This disclosure generally relates to polymeric packages, and, in particular, to a resealable closure arrangement having a zipper closure and an internal seal, and methods of manufacturing polymeric packages.
Flexible polymeric packages are used to hold a variety of products. Such products may be edible food products such as cheese, meat, crackers, granulated sugar, powdered sugar, flour, salt, and baking soda, or non-food products such as laundry detergent, sand, medical supplies, and other products. Resealable packages are convenient because they can be closed and resealed after opening to contain the enclosed contents. Resealable packages are also advantageous in that they extend the life of food products because they can be opened and closed (resealed) multiple times.
The present disclosure is directed to reclosable packages from which air or other gas within the interior of the package can be removed through a feature of the package other than the mouth of the package. The packages have a zipper closure and a one-way fluid valve which allows gas (e.g., air) or other fluid to be removed from the interior of the package while the zipper closure is sealed. Prior to use by the consumer, the packages have a hermetically sealed interior volume, in which an item is contained. Upon use by a consumer, the zipper closure is opened, the hermetic seal is breached, and access is gained to the interior of the package. After the zipper is closed, the valve can be used to evacuate gas or other fluid from the interior of the package. The hermetic seal may have been formed by a peal seal, which could be resealed after evacuation of the gas or other fluid. A slider device may be used to open and close the zipper closure.
Various methods for using the packages, and of making the packages, are described.
These and various other features which characterize the packages of this disclosure are pointed out with particularity in the attached claims. For a better understanding of the packages of the disclosure, their advantages, their use and objectives obtained by their use, reference should be made to the drawings and to the accompanying description, in which there is illustrated and described preferred embodiments of the invention of this disclosure.
The present disclosure is directed to a variety of packaging arrangements (e.g., packages), particularly, resealable packaging arrangements, and methods of making and using those packaging arrangements.
Referring now to the figures, various packages according to the present disclosure are illustrated.
Referring now in particular to
Package 10 has a sealed top end 19, which is the side of package 10 opposite bottom edge 17. Sealed top end 19 is defined by tamper evident header 70, which is described below. Close to top end 19, a resealable zipper closure 20 is present.
Zipper closure 20 is present across a mouth of package 10 that provides access to interior 15. Zipper closure 20 usually extends from side edge 16 to side edge 18, and includes a first zipper profile 22 having a first profile member and a second zipper profile 24 having a second profile member; first and second zipper profiles 22, 24 are configured to engage and disengage with each other. In other words, first and second zipper profiles 22, 24 are selectively sealable and resealable.
First zipper profile 22 is connected to first side panel 12, and second zipper profile 24 is connected to second side panel 14. In the embodiment illustrated in
Opening and closing of zipper closure 20 of package 10 is facilitated by slider device 25, which is operably mounted on zipper profiles 22, 24 in a manner to mate and unmate, engage and disengage, etc., profiles 22, 24. Examples of suitable slider devices are disclosed, for example, in U.S. Pat. Nos. 6,679,027; Des. 480,988; Des. 479,467, and 6,450,686, each of which is incorporated herein by reference.
In the embodiment illustrated, zipper closure 20, at each side edge 16, 18, includes an area 26, 28, respectively, where zipper profiles 22, 24 are sealed together and may be partially crushed, melted or deformed.
