The present disclosure generally relates to tamper evident structures for flexible packages and more particularly, to a tamper evident structures facilitating effective sealing thereof with flexible packages.
Tamper evident flexible packages are commonly used in packaging industries to match the demands of consumers' satisfaction. More often than not, in view of providing tamper evidence to the flexible packages, tamper evident structures are configured to the flexible packages. However, in various instances while configuring the tamper evident structures to the flexible packages, the tamper evident structures get tampered due to heat and pressure, which are required to configure the tamper evident structures to the flexible packages. For example: a tamper evident structure including a slider-zipper assembly having a closed loop extending from the zipper gets tampered due to heat and pressure. Specifically, such tamper evident structure may be configured to the flexible packages by sealing the closed loops to opposite side panels of the flexible packages in such a manner that when the slider-zipper assembly is opened, users have to tear the closed loop to access contents of the flexible packages. However, while configuring the closed loop of such tamper evident structure to the flexible packages, the closed loop may get sealed to itself due to heat and pressure, in turn tampering the tamper evident structures. Particularly, in case of flexible package when product filling is done from the top side of the package and then the loop is sealed with remaining side of the panel of the package by pressure and heat.
Accordingly, there exists a need to prevent tampering of the tamper evident structures while configuring thereto with the flexible packages.
In view of the foregoing disadvantages inherent in the prior-art, the general purpose of the present disclosure is to provide tamper evident structure for flexible packages, that is configured to include all advantages of the prior art and to overcome the drawbacks inherent in the prior art offering some added advantages.
An object of the present disclosure is to prevent tampering of the tamper evident structure while configuring thereto with anyone or both panel(s) of the flexible package after filling or while fabricating of empty package.
To achieve the above objective, in an aspect of the present disclosure, a tamper evident structure for flexible packages is provided. The tamper evident structure includes a press to lock zipper or a slider-zipper assembly and a tamper evident diaphragm. The slider-zipper assembly includes a slider adapted to engage with a zipper to close and open the zipper. The zipper includes a longitudinal male element and a longitudinal female element engageable to each other. The zipper further includes a first flap extending downwardly along the length from the longitudinal male element; and a second flap extending downwardly along the length from the longitudinal female element. Further, the tamper evident diaphragm includes a plurality of temperature sensitive ribs configured along the length on an outer surface thereof. The tamper evident diaphragm is sealed to the zipper from an inner surface thereof in such a manner that a first end portion of the tamper evident diaphragm is sealed to outside of the first flap and a second end portion of the tamper evident diaphragm is sealed to outside of the second flap, thereby forming the tamper evident structure for the flexible packages.
In one form, the tamper evident diaphragm from its first end portion is sealed to at least two sealing portions along the length of the first flap such that the two sealing portions are spaced apart from each other with a gap. Similarly, the second end portion of the tamper evident diaphragm is also sealed to at least second sealing portions along the length of the second flap such that the two sealing portions are spaced apart from each other with a gap. The gaps facilitate in substantially inhibiting the flow of heat across the first flap and the second flap while sealing the tamper evident diaphragm to package panels.
In other aspects of the present disclosure, a method for forming the tamper evident structure as disclosed earlier and a tamper evident flexible package having the tamper evident structure are also provided.
The method for making the tamper evident structure includes forming of the slider-zipper assembly. Further, forming the tamper evident diaphragm as described above. Furthermore, sealing the tamper evident diaphragm (200) and the slider-zipper assembly with each other in a manner as described above.
Moreover, the tamper evident flexible package includes a pair of opposite panels coupled to configure a pocket having three closed sides and a top open side. Further, the package includes a tamper evident structure, as described above, sealed to at least one panel of the pair of opposite panels proximate to the top open side.
These together with the other aspects of the present disclosure, along with the various features of novelty that characterize the present disclosure, are pointed out with particularity in the description, along with the abovementioned summary, annexed hereto and form a part of the present disclosure. For a better understanding of the present disclosure, its operating advantages and the specified object attained by its uses, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated exemplary embodiments of the present disclosure.
The advantages and features of the present disclosure shall be better understood with reference to the following detailed description taken in conjunction with the accompanying drawing, wherein like elements are identified with like symbols and in which:
Like reference numerals refer to like parts throughout the description of several views of the drawings.
