The invention relates generally to security systems, and more specifically to techniques for detecting tamper and/or intrusion in secure environments, such as cargo containers, packages, doors and/or windows.
A wide variety of freights, such as commercial goods and equipment, quality assured equipment, confidential goods, sensitive material or equipment, expensive goods and so forth, are transferred from one place to other in standardized containers, such as cargo containers, crates, cardboard boxes, and/or packages. It is often difficult to adequately guard these containers while they are in transit or during storage. Further, some shipments originate in countries where port or rail yard security may not be adequate. Thus, these containers are often unattended for significant periods at locations in which theft or tampering can occur. Moreover, the sheer number of containers and boxes being shipped every day makes it difficult to adequately inspect each container at various checkpoints during transit or otherwise decreases the throughput at the checkpoints.
Additionally, in many cases such breaches or tampering are difficult to detect. Even a visual inspection of the exterior of a container is unlikely to reveal a breach. Shipping containers are subject to rough handling by cranes and other heavy equipment. Many of them have been damaged multiple times in the natural course of business and subsequently patched to extend their useful lives. Thus, upon inspection, a surreptitiously breached and patched container may appear same and the breached container is unlikely to be detected.
Consequently, these containers are subject to tampering. A breached container can, for example, be looted or surreptitiously loaded with contraband, such as illegal drugs and/or weapons. The need for security during transit and storage requires proof that a container's integrity was maintained. In addition, theft of goods from private or public entities during transit or storage is also undesirable and may have significant economic impacts. Accordingly, reducing such illegal activities is highly desirable.
The current techniques of securing containers during transit and/or storage depend primarily upon placing a seal across the locking mechanism of a container door and/or one or more physical inspections of the container to verify the integrity of contents and absence of tampering. However the above technique is of limited value because an intruder may circumvent or corrupt inventory controls and cargo manifest delivery systems with help. Further, considering the enormous amount of shipped goods, a manual inspection may decrease the throughput if inspection is carried out extensively or the inspection may not be as extensive and efficient otherwise. Since a breach or circumvention of a cargo delivery system may have serious consequences, particularly for high sensitive applications, the failure tolerance is very low. Thus, it is necessary to secure the containers such that intrusion is preventable and/or detectable.
Apart from securing containers and freights, it may also be desirable to secure various premises such as residential areas, public installations, defense installations, private property and so forth. Current techniques for securing such premises include installing an alarm systems based on acoustic sensors, shock sensors, magnetic contacts and triple-biased door contacts in doors and/or windows of such secured areas. However, these techniques do not protect the whole assembly or detect just an effect of the intrusion (e.g. sound or vibration) and not the intrusion itself. But these effects may also result form other events, thereby causing false alarms. Other techniques may detect only the opening of the door but generate no alarm if the locks are in place and the intrusion takes place by cutting through the door. Thus, an intrusion detection system is needed that provides a reliable full detection of unauthorized entrance through door and/or windows while minimizing the amount of false error messages.
It is therefore desirable to provide an efficient, reliable, cost-effective and automated tamper and/or intrusion detection system for cargo containers, packages, doors and/or windows. It is also desirable to provide tamperproof containers, packages, doors and/or windows.
Briefly in accordance with one aspect of the present technique, a tamper detection system is provided. The tamper detection system includes an energy source for transmitting energy through an energy-transmitting layer, and a detector for detecting a change in energy distribution within the energy-transmitting layer.
In accordance with another aspect of the present technique, a tamperproof structure is provided. The tamperproof structure includes at least one surface vulnerable to breach, the surface comprising an energy-transmitting layer. The tamperproof structure further includes an energy source for transmitting energy through the energy-transmitting layer, and a detector for detecting a change in energy distribution within the energy-transmitting layer.
In accordance with a further aspect of the present technique, a kit is provided for upgrading a structure. The kit includes an energy-transmitting layer, and an energy source configured to be disposed on one end of the energy-transmitting layer. The energy source is adapted to create an energy distribution profile within the energy-transmitting layer. The kit also includes a detector configured to be disposed on another end of the energy-transmitting layer. The detector is configured to detect a change in the energy distribution profile.
In accordance with an additional aspect of the present technique, a method is provided for detecting tampering of a surface vulnerable to breach. The method provides for creating an energy distribution profile within an energy-transmitting layer, and detecting a change in the energy distribution profile. The energy-transmitting layer is disposed on or within the surface vulnerable to breach.
In accordance with another aspect of the present technique, a method is provided for making a structure tamperproof. The method provides for disposing an energy-transmitting layer on or within a surface of the structure, the surface being vulnerable to breach. The method also provides for disposing an energy source on one end of the energy-transmitting layer, and disposing a detector on another end of the energy-transmitting layer.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
The present techniques are generally directed to tamper and/or intrusion detection systems that may be useful in a variety of security applications. Though the present discussion provides examples in the context of cargo containers, packages, doors and/or windows, one of ordinary skill in the art will readily comprehend that the application of these techniques in other contexts is well within the scope of the present disclosure.
