Tamper resistant thermostat having hidden limit adjustment capabilities

Information

  • Patent Grant
  • 10317919
  • Patent Number
    10,317,919
  • Date Filed
    Wednesday, June 15, 2016
    8 years ago
  • Date Issued
    Tuesday, June 11, 2019
    5 years ago
Abstract
A thermostat resists tampering by including a hidden mechanism for switching from a limit setting mode to an operation mode. In some embodiments, the switching mechanism is in the form of a tamper proof switch or jumper on the thermostat's circuit board. The switching mechanism can be hidden from a potential non-administrative user and can be located on the circuit board of the thermostat, as opposed to on the external housing. While the switching mechanism is in limit setting mode, the limits of the thermostat's temperature range can be adjusted. Once these limits have been set, the adjuster can move the switching mechanism to operation mode, and the thermostat will now be able to maintain temperatures within the new limit settings.
Description
FIELD OF THE INVENTION

The present invention relates to a circuit board having a hidden switching mechanism for adjusting heating and cooling limits for a thermostat.


BACKGROUND OF THE INVENTION

Most residential and commercial properties have at least one thermostat managing some form of a temperature maintenance system. These systems help keep occupants and stored material in a comfortable environment.


The laws of thermodynamics dictate that temperature maintenance systems require more energy to maintain temperatures which are further from the ambient temperature of the surrounding environment. For instance, it takes less energy, and as a result, is less expensive to heat a house to 70 degrees Fahrenheit in the winter than to keep the same house at 75 degrees. Similarly, it is less expensive to cool the same house to 78 degrees Fahrenheit during the summer than to cool the house down to 72 degrees. In order to limit the costs of providing a comfortable environment within a temperature maintenance controlled building, measures are often taken to set limits on temperature ranges available for selection on a thermostat.


In addition, there are instances where occupants (such as those residing in hospitals, assist living, or nursing homes) need to be protected from setting the temperature maintenance system either too high or too low, regardless of economic efficiency.


Modern thermostats are often controlled by a plurality of “hard” and “soft” buttons. Soft buttons are touch sensitive areas on screens, and the functions of these soft buttons vary depending on the display of the screens. Hard buttons are traditional mechanical switches and buttons. Thermostats can have a variety soft and/or hard buttons having different functions. Often these buttons take the form of a “+” and a “−” system of buttons for adjusting the room temperature up or down.


These controls are sufficient to regulate the function of the thermostat, however they allow anyone with access to them to have complete control over the thermostat's settings. This allows anyone with access to the thermostat to adjust it outside of a cost effective operating temperature range, driving up the costs to heat or cool the environment and/or putting undesired stress on the temperature maintenance system. It also allows anyone with access to the thermostat, such as nursing home residents, to adjust it outside of a medically safe temperature range. The medically safe temperature range can differ from a cost effective operating temperature range.


Often it is desired that certain individuals such as tenants, college students living in dorms, and/or travelers at hotels who have no incentive or limited ability to keep the thermostat set at a cost effective range, be limited to the cost effective range. These individuals can be referred to as non-administrative users.


Similarly, it is desired that certain individuals such as hospital and/or nursing home residents who, for medical reasons be unable to set their thermostat at a safe operating range, be limited to a medically safe temperature range. These individuals can also be referred to as non-administrative users.


There have been many proposed solutions to the problem of allowing anyone with access to the thermostat to adjust it outside of a particular operating temperature range. One solution has been to require a security code to set the upper and lower limits of the thermostat's possible operating range. However, individuals can often find these codes online and/or hack the system, thus defeating the purpose of the tamper proof thermostat.


Another proposed solution involves permanently fixing the temperature range of the thermostat by having limitations on temperature within the circuit itself, which cannot be overridden. However, this solution offers no degree of flexibility if someone with the proper authority (for example a landlord or maintenance person) desires to alter these limits. Instead they would be required to purchase a whole new unit with the desired operating range.


There is a need for a tamper resistant thermostat which unauthorized individuals cannot easily override, and qualified personnel have the capability to limit as desired.


