanism


16


, and at least near opposite ends of the travel path for the mail pieces therethrough. However, since the system is designed to handle wide variations in mail piece thickness, for example from 0.007″ to 1.25″ for an illustrative embodiment, and since the thickness of a particular piece may vary over its width depending on what is contained within the mail piece, the components for applying pressure to the mail pieces and to the belts must be designed to apply substantially uniform pressure across the mail piece in both its length and width dimension regardless of the thickness of the mail piece and the variations in such thickness.




To satisfy these requirements, the invention employs two sets of components spaced along the length of the mechanism, preferably by a distance less than the shortest length of the mail pieces to be handled. In particular, shortly after the mail piece enters take away mechanism


16


, it passes under two pairs of wheels


50


A,


50


B, each of which wheels are mounted to spin freely on a corresponding pivot arm


52


A,


52


B. Each arm


52


is attached for the illustrative embodiment by a corresponding bolt


54


A,


54


B to a clevis


56


which clevis also supports vacuum resolver head


14


; however, arms


52


and/or resolver head


14


need not be connected to clevis


56


, but could be attached to a post fixed to the machine housing or to some other portion of the machine housing depending on implementation. Detector D


1


is attached nearby to the housing of the mechanism. The middle of each arm


52


has a small hole through which corresponding extension spring


58


A,


58


B is attached, the other end of each spring


58


being fixed to a corresponding pin on clevis


56


. Bumper bars


60


A,


60


B are also provided to keep the corresponding arm


52


in proper position. Wheels


50


may be belted with a high friction material


62


A,


62


B as shown in

FIG. 3

to further assist in doubles resolving; however, for a preferred implementation, vacuum doubles resolver head


14


adequately delays any doubled mail piece so that high friction belt


62


is not required and wheels


50


may merely be solid aluminum or other suitable material, without a urethane or other high friction belt. Arms


58


are configured so as to make an angle of approximately 45° to the direction of travel of mail flow so as to permit mail pieces to freely flow between belts


30


and wheels


50


. The spring force is carefully selected so that wheels


50


may independently be raised and lowered to permit mail pieces of varying thicknesses to pass through the take away mechanism, while still providing sufficient pressure to each piece against belts


30


to facilitate the take away operation. Wheels


50


are preferably mounted so as to contact mail pieces on either side of belts


30


rather than directly over the belts, facilitation the applying; of pressure to thin pieces of mail without contact between rollers and belts when no mail is present, this easing mechanism tolerances and preventing wear on the belts. It also means that there is not a pinch point, reducing the possibility of damage to items contained within an envelope. This however, is not a limitation on the invention.




Downstream from wheels


50


, and near the leading end of take away mechanism


16


, are a pair of fingers


64


which are preferably also mounted at an angle, for example 60°, to the direction of travel of mail pieces and to contact mail pieces at a point between belts


30


A/


30


B and between belts


30


B/


30


C, respectively. The spacing between wheels


50


and fingers


64


is small enough so that at least one of them will be in contact with even the shortest piece of mail throughout its travel through take-away station


16


. The fingers are located between the belts for the same reasons discussed above for wheels


50


. While fingers


64


can be mounted to rotate on a common shaft and be individually spring biased against the mail pieces, for the embodiment shown in

FIG. 2

, fingers


64


A and


64


B are fixedly mounted to shafts


66


A,


66


B, respectively, shaft


66


A being telescoped within shaft


66


B. Shafts


66


A,


66


B are independently biased in the clockwise direction by spring mechanisms


68


A,


68


B operating on rollers


70


A,


70


B at the bottoms of the shafts. Each roller has a stud bearing against a post


72


to limit movement of the fingers against backing plate


38


. Spring mechanism


68


apply a constant force to the fingers regardless of the angular position thereof.




In operation, a piece of mail


18


leaving singulation head


12


passes under vacuum doubles resolver head


14


, where any double attached to the piece of mail is removed/delayed, and into take away mechanism


16


, passing between rollers


50


and belts


30


. The high friction surface of belts


30


pulls a piece of mail along, the piece of mail being pressed against the belts by wheels


50


and fingers


64


with a substantially uniform pressure regardless of the thickness of the piece of mail, including variations in thickness across a single mail piece. A detector D


3


can be used to detect the leading edge and/or trailing edge of each piece of mail leaving take away mechanism


16


. To the extent a control mechanism


80


, which receives inputs from the various detectors and controls operation of vacuum chambers V


1


, V


2


and servo motor


36


, determines from inputs from detector D


3


that the spacing between the leading edge of the last piece of mail exiting take away mechanism


16


and the piece of mail currently passing through this mechanism is not adequate and/or that the spacing between the trailing edge of the last piece of mail leaving the take away mechanism and the leading edge of the current piece passing through the mechanism is not adequate, control mechanism


80


may stop the servo motor momentarily to delay take away of the piece of mail currently in the mechanism so as to permit desired spacing to be achieved.




