The present invention relates to a circuit board having a hidden switching mechanism for adjusting heating and cooling limits for a thermostat.
Most residential and commercial properties have at least one thermostat managing some form of a temperature maintenance system. These systems help keep occupants and stored material in a comfortable environment.
The laws of thermodynamics dictate that temperature maintenance systems require more energy to maintain temperatures which are further from the ambient temperature of the surrounding environment. For instance, it takes less energy, and as a result, is less expensive to heat a house to 70 degrees Fahrenheit in the winter than to keep the same house at 75 degrees. Similarly, it is less expensive to cool the same house to 78 degrees Fahrenheit during the summer than to cool the house down to 72 degrees. In order to limit the costs of providing a comfortable environment within a temperature maintenance controlled building, measures are often taken to set limits on temperature ranges available for selection on a thermostat.
In addition, there are instances where occupants (such as those residing in hospitals, assist living, or nursing homes) need to be protected from setting the temperature maintenance system either too high or too low, regardless of economic efficiency.
Modern thermostats are often controlled by a plurality of “hard” and “soft” buttons. Soft buttons are touch sensitive areas on screens, and the functions of these soft buttons vary depending on the display of the screens. Hard buttons are traditional mechanical switches and buttons. Thermostats can have a variety soft and/or hard buttons having different functions. Often these buttons take the form of a “+” and a “−” system of buttons for adjusting the room temperature up or down.
These controls are sufficient to regulate the function of the thermostat, however they allow anyone with access to them to have complete control over the thermostat's settings. This allows anyone with access to the thermostat to adjust it outside of a cost effective operating temperature range, driving up the costs to heat or cool the environment and/or putting undesired stress on the temperature maintenance system. It also allows anyone with access to the thermostat, such as nursing home residents, to adjust it outside of a medically safe temperature range. The medically safe temperature range can differ from a cost effective operating temperature range.
Often it is desired that certain individuals such as tenants, college students living in dorms, and/or travelers at hotels who have no incentive or limited ability to keep the thermostat set at a cost effective range, be limited to the cost effective range. These individuals can be referred to as non-administrative users.
Similarly, it is desired that certain individuals such as hospital and/or nursing home residents who, for medical reasons be unable to set their thermostat at a safe operating range, be limited to a medically safe temperature range. These individuals can also be referred to as non-administrative users.
There have been many proposed solutions to the problem of allowing anyone with access to the thermostat to adjust it outside of a particular operating temperature range. One solution has been to require a security code to set the upper and lower limits of the thermostat's possible operating range. However, individuals can often find these codes online and/or hack the system, thus defeating the purpose of the tamper proof thermostat.
Another proposed solution involves permanently fixing the temperature range of the thermostat by having limitations on temperature within the circuit itself, which cannot be overridden. However, this solution offers no degree of flexibility if someone with the proper authority (for example a landlord or maintenance person) desires to alter these limits. Instead they would be required to purchase a whole new unit with the desired operating range.
There is a need for a tamper resistant thermostat which unauthorized individuals cannot easily override, and qualified personnel have the capability to limit as desired.
A circuit board is provided, having a plurality of connections. These connections interact with a temperature maintenance system, which can have a heating system, a cooling system, or both systems in some embodiments. A switching mechanism is present on the circuit board, having at least two positions. One of these positions, operation mode, enables a user to interact with a thermostat assembly associated with the circuit board to set a temperature for the temperature maintenance system to maintain. A second position, the limit setting position, allows a user to set upper and lower limits on the temperature range for when the cooling system is active, and/or upper and lower limits on the temperature range for when the heating system is active. The circuit board includes at least one associated hardware component, which can include but is not to be limited to a display, at least one hard button, at least one soft button, and/or a wireless communication system.
In many embodiments, this circuit board is mounted in a thermostat housing, and this forms a thermostat assembly. The switching mechanism can take on a plurality of forms depending on the chosen embodiment. In some embodiments, the switching mechanism comprises a removable jumper, wherein the jumper can be removed from a first position and replaced in a second position, the first position being a limit setting position and the second being a thermostat operation position.
In some embodiments, the switching mechanism comprises a removable jumper, wherein the jumper is removed by default, and replaced to enable the hidden menu system, the installed position being a limit setting position and the removed position being a thermostat operation position.
In some embodiments, the switching mechanism comprises at least a two-way switch, wherein the switch can be moved from a limit setting position to a thermostat operation position.
There is a method for adjusting the temperature ranges in the heating system and/or the cooling system via interaction with a hidden menu system. This hidden menu system gives a user the capability to adjust an upper temperature limit and a lower temperature limit for the heating system, the cooling system, or both. This method includes accessing the switching mechanism, either physically or by remote methods as is dictated by the switching mechanism in the given embodiment. Once interaction has been made with the switching mechanism to change from operation to limit setting mode, the hidden menu system is revealed. The user then navigates this system to adjust upper and lower temperature limits of the heating and/or cooling system using a set of controls. These controls are either attached to the circuit board, or are part of a device interacting with the circuit board remotely.