SUMMARY OF INVENTION

A circuit board is provided, having a plurality of connections. These connections interact with a temperature maintenance system, which can have a heating system, a cooling system, or both systems in some embodiments. A switching mechanism is present on the circuit board, having at least two positions. One of these positions, operation mode, enables a user to interact with a thermostat assembly associated with the circuit board to set a temperature for the temperature maintenance system to maintain. A second position, the limit setting position, allows a user to set upper and lower limits on the temperature range for when the cooling system is active, and/or upper and lower limits on the temperature range for when the heating system is active. The circuit board includes at least one associated hardware component, which can include but is not to be limited to a display, at least one hard button, at least one soft button, and/or a wireless communication system.


In many embodiments, this circuit board is mounted in a thermostat housing, and this forms a thermostat assembly. The switching mechanism can take on a plurality of forms depending on the chosen embodiment. In some embodiments, the switching mechanism comprises a removable jumper, wherein the jumper can be removed from a first position and replaced in a second position, the first position being a limit setting position and the second being a thermostat operation position.


In some embodiments, the switching mechanism comprises a removable jumper, wherein the jumper is removed by default, and replaced to enable the hidden menu system, the installed position being a limit setting position and the removed position being a thermostat operation position.


In some embodiments, the switching mechanism comprises at least a two-way switch, wherein the switch can be moved from a limit setting position to a thermostat operation position.


There is a method for adjusting the temperature ranges in the heating system and/or the cooling system via interaction with a hidden menu system. This hidden menu system gives a user the capability to adjust an upper temperature limit and a lower temperature limit for the heating system, the cooling system, or both. This method includes accessing the switching mechanism, either physically or by remote methods as is dictated by the switching mechanism in the given embodiment. Once interaction has been made with the switching mechanism to change from operation to limit setting mode, the hidden menu system is revealed. The user then navigates this system to adjust upper and lower temperature limits of the heating and/or cooling system using a set of controls. These controls are either attached to the circuit board, or are part of a device interacting with the circuit board remotely.


The system will either automatically exit limit setting mode after a period of time without interaction, or can exit limit setting mode by the user reverting the switching mechanism back to operation position. In some embodiments, where the switching mechanism is physically hidden, the user has to remove components of a thermostat housing to access the switching mechanism. These components are then replaced after adjustments are made to hide the switching mechanism.


In at least some embodiments, a thermostat assembly includes a display screen and a circuit board contained within a housing. The thermostat can provide one or more hard buttons for user interface, and/or can also provide a number of soft buttons depending on the layout of the display. The hard and/or soft buttons can interact with the circuit board.


In some embodiments, a switching mechanism is present on a circuit board. In some embodiments, this circuit board includes a configuration circuit designed to allowing the switching mechanism to change to display from a limit setting to an operation mode.


The thermostat controls an associated temperature maintenance system having a heating system, cooling system, or both. A user is able to interact with the thermostat to alter the temperature of their surrounding environment. In many cases, these users are non-administrative users.


In some embodiments, the thermostat operates via the interaction of its hardware and associated software.


In some embodiments, the thermostat housing can take a variety of forms, provided that the housing can effectively contain and conceal the circuit board, and provide a display. In some embodiments, the thermostat can have a series of hard buttons and/or soft buttons.


The thermostat housing can be made of, among other materials, plastics such as Acrylonitrile Butadiene Styrene or High Impact Polystyrene.


In some embodiments, the main hardware component of the thermostat comprises a circuit board having at least one circuit designed to operate the associated temperature maintenance system according to user input. This circuit board is configured to interact with, among other things, the display, possible hard and/or soft buttons, the corresponding temperature maintenance system, and/or a wireless communication system so that the thermostat can be remotely adjusted. A component of this circuit board is the aforementioned switching mechanism.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a back elevation view of a thermostat housing with a rear panel removed, showing a removable jumper, wherein the jumper can be moved from a first position and placed in a second position, the first position being a limit setting position and the second being a thermostat operation position.



FIG. 2 is a flow chart showing a method of setting a thermostat's temperature limits.



FIG. 3 is a perspective view of a circuit board showing the position of the switching mechanism, wherein the switching mechanism comprises a repositional jumper, wherein the jumper can be moved from a first position and placed in a second position.



FIG. 4 is a circuit diagram of a circuit board.



FIG. 5A and FIG. 5B are screenshots of a thermostat display which allow for adjusting the upper and lower heating limits. These screenshots are accessible when the thermostat is in a limit setting mode.



