Tamper detection devices and other event detection devices frequently depend on visual inspection of a mechanism that permanently changes its mechanical properties in response to a particular event. For example, tamper detection for a medicine bottle may be indicated with a paper seal that is attached to both the bottle and the bottle cap, such that opening the cap tears the paper. If visual inspection shows that the seal is torn, that indicates that the cap has been removed and the contents of the bottle possibly tampered with. If the seal is intact, it is assumed that the bottle has not been opened. While such indicators are inexpensive and generally reliable, detection depends on a human being visually looking at the seal. Such techniques are not efficient for inspecting large numbers of containers, or for inspecting containers that are not easily viewed, such as the contents of a shipping bay in a commercial freight vehicle.
The invention may be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the invention. In the drawings:
In the following description, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
References to “one embodiment”, “an embodiment”, “example embodiment”, “various embodiments”, etc., indicate that the embodiment(s) of the invention so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, the different embodiments described may have some, all, or none of the features described for other embodiments.
In the following description and claims, the terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements co-operate or interact with each other, but they may or may not be in direct physical or electrical contact.
The term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory. A “computing platform” may comprise one or more processors.
The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not.
As used herein, unless otherwise specified the use of the ordinal adjectives “first”, “second”, “third”, etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.
Various embodiments of the invention may be implemented in one or a combination of hardware, firmware, and software. The invention may also be implemented as instructions stored on a machine-readable medium, which may be read and executed by a computing platform to perform the operations described herein. A machine-readable medium may include any mechanism for storing, transmitting, or receiving information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium may include read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.), the interfaces and/or antennas that transmit and/or receive those signals; and others.
Within the context of this document, a radio frequency identification (RFID) tag comprises an RFID tag circuit to provide data storage and signal processing within the RFID tag, and an RFID antenna to receive and transmit signals to/from the RFID tag. Within the context of this document, the definition of ‘transmission’ from an RFID tag may include the modulated reflection of a wireless signal received by the associated RFID antenna.
Some embodiments of the invention include an RFID tag whose response includes the status of a security sensing element. The security sensing element may indicate the status of a security device whose characteristics are changed by the occurrence of a particular physical event, such as opening a container. In some of those embodiments, that event may change the electrical coupling between the sensing element and the RFID tag, such as by breaking the continuity of an electrical element in a manner that is essentially irreversible, or by changing a multi-bit readout between the sensing element and the RFID tag.
The illustrated RFID tag circuit 190 may comprise various components, such as, for example, RF circuitry 191 to receive and transmit radio frequency signals, identification register 193 to contain a code in non-volatile circuitry that identifies the RFID tag, a status circuit 194 to indicate a status of security sensor 180, and a power circuit 192 to provide electrical power to operate the various other components 191, 193, and 194. In some embodiments, some of the electrical energy from incoming signals that are received through antenna 195 may be collected in power circuit 192 (e.g., stored in capacitor C1), until there is sufficient electrical energy to operate the other components of RFID tag circuit 190. Also, when there is sufficient stored electrical power for such operation, the voltage V may be fed through continuity loop 185 to provide a detectable voltage input to status circuit 194. In some embodiments, resistor R1 may be used to prevent a short circuit between continuity loop 185 and ground from shutting down operation of the RFID tag by draining the voltage out of capacitor C1.
Security sensor 180 may be physically mounted or otherwise attached to a container with a door, lid, or other opening device, in a manner that causes the continuity loop to break if the container is opened. In the illustrated embodiment, such a break may occur along the dashed lines, causing the continuity loop 185 to physically break in two. This may in turn prevent the voltage from power circuit 192 from reaching the input of status circuit 194. Various circuit design techniques, both currently known and yet to be developed, may be used to make sure the operational input to status circuit 194 is in one state when the continuity loop 185 is intact, and in another state when continuity loop 185 is broken. The illustrated embodiment may provide a logic high signal when continuity is present, and a logic low signal when continuity is absent, but the opposite convention may also be used. In some embodiments, when the RFID tag is not operational, the state of the input to status circuit 194 may not matter.