For a thorough understanding of the present disclosure, reference is to be made to the following detailed description in connection with the abovementioned drawings. Although the present disclosure is described in connection with exemplary embodiments, the present disclosure is not intended to be limited to the specific forms set forth herein. It is understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient, but these are intended to cover the application or implementation without departing from the spirit or scope of the present disclosure. Further, it will nevertheless be understood that no limitation in the scope of the disclosure is thereby intended, such alterations and further modifications in the figures and such further applications of the principles of the disclosure as illustrated therein being contemplated as would normally occur to one skilled in the art to which the disclosure relates. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Further, reference herein to “one embodiment” or “an embodiment” means that a particular feature, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the disclosure. Furthermore, the appearances of such phrase at various places herein are not necessarily all referring to the same embodiment. The terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one, of the referenced item.
Referring to
The tamper evident structure (10) includes a slider-zipper assembly (100) and a tamper evident diaphragm (200). The slider-zipper assembly (100) includes a slider (102) adapted to engage with a zipper (104) to close and open the zipper (104). However without departing from the scope of the present disclosure, the tamper evident structure (10) may include zipper without slider which may be press locked. The zipper (104) includes a longitudinal male element (106) and a longitudinal female element (108) engageable to the longitudinal male element (106). In one form, the longitudinal male element (106) includes at least one pair of notches (110) configured along its length to engage with a complementary pair of notches (112) configured along the length of the longitudinal female element (108). Further, the zipper (104) includes a first flap (114) extending downwardly along the length from the longitudinal male element (106); and a second flap (116) extending downwardly along the length from the longitudinal female element (108).
Furthermore, the tamper evident diaphragm (200) of the tamper evident structure (10) includes a plurality of temperature sensitive ribs (202) and a pressure sensitive weak line (204). The plurality of temperature sensitive ribs (202) is configured along the length on an outer surface (206) of the tamper evident diaphragm (200). Further, the pressure sensitive weak line (204) is configured centrally along the length of the tamper evident diaphragm (200). The pressure sensitive weak line (204) may be configured on the tamper evident diaphragm (200) while extrusion manufacturing by designing a mould that include a lower thickness area at a central portion thereof. The pressure sensitive weak line (204) may also be provided on the tamper evident diaphragm (200) after manufacturing thereof by leaser technology. However, without departing from the scope of the present invention the pressure sensitive weak line (204) may be provided by any other method know in the art.
The tamper evident diaphragm (200) is sealed to the slider-zipper assembly (100) in order to configure the tamper evident structure (10). In one form, the tamper evident diaphragm (200) is sealed to the zipper (104) from an inner surface (210) thereof in such a manner that a first end portion (212) of the tamper evident diaphragm (200) is sealed to the first flap (114) and a second end portion (214) of the tamper evident diaphragm (200), is sealed to the second flap (116). Such sealing between the tamper evident diaphragm (200) and the slider-zipper assembly (100) forms the tamper evident structure (10).
In one form, as clearly shown in
In one embodiment of the present disclosure, apart from heat insulation features: the first and the second gaps (220) and (226), the tamper evident diaphragm (200) may further include a plurality of projections (228) configured along the length on the inner surface (210) thereof. An exemplary depiction of the plurality of projections (228) is shown in
In one form, the tamper evident diaphragm (200) may be comprised of single polymeric layer having sealability to the outside of the first flap (114) and the second flap (116) of the zipper profile (100). In another form, the tamper evident diaphragm (200) may be comprised of co-extruded multi polymeric layers having sealability to the outside the first flap (114) and the second flap (116) of the zipper profile (100). Without departing from the scope of the present disclosure, the tamper evident diaphragm (200) may be formed by any other material or method as per requirement.