FIG. 6A and FIG. 6B are screenshots of a thermostat display which allow for adjusting the upper and lower cooling limits. These screenshots are accessible when the thermostat is in a limit setting mode.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENT(S)

Turning first to FIG. 1, thermostat housing 114 is shown with a rear panel removed (not shown) allowing access to switching mechanism 112. In FIG. 1, switching mechanism 112 is a removable jumper, wherein the removable jumper can be moved from a first position and placed in a second position, the first position being a limit setting position and the second being a thermostat operation position.


Switching mechanism 112 can take the form of a variety of embodiments. In at least some embodiments, switching mechanism 112 is housed inside thermostat housing 115 on circuit board 300 (see FIG. 3) and switching mechanism 112 can toggle between at least two modes. In one of these modes, “limit setting” (henceforth referred to as LS), an administrator (such as maintenance personnel) can navigate through a variety of screens such as, but not limited to, those indicated by FIG. 2. While in LS mode, an administrator can adjust the minimum and maximum allowable temperatures for the temperature maintenance system. In some embodiments, this is done through displays such as those shown in FIG. 5A-FIG. 6B. When the switching mechanism is reverted to “operation mode” (henceforth referred to as OP), an operator (either an administrator or a non-administrative user) can adjust the temperature of the environment, provided that the adjustment is within the preset limits defined in LS mode.


In some embodiments, switching mechanism 112 comprises a removable jumper. The jumper can be placed in one of at least two configurations once an operator has gained access to the circuit board. In the first configuration, the jumper enables the display and buttons to a first circuit, which allows an administrator to set upper and lower limits on thermostat temperature. In this first configuration, the switching mechanism is in LS mode.


When the jumper is placed in its second configuration, the display and hard or soft buttons are connected to a second circuit, wherein the second circuit allows a user (either an administrator or a non-administrative user) to adjust the temperature the user seeks to maintain. This temperature setting is confined to the temperature range between the upper and lower limits on temperature set in LS mode when the jumper was in a first configuration and connected to the first circuit.


In these embodiments, wherein switching mechanism 112 comprises a removable jumper, the jumper is constructed having two connection points. In some embodiments, the jumper comprises a series of two contacts having at least one female receptacle each, and these female receptacles are received by corresponding male contacts 310 on circuit board 300. The two female contacts are connected via a conductive medium, such that when both contacts are interacting with their respective male contacts 310, a circuit governing the mode of the thermostat is completed.


In some embodiments, where switching mechanism 112 comprises a two way switch, the switch can be placed in one of two configurations once a user has gained access to the circuit board. In the first configuration, the switch connects the display and buttons to a first circuit, which allows an administrator to set upper and lower limits on thermostat temperature. In this first configuration, switching mechanism 112 is in LS mode. However, when the switch is placed in its second configuration, the display and buttons are connected to a second circuit, wherein the second circuit allows a user (either an administrator or a non-administrative user) to adjust the temperature the user seeks to maintain. This temperature setting is confined to the temperature range between the upper and lower limits on temperature set in LS mode when the toggle was in a first configuration and connected to the first circuit. In some embodiments, other two way switches can be used to accomplish the same function, such as switches requiring keys.


In some embodiments, switching mechanism 112 comprises a lock and key switch, wherein the key interacts with the lock so that it can be moved from a limit setting position to a thermostat operation position. In some embodiments, the key can be one or more of a jumper wire, special shape molded plastic part, USB key, or other non-traditional key.


In some embodiments, switching mechanism 112 includes a biometric identification system, wherein the biometric identification system can use retinal, iris, fingerprint, facial recognition, voice recognition, or other biometric identification methods such as palm vein analysis to identify the user. If the user is a verified administrator, they enable the hidden menu system allowing the upper and lower limits of the thermostat's temperature heating and or cooling range to be adjusted. In embodiments wherein the circuit board is contained by a thermostat housing, these biometric identification systems can protrude through the housing for easy access.


In embodiments involving biometric identification options, these identification procedures (such as fingerprint or voice recognition) can either function as switching mechanism 112 itself (wherein identifying oneself activates the switching mechanism) or can function as a security measure to grant access to the switching mechanism itself.


In some embodiments, the switching mechanism can comprise RFID, geo-fencing, or WiFi interaction systems to allow an administrator to authenticate oneself and/or adjust the temperature maintenance system remotely.


In FIG. 1, thermostat housing 114 is configured to connect to a rear panel via hooks 116. In some embodiments wherein the circuit board unit is removed from a mounting plate containing its primary source of power to access switching mechanism 112, the circuit board can be powered by a supplemental power system.