Referring now to
The energy-transmitting layer 14 may be selected based on the type of energy source 12 employed. For example, if a light source is employed, the energy-transmitting layer 14 may be made of at least a partially optical transmissive material, such as Polycarbonate (PC), Polyethylene (PE), Polypropylene (PP), Polystyrene (PS) foil, or glass. Similarly, if a current source is employed, the energy-transmitting layer 14 may be made of a generally electrically conductive material. In one embodiment, the material used for energy-transmitting layer has high reliability and/or high mechanical durability. In certain embodiments, the energy-transmitting layer 14 may be optimized so as to minimize the energy loss and thus to minimize the power consumption. For example, in embodiments where a light source is employed, the optical transmitting layer may be doped with fluorescent material, such as dyes and/or quantum dots to minimize the optical attenuation. Additionally, the energy-transmitting layer 14 may be coated on one or more surfaces with an energy reflecting material to minimize energy losses and capture the maximum portion of energy within the energy-transmitting layer 14. For example, based on the type of source employed, a light reflecting material or an insulation material may be used for the coating. As will be appreciated by one skilled in the art, the energy-transmitting layer 14 may be fabricated as a foam, a film, a foil, a plate, or other substrate configuration and may be disposed on or within a surface of a container, a package, a door, or a window that is vulnerable to breach. It should be noted that, the position (external, or internal) of the energy-transmitting layer 14 with respect to the surface vulnerable to breach (breachable surface) may be based on the application requirements. As used herein, the term “breachable surface” means a surface vulnerable to breach, tamper and/or intrusion. Further, optical or electrical layer design may be based on the application. Any event of tampering and/or intrusion of the surface vulnerable to breach will result in change in energy distribution profile within the energy-transmitting layer and will be therefore detected.
The detector 16 may be, for example, a current-sensing device for sensing a change in current density, a light-sensing device for sensing a change in light intensity (flux), or any other device configured to detect a change in the energy distribution within the energy-transmitting layer 14. Alternatively, the detector may be configured to detect and measure the level of energy distribution within the energy-transmitting layer 14 at any given instant. The measured energy distribution may then be compared against the normal level of energy distribution (threshold value) or a previous measurement via acquisition circuitry provided internal or external to the detector 16 and a change may thereby be detected. The tamper and/or intrusion detection system 10 may further include an alarm system 17 coupled to the detector 16. The alarm system 17 may trigger an alarm whenever the detector detects a change in energy distribution within the energy-transmitting layer 14.
As will be appreciated by one skilled in the art, the tamper and/or intrusion detection system 10 such as those described above may be provided in wide variety of structures such as cargo containers, packages, doors, windows or any other structures that are vulnerable to breach to make them secure and tamperproof. For example, an exemplary tamperproof structure 30, such as a cargo container, is illustrated in
An overall plan for one of the breachable surfaces 32 of a tamperproof structure 30 is illustrated in
A planar view of one of the portions 34 of a breachable surface 32 of the tamperproof structure 30 is illustrated in
As will be appreciated by one skilled in the art, the tamper and/or intrusion detection system may also be retrofitted into an existing structure (cargo containers, packages, doors, windows and so forth) to make them tamperproof. A cross sectional view of retrofit solution 54 to make an existing structure tamperproof is illustrated in
A schematic arrangement to provide light/illumination to the tamper and/or intrusion detection system described in the various embodiments discussed above is illustrated in
An emitter-sensor package for installation in the tamperproof structure 30 is illustrated in
The tamper and/or intrusion detection system described in various embodiments discussed above enables detection of tampering and/or intrusion by monitoring the light intensity in the optical layer or current density in the electrical layer of the breachable surface. The optical and/or electrical coating (such as sensitized plastic) may be applied to encapsulate the good. If a damage to the sensitized plastic package is inflicted a detector will register the event and initiate an alarm. The floor of a cargo container may be a glass fiber composite (GFC) material coated on plywood. The GFC could be used as fiber-wire detection system. Alternatively, an additional plastic layer (such as LEXAN®) may be added and used as sensing device. In certain embodiments, the system includes a low power optimized light or electric transmitter (such as LED or current source), low light or current dissipating optical or electrical film, and a light or electric sensing device.
As will be appreciated by the one skilled in the art, the tamper and/or intrusion detection system described above may be employed in areas other than security of cargo containers and/or packages. For example, with some modification the system described above may be employed to prevent intrusion in public and/or private premises 84 as illustrated in
A cross sectional view of door or window panels is illustrated in
In one embodiment, an optical transparent material may be disposed in the door. The material is illuminated with a monochromatic, infrared (IR), or white light from defined light sources disposed in locks and/or hinges. The hinge and locks are so designed, that they provide light only in the closed status of the door (alarm status). As the light is directed at these injection points (hinges and/or locks), fluorescent dyes or quantum dots may be used to ensure a homogeneous distribution of the light. An intrusion through the door will influence the light flow in the optical material, resulting in a change in detector signal and thus causing an alarm. Further, if the hinges or locks are removed to open the door the light transmission into the system is disconnected, thereby influencing the light flow in the optical material and causing alarm. For energy saving purposes a pulsed light insertion may be employed.
The tamperproof hinge 92 is illustrated in
The tamperproof locking system 94 is illustrated in
The tamper and/or intrusion detection techniques for securing premises described in the embodiments discussed above enable the detection of an intrusion through doors, windows and/or walls. The techniques cover not only an effect but also the intrusion itself and sound an alarm before the burglar could enter the secured area. As the technique detects directly the effect of intrusion based on the change in energy distribution resulting of the intruded area or the disconnection of the energy sources at opening or quarry out of the doors or windows, the alarm system reacts only on the effect of intrusion or opening of doors, thereby reducing the false alarms. Furthermore, apart from the whole door and/or window area, the connections to the walls are also monitored. Additionally, the system is hidden not only to the intruders, but also to the customers and thus provides no negative impact on the appearance of the door. The principle works also for fully transparent doors.
Moreover, the tamper and/or intrusion detection system described in the various embodiments discussed above is reliable (low failure detection tolerance), durable (greater than 5 years), inexpensive, efficient (reduced false alarm and low energy consumption), and can be mass manufactured. Further, the system is self-checking, thereby cutting down redundant quality and/or security checking costs.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This invention was made with Government support under contract number N66001-05-C-6015 awarded by SPACE AND NAVAL WARFARE SYSTEMS CENTER, San Diego. The Government has certain rights in the invention.