The system will either automatically exit limit setting mode after a period of time without interaction, or can exit limit setting mode by the user reverting the switching mechanism back to operation position. In some embodiments, where the switching mechanism is physically hidden, the user has to remove components of a thermostat housing to access the switching mechanism. These components are then replaced after adjustments are made to hide the switching mechanism.
In at least some embodiments, a thermostat assembly includes a display screen and a circuit board contained within a housing. The thermostat can provide one or more hard buttons for user interface, and/or can also provide a number of soft buttons depending on the layout of the display. The hard and/or soft buttons can interact with the circuit board.
In some embodiments, a switching mechanism is present on a circuit board. In some embodiments, this circuit board includes a configuration circuit designed to allowing the switching mechanism to change to display from a limit setting to an operation mode.
The thermostat controls an associated temperature maintenance system having a heating system, cooling system, or both. A user is able to interact with the thermostat to alter the temperature of their surrounding environment. In many cases, these users are non-administrative users.
In some embodiments, the thermostat operates via the interaction of its hardware and associated software.
In some embodiments, the thermostat housing can take a variety of forms, provided that the housing can effectively contain and conceal the circuit board, and provide a display. In some embodiments, the thermostat can have a series of hard buttons and/or soft buttons.
The thermostat housing can be made of, among other materials, plastics such as Acrylonitrile Butadiene Styrene or High Impact Polystyrene.
In some embodiments, the main hardware component of the thermostat comprises a circuit board having at least one circuit designed to operate the associated temperature maintenance system according to user input. This circuit board is configured to interact with, among other things, the display, possible hard and/or soft buttons, the corresponding temperature maintenance system, and/or a wireless communication system so that the thermostat can be remotely adjusted. A component of this circuit board is the aforementioned switching mechanism.
Turning first to
Switching mechanism 112 can take the form of a variety of embodiments. In at least some embodiments, switching mechanism 112 is housed inside thermostat housing 115 on circuit board 300 (see
In some embodiments, switching mechanism 112 comprises a removable jumper. The jumper can be placed in one of at least two configurations once an operator has gained access to the circuit board. In the first configuration, the jumper enables the display and buttons to a first circuit, which allows an administrator to set upper and lower limits on thermostat temperature. In this first configuration, the switching mechanism is in LS mode.
When the jumper is placed in its second configuration, the display and hard or soft buttons are connected to a second circuit, wherein the second circuit allows a user (either an administrator or a non-administrative user) to adjust the temperature the user seeks to maintain. This temperature setting is confined to the temperature range between the upper and lower limits on temperature set in LS mode when the jumper was in a first configuration and connected to the first circuit.
In these embodiments, wherein switching mechanism 112 comprises a removable jumper, the jumper is constructed having two connection points. In some embodiments, the jumper comprises a series of two contacts having at least one female receptacle each, and these female receptacles are received by corresponding male contacts 310 on circuit board 300. The two female contacts are connected via a conductive medium, such that when both contacts are interacting with their respective male contacts 310, a circuit governing the mode of the thermostat is completed.
In some embodiments, where switching mechanism 112 comprises a two way switch, the switch can be placed in one of two configurations once a user has gained access to the circuit board. In the first configuration, the switch connects the display and buttons to a first circuit, which allows an administrator to set upper and lower limits on thermostat temperature. In this first configuration, switching mechanism 112 is in LS mode. However, when the switch is placed in its second configuration, the display and buttons are connected to a second circuit, wherein the second circuit allows a user (either an administrator or a non-administrative user) to adjust the temperature the user seeks to maintain. This temperature setting is confined to the temperature range between the upper and lower limits on temperature set in LS mode when the toggle was in a first configuration and connected to the first circuit. In some embodiments, other two way switches can be used to accomplish the same function, such as switches requiring keys.
In some embodiments, switching mechanism 112 comprises a lock and key switch, wherein the key interacts with the lock so that it can be moved from a limit setting position to a thermostat operation position. In some embodiments, the key can be one or more of a jumper wire, special shape molded plastic part, USB key, or other non-traditional key.
In some embodiments, switching mechanism 112 includes a biometric identification system, wherein the biometric identification system can use retinal, iris, fingerprint, facial recognition, voice recognition, or other biometric identification methods such as palm vein analysis to identify the user. If the user is a verified administrator, they enable the hidden menu system allowing the upper and lower limits of the thermostat's temperature heating and or cooling range to be adjusted. In embodiments wherein the circuit board is contained by a thermostat housing, these biometric identification systems can protrude through the housing for easy access.
In embodiments involving biometric identification options, these identification procedures (such as fingerprint or voice recognition) can either function as switching mechanism 112 itself (wherein identifying oneself activates the switching mechanism) or can function as a security measure to grant access to the switching mechanism itself.
In some embodiments, the switching mechanism can comprise RFID, geo-fencing, or WiFi interaction systems to allow an administrator to authenticate oneself and/or adjust the temperature maintenance system remotely.