In some embodiments, power is supplied to the circuit board by a wall connection through connector 110. In some embodiments, a supplemental power system can temporarily provide power to the circuit board, for example when the thermostat is disconnect from connector 110. In some embodiments, the supplemental power system can include, but is not limited to, at least one capacitor and/or at least one battery.


In some embodiments, switching mechanism 112 is directly coupled to microprocessor 410 (see FIG. 4). When switching mechanism 112 is activated the limit set menus are revealed. Switching mechanism 112 interacts with at least one port on microprocessor 410. An example of this interaction is illustrated by connection 412. Microprocessor 410 is connected to a power source in some embodiments. An example of this circuit is shown as element 414. This power source can include a connection to a direct or alternating current source through connector 110. In some embodiments, the power source can also contain capacitors or on board batteries.



FIG. 2 is a flow diagram of method 200 for configuring the thermostat according to some embodiments. Method 200 starts at 210 which involves supplying power to the thermostat. In some embodiments, the power is supplied via a supplemental power source such as a battery.


At 212, an administrator accessing the switch mechanism.


At 214, the administrator places the switch mechanism into the limit setting mode. In some embodiments, this is done by removing a jumper into a limit setting position.


At 216, the thermostat reveals a configuration options menu to the administrator. In some embodiments, LS mode is entered automatically when the thermostat detects that the limit adjustment circuit has power and is being routed to the display, and the configuration menu is immediately displayed. In other embodiments, interaction with hard or soft buttons in addition to the repositioning of the jumper is are used to locate a configuration menu. Once LS mode is entered, the administrator can adjust the lower heating limit, upper heating limit, lower cooling limit, and upper cooling limit through the configuration menu.


In some embodiments, the thermostat can have default limits. In certain embodiments, the default lower limits are both set to 45 degrees Fahrenheit, and the upper limits are both set to 90 degrees Fahrenheit. In some embodiments, the default limits are dependent on the time of day or calendar. In some embodiments, the default heating high limit during the summer calendar would be lower than winter calendar months.


At 218, the administrator can select and adjust the upper heat limit option.


At 220, the administrator returns to the configuration options menu.


At 222, the administrator adjusts the lower heating limit option.


At 224, the administrator returns to the configuration options menu.


At 226, the administrator selects and adjusts the upper limit cooling option.


At 228, the administrator returns to the configuration options menu.


At 230, the administrator selects and adjusts the lower cooling limit.


At 232, the administrator returns to the configuration options menu.


At 234, the administrator exits the configuration options menu.


At 236, the switching mechanism is then returned to operation mode, thus hiding the limit configuration options menu.


At 238, the switch access is then replaced.


In at least some embodiments, various steps listed above can be performed in a different order that is consistent with the switching mechanism and menu setup and/or some steps can be left out altogether.


In embodiments, where the thermostat has scheduling capabilities, wherein different limits on allowable temperatures can be set based on pre-determined dates, days, time slots and the like, the administrator can set these limits according to scheduling needs while the switching mechanism is in LS mode from the configuration menu. In some embodiments, the administrator can select individual time slots from the configuration menu, and then proceed to set temperature limits for those slots. In other embodiments, the menu structure can involve the administrator setting default limits for all or some time slots, and then adjusting specific timeslots to meet the demands of the administrator. In some embodiments, the administrator can use the provided hard and/or soft buttons present on the thermostat display and housing to choose which limits to adjust, and can then set them accordingly.



FIG. 5A and FIG. 5B shows potential display configurations for adjusting the upper and lower heating limits. Similarly, FIG. 6A and FIG. 6B shows potential display configurations for adjusting the upper and lower cooling limits.


In some embodiments, a non-administrative user can temporarily override the temperature settings. In some embodiments, the temporary override is enabled via Wi-Fi or other remote control of the thermostat such as geo-fencing.


While particular elements, embodiments and applications of the present invention have been shown and described, it will be understood, that the invention is not limited thereto since modifications can be made without departing from the scope of the present disclosure, particularly in the light of the foregoing teachings.