One additional problem which the system


10


must deal with is to assure that a doubles resolved by vacuum resolver head


14


can clear the system before the next piece of mail is fed, thereby avoiding jams. If, for example, wheels


50


have medium to high friction surfaces so as to serve as the final doubles resolver element, any doubles reaching this point in the system will be pressed against belts


30


when the piece of mail thereunder has cleared the wheels and can thus be easily removed by belts


30


. Proper spacing for these doubles pieces is obtained by the take away system in the manner described above by the detectors, controls


80


and servo motor


36


.




However, where the double is resolved by resolver head


14


before the leading edge of the doubles piece reaches wheels


50


, the piece of mail may get hung up between singulation head


12


and take away mechanism


16


, V


2


having been turned off when the original piece of mail reaches detector D


2


. Under these conditions, control


80


will receive an indication from detector D


2


that the piece of mail has cleared wheels


50


while detector D


1


is still indicating a piece of mail thereunder. Controls


80


interpret this to mean that there is a piece of mail under the resolver head. The spacing between the leading edge of chamber V


2


and wheels


50


is selected such that, for the smallest piece of mail to be handled by the system, the piece of mail has to either be over vacuum chamber V


2


or under wheels


50


. Thus, if a piece of mail is not being detected by detector D


2


, while still being detected by detector D


1


, this means that the piece of mail is still at least partially over vacuum chamber V


2


. Therefore, in response to this detection, control


80


turns on vacuum chamber V


2


, permitting belt


20


to advance the resolved doubles piece until it is under wheels


50


and is detected by detector D


2


. V


2


is then turned off and the mail piece removed by the take away mechanism


16


in the manner previously described. Controls


80


may then initiate the singulation of the next piece of mail


18


in the stack fed to the singulation head by energizing vacuum chamber V


1


in the manner previously described.




Another problem dealt with by the system is the feeding of magazines or like mail which are bound on one side and open on the opposite side. Since these pieces of mail are strongest on the bound side and loose on the opposite side, these pieces must be fed bound-side down to avoid damage to the piece. Take away mechanism


16


in general, and wheels


50


/ fingers


64


in particular, are dimensional to grab such mail lower, nearer the bound side, to achieve better control of such pieces and reduce damage thereto.




While take away mechanism


16


has been described above in conjunction with its use in system


10


, and it is particularly well adapted for use in such system, the take away mechanism could be employed in any application where pieces of mail or other flat articles are to be removed one at a time from a singulation head, or other appropriate mechanism feeding such pieces on an individual basis, and passed to downstream equipment at a selected rate and with a selected spacing, the mechanism being flexible enough to handle a wide variety of sizes, weights, and in particular thicknesses, for the pieces being fed therethrough. Further, while for the preferred embodiment, the rear pressure mechanism are wheels and the forward pressure mechanism fingers, this is not a limitation on the invention and either wheels or fingers could be used for both pressure mechanisms or these two types of pressure mechanisms could be used in combination, either as shown or reversed. Other suitably biasable pressure mechanisms might also be utilized. Further, while optical detectors D


1


-D


3


are shown in the figures for the preferred embodiment, mechanical, capacitive, or other object detectors known in the art might also be utilized for the detectors D


1


-D


3


and the locations of these detectors may vary somewhat with application. Thus, while the invention has been particularly shown and described above with reference to a preferred embodiment, the forgoing and other changes in form and detail made therein by one skilled in the art without departing from the spirit and scope of the invention which is to be defined only by the appended claims.