At top edge 19, package 10 has a header 70, which extends from side panel 12 to side panel 14 and envelopes zipper closure 20 and slider device 25. Header 70 extends the width of package 10 from side edge 16 to side edge 18. In this particular embodiment, header 70 is detachable from package 10 via weakness 75. Weakness 75 may be a perforation, a tear-strip, string or thread, a laser score, a die line, a thinner area, or other configuration that allows header 70 to be readily removed or disconnected from at least one of side panels 12, 14, preferably from both side panels 12, 14, to gain access to zipper closure 20 and slider device 25. Header 70 is an element that provides a quick indication whether or not access has been gained to zipper closure 20. That is, access is not readily gained to interior 15 (
Package 10 also includes seal 40, which is positioned between bottom edge 17 and zipper closure 20. Seal 40 is present on the interior of at least one of side panels 12, 14 and allows panels 12, 14 to be sealed together, preferably with a fluid-impermeable or hermetic seal. Seal 40 may be a repeatably reclosable seal, often referred to as a peal seal, or a one-time seal, such as an adhesive seal or a mechanical seal. Illustrated in
Package 10 also includes a valve 60, positioned in one of side panels 12, 14 to allow escape of air, gas or other fluid from storage interior 15 to the exterior of package 10. In
Referring still to
Returning to package 10, in detail, various specific details of package 10 will now be described. It is understood however, that the following descriptions are not limiting to features of package 10; alternate materials, elements, configurations, constructions, and the like could be used to provide a package according to the present invention.
Package 10 has side panels 12, 14, which form the overall package 10. Side panels 12, 14 are flexible sheets, typically polymeric film. Examples of suitable films for use as panels 12, 14 are well known, and include polyethylene, polypropylene, and the like. Multi-layered or laminated materials may also be used, which can include, but are not limited to, low density polyethylene (LDPE) and nylon or LDPE and polypropylene.
As provided above, side panels 12, 14 meet at bottom edge 17, side edges 16, 18 and top edge 19. Any or all of edges 16, 17, 18, 19 may be seals or may be folds. In the embodiment illustrated in
As provided above, zipper closure 20 has first zipper profile 22 and second zipper profile 24, which engage and disengage from each other to provide access to storage interior 15 of package 10. Profiles 22, 24 are constructed to be repeatedly sealed (e.g., closed, engaged, mated, etc.) and unsealed (e.g., opened, disengaged, unmated, etc.), for example, by pressure exerted by the user's fingers. In some embodiments, zipper profiles 22, 24 are configured to provide an indication, for example by color change, when they are sealed.
In package 10, and in packages 10′ and 10′″, zipper closure 20 is configured to be opened and closed by slider device 25, whereas in package 10″, zipper closure 20 is opened and closed without the aid of a slider device. Optional areas 26, 28 are present at edges 16, 18, for example, to strengthen the ends of zipper closure 20 and/or to inhibit slider device 25 from traveling too far along zipper closure 20.
As provided above, seal 40 is present on the interior of at least one of panels 12, 14. Seal 40 allows panels 12, 14 to be sealed together, preferably with a fluid-impermeable or hermetic seal. Seal 40 preferably extends from side edge 16 to side edge 18, and may be any suitable width (taken in the direction from bottom edge 17 to zipper closure 20). Seal 40 can be a material, e.g., adhesive, applied to a surface of panel(s) 12, 14 or seal 40 may be integral with or formed by panel(s) 12, 14.
Seal 40 may be a repeatably reclosable seal or a one-time seal, such as an adhesive seal or a mechanical seal that is not reclosable. For example, seal 40 may be an adhesive peal seal, which can be sealed, readily opened, and resealed. Examples of peal seals include those described in U.S. Pat. Nos. 6,290,393; 6,210,038, and 6,131,248, each of which is incorporated herein by reference. Seal 40 may alternately be a non-resealable adhesive peal, that is, a seal that, once broken, cannot be resealed. Still further, seal 40 may be a mechanical connection between panels 12, 14 formed, for example, by a melting and joining of their materials, due to the application of heat and pressure in the area. Seal 40 could alternately be a physical or mechanical interaction, such as a seal formed by material that separates or delaminates between layers, and that cannot be resealed.
Valve 60 is preferably a one-way evacuation valve, allowing fluid flow therethrough in only one direction; preferably, that direction is from storage interior 15 of package 10 to the exterior of package 10. Valve 60 can be any suitable valve, including those known as “Goglio” type or “Raackmann” type. Goglio-type valves are available, for example, from Bosch, Wipf and Wico; Raackmann-type valves are available, for example, from Amcor. Other examples of suitable valves 40 include those described in U.S. Pat. Nos. 6,913,803; 6,733,803; 6,607,764, and 6,539,691, each of which is incorporated herein by reference.