Claims
  • 1. A circuit board comprising: a. a plurality of connections, said plurality of connections interacting with a temperature maintenance system having at least one of a heating system and a cooling system;b. a switching mechanism having an operation position and a limit setting position, said switching mechanism at said limit setting position enabling an administrator user to adjust an upper temperature limit and a lower temperature limit for the at least one of said heating system and said cooling system, wherein said upper temperature limit and said lower temperature limit form an operating temperature range of selectable temperature corresponding to said operation position, wherein only temperature within said operating temperature range is selectable when said switching mechanism is at said operation position; andc. at least one hardware component selected from the group consisting of displays, at least one hard button, at least one soft button, and a wireless communication system.
  • 2. The circuit board of claim 1, wherein said circuit board is mounted in a thermostat housing to form a thermostat assembly.
  • 3. The circuit board of claim 1, wherein said switching mechanism comprises a removable jumper, wherein said removable jumper is configured to move between said limit setting position to said operation position.
  • 4. The circuit board of claim 1, wherein said switching mechanism comprises a removable jumper, wherein said limit setting position is accessed by inserting said removable jumper into a receiver.
  • 5. The circuit board of claim 1, wherein said switching mechanism comprises a two-way switch.
  • 6. The circuit board of claim 1, wherein said switching mechanism comprises a lock and key switch, wherein a key interacts with a lock so that said lock can be moved from said limit setting position to said operation position.
  • 7. The circuit board of claim 1, wherein said switching mechanism comprises a biometric identification system.
  • 8. The circuit board of claim 1, wherein said switching mechanism comprises an RFID identification system.
  • 9. The circuit board of claim 1, wherein said switching mechanism comprises a USB key identification system.
  • 10. The circuit board of claim 1 wherein said switching mechanism at said limit setting position enables access to a hidden menu system by said administrator user to adjust said upper temperature limit and said lower temperature limit.
  • 11. A method for adjusting a temperature range in a thermostat controlling a temperature maintenance system having at least one of a heating system and a cooling system comprising: a. accessing a switching mechanism on a temperature control circuit;b. changing said switching mechanism from an operation position to a limit setting position; wherein said limit setting position provides access to a hidden menu system configured to provide the ability to adjust an upper temperature limit and a lower temperature limit for at least one of said heating system and said cooling system;c. navigating said hidden menu system, wherein said upper temperature limit and said lower temperature limit form an operating temperature range of selectable temperature corresponding to said operation position, wherein only temperature within said operating temperature range is selectable when said switching mechanism is at said operation position; andd. adjusting said upper temperature limit and said lower temperature for at least one of said heating system and said cooling system.