Claims
  • 1. A take-away mechanism from a singulator of a handling system for substantially flat articles, which articles are of varying thickness, size and weight, including:an elongated drive member having a length extending for at least most of the take-away mechanism, said drive member extending in a direction from which articles exit said singulator; a driver moving said drive member in said direction and away from said singulator at a selected rate; and first and second components spaced from each other along the length of said drive member, said components being mounted to permit said article to pass between each component and the drive member and being adapted to automatically apply a substantially uniform pressure to the article again he drive member regardless of article thickness, said components combining to apply said selected pressure to an article as it passes along substantially said drive member length.
  • 2. A mechanism as claimed in claim 1, wherein said drive member is at least one belt, said driver including at least one roller over which said at least one belt passes.
  • 3. A mechanism as claimed in claim 2, wherein said drive member includes at least three spaced belts driven by a common driver.
  • 4. A mechanism as claimed in claim 3, wherein said belts are timing belts, and wherein said driver includes a plurality of rollers, at least one of which is driven, each of which rollers has at least three grooves formed therein, each timing belt fitting into a corresponding groove in each roller.
  • 5. A mechanism as claimed in claim 3, wherein at least one of said components includes at least two pressure members mounted to substantially apply pressure between said belts, but not over said belts.
  • 6. A mechanism as claimed in claim 5, wherein both said components include at least two pressure members mounted to substantially apply pressure between said belts, but not over said belts.
  • 7. A mechanism as claimed in claim 2, wherein said at least one belt has an article contacting surface of material with a high coefficient of friction.
  • 8. A mechanism as claimed in claim 1, wherein said driver includes a servo motor, detectors for detecting articles at selected locations along said mechanism, and controls responsive to said detectors for operating said servo motor to selectively control spacing of articles exiting said mechanism.
  • 9. A mechanism as claimed in claim 8, wherein said servo motor is a stop-start servo motor, said controls stopping and starting said motor, and thus said drive member, to control article spacing.
  • 10. A mechanism as claimed in claim 8, wherein said detectors are at least at an exit end of said mechanism and at a location along said member near a rear-most one of said components.
  • 11. A mechanism as claimed in claim 1, wherein said drive member is formed so as to minimize slippage between said member and articles pressed thereagainst.
  • 12. A mechanism as claimed in claim 11 wherein said drive member has a surface in contact with articles which is of a material with a high coefficient of friction.
  • 13. A mechanism as claimed in claim 1, wherein said singulator discharges articles to said mechanism at a selected rate, and wherein said driver moves said drive member at a rate higher than said selected rate.
  • 14. A mechanism as claimed in claim 13, wherein said drive member is driven at a rate approximately 15% to 20% faster than said selected rate.
  • 15. A mechanism as claimed in claim 14 wherein said selected rate is approximately 78 to 85 in/sec and the rate for said drive member is approximately 100 to 102 in/sec.
  • 16. A mechanism as claimed in claim 1, wherein at least one of said first and second components is at least one wheel biased against said drive member.
  • 17. A mechanism as claimed in claim 16, wherein each said wheel is mounted at the end of a spring-biased arm, which arm is angled in the direction of drive member movement.
  • 18. A mechanism as claimed in claim 17, wherein said arm is angled at an angle of approximately 45%.
  • 19. A mechanism as claimed in claim 16, wherein each said wheel has a surface in contact with articles which surface is of a material having a significant coefficient of friction.
  • 20. A mechanism as claimed in claim 16, wherein each said wheel is substantially free spinning.
  • 21. A mechanism as claimed in claim 16, wherein said at least one wheel forms a rear/trailing one of the components.
  • 22. A mechanism as claimed in claim 16, wherein there are a plurality independently biased wheels.
  • 23. A mechanism as claimed in claim 1, wherein at least one of said first and second components is at least one finger biased against said member.
  • 24. A mechanism as claimed in claim 23, wherein said at least one finger forms a forward/leading one of the components.
  • 25. A mechanism as claimed in claim 23, wherein there are a plurality of independently biased fingers.
  • 26. A mechanism as claimed in claim 1, wherein said articles are pieces of mixed mail, and wherein each of said components is biased to permit mail having variations in thickness of between approximately 0.007″ and 1.25″ to pass between the drive member and said components.
  • 27. A mechanism as claimed in claim 1, wherein the spacing between the first and the second components in said direction is less than the length of the shortest article being taken away by the mechanism.
  • 28. A take-away mechanism from a singulator of a handling system for substantially flat articles, which articles are of varying thickness, size and weight, including:a drive member extending for a selected length in a direction from which articles exit said singulator; a driver moving said drive member in said direction and away from said singulator at a selected rate, said driver including a servo motor, detectors for detecting articles at selected locations along said mechanism, and controls responsive to said detectors for operating said servo motor to selectively control spacing of articles exiting said mechanism, and components mounted along the length of said drive member to both permit said article to pass between each component and the drive member and to apply selected pressure to the article against the drive member.
  • 29. A mechanism as claimed in claim 28, wherein said servo motor is a stop-start servo motor, said controls stopping and starting said motor, and thus said drive member, to control article spacing.
  • 30. A take-away mechanism from a singulator of a handling system for substantially flat articles, which articles are of varying thickness, size and weight, including:an elongated drive member having a length extending for at least most of the take-away mechanism, said drive member extending in a direction from which articles exit said singulator; a driver moving said drive member in said direction and away from said singulator at a selected rate, and components spaced along the length of said drive member and mounted to both permit said article to pass between each component and the drive member and to apply a substantially uniform pressure to the article against the drive member regardless of article thickness said components combining to apply said uniform pressure to an article as it passes along substantially said drive member length.
US Referenced Citations (18)
Number Name Date Kind
3890886 Fessler et al. Jun 1975 A
4030722 Robert et al. Jun 1977 A
4589650 Miyoshi May 1986 A
4607837 Pierce Aug 1986 A
4696392 Chisholm, Jr. Sep 1987 A
4825917 Gonner May 1989 A
4893804 Hiroyuki et al. Jan 1990 A
4909499 O'Brien et al. Mar 1990 A
5011129 Holbrook Apr 1991 A
5094443 Young, Jr. Mar 1992 A
5163672 Mennie Nov 1992 A
5290022 Sabatier et al. Mar 1994 A
5507479 Philippe et al. Apr 1996 A
5516095 Bacik et al. May 1996 A
5555083 Kuo et al. Sep 1996 A
5833230 Nakagawa et al. Nov 1998 A
6102392 Gleichauf et al. Aug 2000 A
6170820 Hutson Jan 2001 B1
Foreign Referenced Citations (2)
Number Date Country
19835828 Aug 1999 DE
1323550 Jul 1973 GB