Various parts of a specific type of valve 60 are illustrated in
An alternate embodiment of a suitable valve is illustrated in
Package 10 preferably includes textured standoff material 50 in locations where it is desired to maintain a slight distance, gap or spacing, between side panels 12, 14 and, for example, an item within interior 15 of package 10. Textured standoff material 50 may additionally or alternatively be positioned to inhibit, for example, side panel 14, from interfering with the functioning of valve 60. Material 50 interfaces with evacuation valve 60 to inhibit the possibility of the vacuum process being hindered or closed off, which could occur with a with flat or smooth film for panel 14.
Textured standoff material 50 is a textured material having, for example, protrusions, dots, bumps, detents, grooves, etc., or other structures that provide a surface that is not smooth. Generally, the textured features of standoff material 50 are at least 0.01 mm high, often at least 0.05 mm high, for example, about 0.1 mm high, or more, such as about 0.5 mm high or even 1 mm high. Such a textured standoff material 50 is desirable in package constructions to maintain a slight air gap or spacing between side panels 12, 14 and any item present within interior 15.
Standoff material 50 can be present on or occupy generally any portion of one or both of side panels 12, 14. Textured standoff material 50 may extend the width of package 10 from side edges 16, 18, as illustrated in
Package 10 preferably also includes tamper evident header 70, which encases or envelopes zipper closure 20. To gain access to zipper closure 20, header 70 is at least partially detached from package 10 via weakness or weaknesses 75. Header 70 provides a quick indication whether or not access has been gained to zipper closure 20.
An example of another tamper evident feature is illustrated in
For ease of description, package 10 illustrated in
Referring to
Package 10, in many embodiments, is produced by processes often referred to as “form fill and seal” processes. In these processes, the package, particularly storage interior 15, is manufactured (i.e., formed), the item is placed within storage interior 15 (i.e., filled), and then any last seals, such as at bottom edge 17, are made (i.e., sealed). “Form fill and seal” will be referred to as “FFS” hereinafter. Package 10 may be made by a horizontal FFS process (e.g., where the film forming side panels 12, 14 and zipper closure 20, and slider device 25 if present, move in a generally horizontal direction) or a vertical FFS process (e.g., where the film forming side panels 12, 14 and zipper closure 20, and slider device 25 if present, move in a generally vertical direction). It is understood that hybrid processes may include movement of these parts in various orientations. Typically, with horizontal FFS processes, the unfilled package 10 progresses through the process up-side-down, as illustrated in
After header 70 has been removed, the user can move slider device 25 from side edge 16 toward side edge 18 and thus open zipper closure 20. If sealed, seal 40 is opened, unsealed, or broken. Access is thus provided to interior 15 and to item 130. After removing a desired amount of item 130, package 10 is resealed, typically by first resealing seal 40 (if seal 40 is configured for resealing) and then closing zipper closure 20 by moving slider device 25 toward side edge 16. It is understood that zipper closure 20 could be closed prior to seal 40 being resealed.
To extend the freshness of item 130 remaining in package 10, air present within interior 15 can be removed through valve 60.
After header 70 has been removed, the user can open zipper closure 20 by unmating closure profiles 22, 24. If sealed, seal 40 is opened, unsealed, or broken. Access is thus provided to interior 15 and to the item therein. Package 10″ is resealed, typically by first resealing seal 40 (if seal 40 is configured for resealing) and then closing zipper closure 20 or by closing zipper closure 20 and then resealing seal 40, if so configured. To extend the freshness of items remaining in package 10″, air can be removed through valve 60, for example by vacuum pump 150 or by a user's hand.
As mentioned above, package 10, 10′, 10″, 10′″ is produced by “form fill and seal” processes, either horizontal FFS or vertical FFS. Package 10, 10′, 10″, 10′″ may be made by a horizontal FFS process (e.g., where the film forming side panels 12, 14 and zipper closure 20 and slider device 25, if present, move in a generally horizontal direction) or a vertical FFS process (e.g., where the film forming side panels 12, 14 and zipper closure 20 and slider device 25, if present, move in a generally vertical direction).