  • 12. The method of claim 11, further comprising: a. hiding said hidden menu system by reverting said switching mechanism to said operation position.
  • 13. The method of claim 11, further comprising: a. hiding said hidden menu system automatically after a given period of time.
  • 14. The method of claim 11, wherein accessing said switching mechanism comprises remotely triggering said switching mechanism by means of RFID identification.
  • 15. The method of claim 11, wherein accessing said switching mechanism comprises remotely triggering said switching mechanism by means of a geo-fencing mechanism.
  • 16. The method of claim 11, wherein accessing said switching mechanism comprises remotely triggering said switching mechanism by means of a transceiver and a corresponding device.
  • 17. The method of claim 11, wherein said temperature control circuit is affixed to a device interacting with a transceiver, such that said method can be accomplished remotely.
  • 18. The method of claim 11, wherein accessing said switching mechanism comprises interacting with a biometric identification system.
  • 19. The method of claim 18, wherein said biometric identification system is configured to utilize voice recognition.
  • 20. The method of claim 18, wherein said biometric identification system is configured to utilize fingerprint data.
US Referenced Citations (270)
Number Name Date Kind
2054039 Persons Sep 1936 A
2060636 Persons Nov 1936 A
2253418 Crandall et al. Aug 1941 A
2703228 Fleisher Mar 1955 A
3309021 Powers Mar 1967 A
3385574 Lohman May 1968 A
3481588 Lobb Dec 1969 A
3705479 Mcpherson Dec 1972 A
3724824 Mitich Apr 1973 A
3733062 Bracich May 1973 A
3774588 Yeagle Nov 1973 A
3799517 Tamm Mar 1974 A
3823922 McElreath Jul 1974 A
3983928 Barnes Oct 1976 A
4036597 Filss Jul 1977 A
4056582 Chow Nov 1977 A
4075864 Schrader Feb 1978 A
4185687 Stockman Jan 1980 A
4316256 Hendricks et al. Feb 1982 A
4382544 Stewart May 1983 A
4386649 Hines Jun 1983 A
4399031 Imano et al. Aug 1983 A
4420794 Anderson Dec 1983 A
4606401 Levine Aug 1986 A
4730941 Levine et al. Mar 1988 A
4733719 Levine Mar 1988 A
4838482 Vogelzang Jun 1989 A
4948040 Kobayashi et al. Aug 1990 A
4967382 Hall Oct 1990 A
5023432 Boykin Jun 1991 A
5038851 Mehta Aug 1991 A
5171486 Penno Dec 1992 A
5230482 Ratz et al. Jul 1993 A
5259445 Pratt et al. Nov 1993 A
5289362 Liebl et al. Feb 1994 A
5395042 Riley Mar 1995 A
5428964 Lobdell Jul 1995 A
5482209 Cochran et al. Jan 1996 A
5491615 Nichols Feb 1996 A
5547017 Rudd Aug 1996 A
5566879 Longtin Oct 1996 A
5673850 Uptegraph Oct 1997 A
5697552 McHugh et al. Dec 1997 A
5765636 Meyer et al. Jun 1998 A
5782296 Mehta Jul 1998 A
5795505 Burns Aug 1998 A
5873519 Beilfuss Feb 1999 A
5924486 Ehlers et al. Jul 1999 A
5937942 Bias et al. Aug 1999 A
5983146 Sarbach Nov 1999 A
6059195 Adams May 2000 A
6116512 Dushane Sep 2000 A
6196467 Dushane Mar 2001 B1
6205533 Margolous et al. Mar 2001 B1
6211782 Sandelman et al. Apr 2001 B1
6213404 Dushane Apr 2001 B1
6241156 Kline et al. Jun 2001 B1
6304803 Dao Oct 2001 B1
6315211 Sartain Nov 2001 B1
6318639 Toth Nov 2001 B1
6415023 Iggulden Jul 2002 B2
6435418 Toth et al. Aug 2002 B1
6458080 Brown Oct 2002 B1
6478233 Shah Nov 2002 B1
6499038 Kitayama Dec 2002 B2
6502758 Cottrell Jan 2003 B2
6549870 Proffitt et al. Apr 2003 B2
6595430 Shah Jul 2003 B1
6617954 Firestine Sep 2003 B2
6621507 Shah Sep 2003 B1
6628997 Fox et al. Sep 2003 B1
6714222 Bjorn et al. Mar 2004 B1
6783079 Carey et al. Aug 2004 B2
6814299 Carey Nov 2004 B1
6824069 Rosen Nov 2004 B2
6851621 Wacker et al. Feb 2005 B1