When the RFID tag is prompted to transmit, for example by receiving a radio frequency signal transmitted by RFID reader 199, the RFID tag may transmit the identification code in identification register 193, as well as the status indicated by status circuit 194. In some embodiments this data may be transmitted in a bit-serial fashion, by being shifted through a shift register to the RF circuit 191. In some embodiments, status circuit 194 may comprise a flip-flop, register, or other circuit element that stores the state as long as power is available to status circuit 194. In other embodiments, status circuit 194 may merely provide the signal level in a non-stored state as an input to be sensed and transmitted only when needed. In some embodiments a single bit may be used to indicate continuity status, while in other embodiments multiple bits may provide that status. The status bit(s) may be located at any feasibly point in the data transmitted by the RFID tag.
In some embodiments the RFID tag may be ‘polled’ by an RFID reader when the RFID tag is to respond. An RFID poll may take any of various forms, such as but not limited to: 1) receipt of any RF energy that will be accumulated in the power circuit 192, 2) receipt of RF energy in the proper frequency band, 3) receipt of a modulated signal that indicates this specific RFID tag is to respond, 4) etc. In response to a poll, the RFID tag may transmit the contents of identification register 193 and status circuit 194, as well as any other information (not shown) the RFID tag may be designed to transmit.
In some embodiments the RFID tag may be a ‘passive’ RFID tag, i.e., it may use the energy from incoming signals to power its own circuits, and its circuits may be non-operational in the absence of such incoming signals. In other embodiments (not shown), the RFID tag may be an ‘active’ tag, i.e., it may receive operational power from a battery or other internal power source. In either case, when the RFID tag is active, the continuity of loop 185 may be sensed at status circuit 194, and that continuity status may be transmitted along with any other pertinent information the RFID tag may be designed to transmit.
The security device may be attached to the container after the opening is closed, so that the next time the container is opened, the security device will break and the electrical continuity previously described will be broken. In some embodiments the security device 220 may comprise, for example, an RFID tag 210 attached to a base that is adhesively attached to doors 250, 260, such that when one or both doors is opened the security device will break along perforations 225, thus breaking continuity loop 230 at the same time. An RFID tag on a paper adhesive label may serve as one such example.
In some embodiments, at least a part of loop 380 may take the form of an insulated wire, with an electrically conductive inner core covered by a non-conductive surface to prevent the core from making electrical contact with metal doors. Other embodiments make take any other feasible forms. Electrically conductive loop 380 may include conductive paths on or in support 370, and the point at which the conductive loop 380 is likely to break may likewise be anywhere along the conductive loop 380, including portions of support 370. Although the illustrated embodiment shows loop 380 passing through two door handles, other configurations are also possible, provided the mechanical arrangement is such that once the loop is in place, opening the container will cause the electrical continuity provided by the loop to break.
Although
Although many of the examples described use a change in electrical continuity to indicate a detectable change of conditions, other techniques may also be used. For example, a sensor might produce a change of electrical resistance, which could then be measured directly and converted into a digital reading. The reading, or an indicator of the reading, could then be transmitted along with the tag's identification number. In a similar manner, the digital reading might be compared to a reference value, and the comparison then used as an indicator of a change of conditions.
If the received status indicates a first state, the container to which the responding RFID tag is attached may be assumed to have not been tampered with, and normal processing may continue. Such normal processing may include registering the presence of the container at 660. For example, registering may include noting that the container has been received at a dock, and a presumption may be made that the original contents of the container are still intact. On the other hand, if the received status indicates a second state, the container may be assumed to have been possibly opened, and an alert may be generated at 650 to prompt further inspection of the container. The alert may take any feasible form, such as but not limited to any one or more of the following: 1) a visual warning indicator on an operator's video display, 2) an audible sound, 3) a message transmitted through wired or wireless means, 4) generation of control signals to secure the area, 5) etc.
The foregoing description is intended to be illustrative and not limiting. Variations will occur to those of skill in the art. Those variations are intended to be included in the various embodiments of the invention, which are limited only by the spirit and scope of the appended claims.