Referring now to
The panel (302) or (304) may be sealed to the tamper evident structure (10) via the plurality of temperature sensitive ribs (202). Specifically, in the sealing operation, when the heat is provided to the tamper evident structure (10) for sealing with the panel(s) (302) and/or (304), the plurality of temperature sensitive ribs (202) primarily melts to sealed with the panel (302) or (304), which reduce the exposure to direct heat and pressure on the tamper evident diaphragm (200), and the first flap (114) and the second flap (116) of the zipper profile (100). Further, to minimize the effect of transmission of the direct heat and pressure between the first flap (114) and the second flap (116), the respective gaps (220) and (226), configured thereon play an important role. For example, when the heat and pressure is provided for sealing the tamper evident structure (10) to the panel (302) or (304), the first gap (220) and the second gap (226) substantially inhibit the flow of heat across the first flap (114) and the second flap (116) while sealing the tamper evident structure (10) to the panel (302) or (304). Further, such gaps may also reduce the pressure effects onto the first flap (114) and the second flap (116) while sealing the tamper evident structure (10). Said plurality of temperature sensitive ribs (202) also results in effective sealing at lower temperature.
Further, in configurations, where the tamper evident diaphragm (200) includes the plurality of projections (228) (see
Such precautionary measurements, the first and second gaps (220) and (226), the plurality of temperature sensitive ribs (202) and the plurality of projections (228), taken in relaxation of direct heat and pressure, prevents the heat and pressure applied on one side of the tamper evident diaphragm (200) from being transmitted to its inner surface side (210), and between the first flap (114) and the second flap (116), thereby preventing sealing there between, and providing the package (300), which has tamper proof specifications.
Referring now to
The tamper evident structure (10) of the present disclosure offers following advantages. The tamper evident structure (10), specifically the first and second gaps (220) and (226), the plurality of temperature sensitive ribs (202) and the plurality of projections (228) prevents tempering of the tamper evident structure (10) while configuring thereto with the flexible packages by relaxing the heat and pressure transmission. Further, the tamper evident structure (10) is easy to manufacture.
The foregoing descriptions of specific embodiments of the present disclosure have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the present disclosure to the precise forms disclosed and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present disclosure and its practical application, to thereby enable others skilled in the art to best utilize the present disclosure and various embodiments with various modifications as are suited to the particular use contemplated. It is understood that various omission and substitutions of equivalents are contemplated as circumstance may suggest or render expedient, but such are intended to cover the application or implementation without departing from the spirit or scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
540/DEL/2010 | Mar 2010 | IN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IN2011/000149 | 3/8/2011 | WO | 00 | 5/3/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/111062 | 9/15/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4354541 | Tilman | Oct 1982 | A |
5216787 | Custer et al. | Jun 1993 | A |
5242516 | Custer et al. | Sep 1993 | A |
5638586 | Malin et al. | Jun 1997 | A |
5660479 | May et al. | Aug 1997 | A |
5725312 | May | Mar 1998 | A |
5887980 | May | Mar 1999 | A |
5893645 | May | Apr 1999 | A |
5904425 | May | May 1999 | A |
6071011 | Thomas et al. | Jun 2000 | A |
6154934 | Matthews | Dec 2000 | A |
6378177 | Athans et al. | Apr 2002 | B1 |
6481890 | VandenHeuvel | Nov 2002 | B1 |
6499878 | Dobreski et al. | Dec 2002 | B1 |
7185403 | Chaturvedi | Mar 2007 | B2 |
7254873 | Stolmeier et al. | Aug 2007 | B2 |
7416336 | Linton et al. | Aug 2008 | B2 |
7540072 | Anzini et al. | Jun 2009 | B2 |
8083660 | Chaturvedi | Dec 2011 | B2 |
20040123433 | Chaturvedi | Jul 2004 | A1 |
20040131283 | Sprague et al. | Jul 2004 | A1 |
20050157959 | Johnson | Jul 2005 | A1 |
20050188511 | Chaturvedi | Sep 2005 | A1 |
20070274612 | Chaturvedi | Nov 2007 | A1 |
20080118189 | Johnson | May 2008 | A1 |
Number | Date | Country |
---|---|---|
2396660 | Jun 2004 | GB |
2003053860 | Feb 2003 | JP |
WO0200520 | Jan 2002 | WO |
WO 2005113357 | Dec 2005 | WO |
WO 2009016644 | Feb 2009 | WO |
Entry |
---|
Machine translation of Japanese Document No. 2003-53860. Translated on Nov. 21, 2014. |
Number | Date | Country | |
---|---|---|---|
20120219240 A1 | Aug 2012 | US |