6892547 Strand May 2005 B2
6988671 DeLuca Jan 2006 B2
7003378 Poth Feb 2006 B2
7028912 Rosen Apr 2006 B1
7047092 Wimsatt May 2006 B2
7050026 Rosen May 2006 B1
7055759 Wacker et al. Jun 2006 B2
D524663 Moore Jul 2006 S
D525154 Moore Jul 2006 S
D527288 Moore Aug 2006 S
D527658 Moore Sep 2006 S
D530633 Moore Oct 2006 S
7114554 Bergman et al. Oct 2006 B2
D531528 Moore Nov 2006 S
7142948 Metz Nov 2006 B2
D533793 Moore Dec 2006 S
D534088 Moore Dec 2006 S
7146253 Hoog et al. Dec 2006 B2
D534443 Moore Jan 2007 S
7156317 Moore Jan 2007 B1
7156318 Rosen Jan 2007 B1
D536271 Moore Feb 2007 S
7181317 Amundson et al. Feb 2007 B2
7222800 Wruck May 2007 B2
7225054 Amundson et al. May 2007 B2
7274972 Amundson et al. Sep 2007 B2
7287709 Proffitt et al. Oct 2007 B2
7302642 Smith et al. Nov 2007 B2
7306165 Shah Dec 2007 B2
7320110 Shah Jan 2008 B2
7360717 Shah Apr 2008 B2
7438469 Moore Oct 2008 B1
7454269 Dushane et al. Nov 2008 B1
7489303 Pryor Feb 2009 B1
7513438 Mueller Apr 2009 B2
7556207 Mueller et al. Jul 2009 B2
7565813 Pouchak Jul 2009 B2
7575179 Morrow et al. Aug 2009 B2
7584897 Schultz et al. Sep 2009 B2
7593212 Toth Sep 2009 B1
7604046 Bergman et al. Oct 2009 B2
7614567 Chapman, Jr. et al. Nov 2009 B2
7636604 Bergman et al. Dec 2009 B2
7693582 Bergman et al. Apr 2010 B2
7693583 Wolff et al. Apr 2010 B2
7703694 Mueller et al. Apr 2010 B2
7706923 Amundson et al. Apr 2010 B2
7748225 Butler et al. Jul 2010 B2
7702421 Sullivan et al. Aug 2010 B2
7775454 Mueller et al. Aug 2010 B2
7784291 Butler et al. Aug 2010 B2
7784705 Kasper et al. Aug 2010 B2
7801646 Amundson et al. Sep 2010 B2
7802618 Simon et al. Sep 2010 B2
7845576 Siddaramanna Dec 2010 B2
7861941 Schultz et al. Jan 2011 B2
7867646 Rhodes Jan 2011 B2
7941819 Stark May 2011 B2
7954726 Siddaramanna et al. Jun 2011 B2
7963454 Sullivan Jun 2011 B2
D643318 Morrow Aug 2011 S
7992794 Leen et al. Aug 2011 B2
8066263 Soderlund Nov 2011 B1
8083154 Schultz et al. Dec 2011 B2
8091795 McLellan Jan 2012 B1
8167216 Schultz et al. May 2012 B2
8175782 Gepperth et al. May 2012 B2
D662837 Morrow Jul 2012 S
D662838 Morrow Jul 2012 S
D662839 Morrow Jul 2012 S
D662840 Morrow Jul 2012 S
D663224 Morrow Jul 2012 S
8219251 Amundson et al. Jul 2012 B2
8239067 Amundson et al. Aug 2012 B2
8239922 Sullivan Aug 2012 B2
8244383 Bergman et al. Aug 2012 B2
8280536 Fadell et al. Oct 2012 B1
8346396 Amundson et al. Jan 2013 B2
8387892 Koster et al. Mar 2013 B2
8517088 Moore et al. Aug 2013 B2
8538588 Kasper Sep 2013 B2
8549658 Kolavennu et al. Oct 2013 B2
8620460 Eergman et al. Dec 2013 B2
8689353 Bünter Apr 2014 B2
8690074 Moore Apr 2014 B2
8701210 Cheng et al. Apr 2014 B2
8733667 Moore et al. May 2014 B2
8950687 Bergman Feb 2015 B2
8978994 Moore et al. Mar 2015 B2
9014860 Moore et al. Apr 2015 B2
9201431 Lyle Dec 2015 B2
9304676 Poplawski Apr 2016 B2
9686880 Khoury Jun 2017 B1
9989273 Read et al. Jun 2018 B2
20010003451 Armstrong Jun 2001 A1
20020065809 Kitayama May 2002 A1
20020096572 Chene et al. Jul 2002 A1
20040133314 Ehlers Jul 2004 A1
20040193324 Hoog Sep 2004 A1
20040230402 Jean Nov 2004 A1
20040245352 Smith Dec 2004 A1
20040256472 DeLuca Dec 2004 A1
20040260427 Wimsatt Dec 2004 A1
20050027997 Ueno Feb 2005 A1
20050033707 Ehlers Feb 2005 A1
20050040248 Wacker Feb 2005 A1
20050040249 Wacker Feb 2005 A1
20050044906 Spielman Mar 2005 A1
20050082836 Lagerwey Apr 2005 A1
20050108620 Allyn et al. May 2005 A1
20050119793 Amundson et al. Jun 2005 A1
20050194457 Dolan Sep 2005 A1
20050198591 Jarrett Sep 2005 A1
20060030954 Bergman Feb 2006 A1
20060290140 Yoshida Jun 2006 A1
20060220386 Wobben Oct 2006 A1