In one general embodiment of a horizontal FFS process, two extended lengths of the film, each forming a side panel 12, 14, move in a generally horizontal direction. An extended length of zipper closure 20 may be attached to side panels 12, 14 or may already be integral with the panel film. Slider device 25, if present, could be located on zipper closure 20 prior to being attached to side panels 12, 14. Standoff material 50 can be attached to side panel(s) 12, 14 or may be side panels(s) 12, 14. Valve 60 is typically installed into one of the extended lengths of film at predetermined intervals, to correspond to one valve 60 per package 10, 10′, 10″, 10′″. Seal 40 can be formed between side panels 12, 14 before, after, or concurrently with zipper closure 20 being attached. Material for header 70 may be attached to side panels 12, 14 at any step during the process.
After the various elements have been joined to form an extended length, seals, which will result in side edges 16, 18, are made. Areas 26, 28 are usually made (e.g., crushed) simultaneously with the side edge seals, but could be made in a separate step. After storage interior 15 has been formed (i.e., between side panels 12,14 having side edges 16, 18), item 130, 130′ is placed, e.g., dropped, into storage interior 15, and then bottom edge 17, which is positioned above the rest of package 10, 10′, 10″, 10′″, is sealed.
In an alternate embodiment of a horizontal FFS process, one extended length of film moves in a generally horizontal direction. This film is folded to form both panels 12, 14 with header 70 and folded edge 19 therebetween. Any order of applying zipper closure 20 and optional slider device 25, standoff material 50, valve 60, seal 40 and weakness 75 can be used. Similar to the first embodiment, after the various elements have been joined to form an extended length, side edges 16, 18 and areas 26, 28 may be made. Item 130, 130′ is placed into storage interior 15, and then bottom edge 17 is sealed.
In one embodiment of a vertical FFS process, two extended lengths of film, each forming a side panel 12, 14, move in a generally vertically downward direction. Similar to above, an extended length of zipper closure 20 may be attached to side panels 12, 14, before, after, or concurrently with the film being sealed together to form top edge 19. Standoff material 50 can be side panels 12, 14 (as in the process of
After the various elements have been joined to form an extended length, a seal, which results in, for example, side edge 18 and area 28, is made. After this step, storage interior 15 has been made between side panels 12, 14, edge 17, seal 40 and side edge 18. Item 130, 130′ is placed, e.g.,, dropped, into storage interior 15, and then side edge 16, which is positioned above the rest of package 10, is sealed. Such a FFS process moves in a generally downward vertical direction.
In an alternate embodiment of a vertical FFS process, one extended length of film moves in a generally horizontal direction. This film is folded to form both panels 12, 14 with folded edge 19 or edge 17 therebetween. Any order of applying zipper closure 20, standoff material 50, valve 60, seal 40 and weakness 75 can be used. Similar to the first embodiment, after the various elements have been joined to form an extended length, side edge 18 and area 28 are made. Item 130, 130′ is placed into storage interior 15, and then side edge 16 is sealed.
The above specification and examples are believed to provide a complete description of the manufacture and use of particular embodiments of the invention. It is understood by those skilled in the art of packaging that package 10 and any other embodiments may be made by generally any suitable process, not just those described herein. As mentioned above, any or all of edges 16, 17, 18, 19 may be folds or seals between side panels 12, 14. A slider device 25 (if present), may be applied to zipper profiles 22, 24 before or after incorporation with side panels 12, 14. Package 10 may include side gussets or gussets in panels 12, 14 to provide increased volume for interior 15. Various other configurations and methods of making package 10, 10′, 10″, 10′″ are suitable.
Because many embodiments of the invention can be made without departing from the spirit and scope of the invention, the true scope and spirit of the invention reside in the broad meaning of the claims hereinafter appended.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/737,872, filed on Nov. 17, 2005, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60737872 | Nov 2005 | US |