20070045429 Chapman, Jr. Mar 2007 A1
20070045441 Ashworth Mar 2007 A1
20070114291 Pouchak May 2007 A1
20070221741 Wagner Sep 2007 A1
20070228182 Wagner et al. Oct 2007 A1
20070228183 Kennedy Oct 2007 A1
20070257120 Chapman et al. Nov 2007 A1
20070278320 Lunacek et al. Dec 2007 A1
20080271475 Wuesthoff Nov 2008 A1
20090001182 Siddaramanna Jan 2009 A1
20090024965 Zhdankin Jan 2009 A1
20090045263 Mueller et al. Feb 2009 A1
20090057424 Sullivan et al. Mar 2009 A1
20090057427 Geadelmann Mar 2009 A1
20090062964 Sullivan Mar 2009 A1
20090129931 Stiesdal May 2009 A1
20090140056 Leen Jun 2009 A1
20090140064 Schultz Jun 2009 A1
20100031193 Stark Feb 2010 A1
20100070089 Harrod et al. Mar 2010 A1
20100117975 Cho et al. May 2010 A1
20100127502 Uchino et al. May 2010 A1
20100145528 Bergman et al. Jun 2010 A1
20100261465 Rhoads et al. Oct 2010 A1
20100318200 Foslien Dec 2010 A1
20110004825 Wallaert Jan 2011 A1
20110031806 Altonen et al. Feb 2011 A1
20110046792 Imes Feb 2011 A1
20110054710 Imes Mar 2011 A1
20110112998 Abe May 2011 A1
20110261002 Verthein Oct 2011 A1
20110273394 Young Nov 2011 A1
20120067561 Bergman Mar 2012 A1
20120074710 Yoshida Mar 2012 A1
20120131504 Fadell May 2012 A1
20120168524 Moore et al. Jul 2012 A1
20120169675 Moore et al. Jul 2012 A1
20120203379 Sloo Aug 2012 A1
20120221149 Kasper Aug 2012 A1
20120229521 Hales, IV Sep 2012 A1
20120232703 Moore Sep 2012 A1
20120239221 Mighdoll Sep 2012 A1
20120329528 Song Dec 2012 A1
20130024685 Kolavennu et al. Jan 2013 A1
20130032414 Yilmaz Feb 2013 A1
20130056989 Sabhapathy Mar 2013 A1
20130090767 Bruck et al. Apr 2013 A1
20130123991 Richmond May 2013 A1
20130211783 Fisher et al. Aug 2013 A1
20130215088 Son et al. Aug 2013 A1
20130263034 Bruck Oct 2013 A1
20130338838 Moore Dec 2013 A1
20130345883 Sloo Dec 2013 A1
20140081465 Wang et al. Mar 2014 A1
20140098247 Rao Apr 2014 A1
20140152631 Moore et al. Jun 2014 A1
20140156087 Amundson Jun 2014 A1
20140163746 Drew Jun 2014 A1
20140254577 Wright et al. Sep 2014 A1
20140316581 Fadell et al. Oct 2014 A1
20140319233 Novotny Oct 2014 A1
20150081568 Land, III Mar 2015 A1
20150095843 Greborio et al. Apr 2015 A1
20150100167 Sloo Apr 2015 A1
20150167995 Fadell Jun 2015 A1
20150233595 Fadell Aug 2015 A1
20150280935 Poplawski et al. Oct 2015 A1
20160062618 Fagan Mar 2016 A1
20160123618 Hester et al. May 2016 A1
20160124828 Moore et al. May 2016 A1
20160131385 Poplawski et al. May 2016 A1
20160154576 Moore et al. Jun 2016 A1
20170103689 Moore et al. Apr 2017 A1
20170131825 Moore et al. May 2017 A1
20170300025 Moore et al. Oct 2017 A1
20170364104 Poplawski et al. Dec 2017 A1
20180005195 Jacobson Jan 2018 A1
20180031266 Atchison Feb 2018 A1
Foreign Referenced Citations (5)
Number Date Country
2441221 Feb 2006 GB
58065977 Apr 1983 JP
2004218436 Aug 2004 JP
2006009596 Jan 2006 JP
20050034417 Apr 2005 KR
Non-Patent Literature Citations (5)
Entry
Braeburn Systems LLC, “Temperature Limiting Adjustments for Heating and Cooling (1000 Series)”, Important Installation Instructions, no date.
ComfortLink II XL950 Control, User Guide, Trane U.S. Inc., 2011.
Cardio lie Installer's Guide, System Version 2.5xx, 5th edition, 2008, Secant Home Automation Inc.
What you should know about flexible displays (FAQ); http://news.cnet.com/8301-1035_3-57607171-94/what-you-should-know-about-flexible-d . . . ; Nov. 25, 2013.
Brae8urn Systems LLC, “Temperature Limiting Adjustments for heating and Cooling (1000 Series)”, Mportant Installation Instructions., no date.
Related Publications (1)
Number Date Country
20170364104 A1 Dec 2017 US