In
In some embodiments, power is supplied to the circuit board by a wall connection through connector 110. In some embodiments, a supplemental power system can temporarily provide power to the circuit board, for example when the thermostat is disconnect from connector 110. In some embodiments, the supplemental power system can include, but is not limited to, at least one capacitor and/or at least one battery.
In some embodiments, switching mechanism 112 is directly coupled to microprocessor 410 (see
At 212, an administrator accessing the switch mechanism.
At 214, the administrator places the switch mechanism into the limit setting mode. In some embodiments, this is done by removing a jumper into a limit setting position.
At 216, the thermostat reveals a configuration options menu to the administrator. In some embodiments, LS mode is entered automatically when the thermostat detects that the limit adjustment circuit has power and is being routed to the display, and the configuration menu is immediately displayed. In other embodiments, interaction with hard or soft buttons in addition to the repositioning of the jumper is are used to locate a configuration menu. Once LS mode is entered, the administrator can adjust the lower heating limit, upper heating limit, lower cooling limit, and upper cooling limit through the configuration menu.
In some embodiments, the thermostat can have default limits. In certain embodiments, the default lower limits are both set to 45 degrees Fahrenheit, and the upper limits are both set to 90 degrees Fahrenheit. In some embodiments, the default limits are dependent on the time of day or calendar. In some embodiments, the default heating high limit during the summer calendar would be lower than winter calendar months.
At 218, the administrator can select and adjust the upper heat limit option.
At 220, the administrator returns to the configuration options menu.
At 222, the administrator adjusts the lower heating limit option.
At 224, the administrator returns to the configuration options menu.
At 226, the administrator selects and adjusts the upper limit cooling option.
At 228, the administrator returns to the configuration options menu.
At 230, the administrator selects and adjusts the lower cooling limit.
At 232, the administrator returns to the configuration options menu.
At 234, the administrator exits the configuration options menu.
At 236, the switching mechanism is then returned to operation mode, thus hiding the limit configuration options menu.
At 238, the switch access is then replaced.
In at least some embodiments, various steps listed above can be performed in a different order that is consistent with the switching mechanism and menu setup and/or some steps can be left out altogether.
In embodiments, where the thermostat has scheduling capabilities, wherein different limits on allowable temperatures can be set based on pre-determined dates, days, time slots and the like, the administrator can set these limits according to scheduling needs while the switching mechanism is in LS mode from the configuration menu. In some embodiments, the administrator can select individual time slots from the configuration menu, and then proceed to set temperature limits for those slots. In other embodiments, the menu structure can involve the administrator setting default limits for all or some time slots, and then adjusting specific timeslots to meet the demands of the administrator. In some embodiments, the administrator can use the provided hard and/or soft buttons present on the thermostat display and housing to choose which limits to adjust, and can then set them accordingly.
In some embodiments, a non-administrative user can temporarily override the temperature settings. In some embodiments, the temporary override is enabled via Wi-Fi or other remote control of the thermostat such as geo-fencing.
While particular elements, embodiments and applications of the present invention have been shown and described, it will be understood, that the invention is not limited thereto since modifications can be made without departing from the scope of the present disclosure, particularly in the light of the foregoing teachings.
Number | Name | Date | Kind |
---|---|---|---|
2054039 | Persons | Sep 1936 | A |
2060636 | Persons | Nov 1936 | A |
2253418 | Crandall et al. | Aug 1941 | A |
2703228 | Fleisher | Mar 1955 | A |
3309021 | Powers | Mar 1967 | A |
3385574 | Lohman | May 1968 | A |
3481588 | Lobb | Dec 1969 | A |
3705479 | Mcpherson | Dec 1972 | A |
3724824 | Mitich | Apr 1973 | A |
3733062 | Bracich | May 1973 | A |
3774588 | Yeagle | Nov 1973 | A |
3799517 | Tamm | Mar 1974 | A |
3823922 | McElreath | Jul 1974 | A |
3983928 | Barnes | Oct 1976 | A |
4036597 | Filss | Jul 1977 | A |
4056582 | Chow | Nov 1977 | A |
4075864 | Schrader | Feb 1978 | A |
4185687 | Stockman | Jan 1980 | A |
4316256 | Hendricks et al. | Feb 1982 | A |
4382544 | Stewart | May 1983 | A |
4386649 | Hines | Jun 1983 | A |
4399031 | Imano et al. | Aug 1983 | A |
4420794 | Anderson | Dec 1983 | A |
4606401 | Levine | Aug 1986 | A |
4730941 | Levine et al. | Mar 1988 | A |
4733719 | Levine | Mar 1988 | A |
4838482 | Vogelzang | Jun 1989 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4967382 | Hall | Oct 1990 | A |
5023432 | Boykin | Jun 1991 | A |
5038851 | Mehta | Aug 1991 | A |
5171486 | Penno | Dec 1992 | A |
5230482 | Ratz et al. | Jul 1993 | A |
5259445 | Pratt et al. | Nov 1993 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5395042 | Riley | Mar 1995 | A |
5428964 | Lobdell | Jul 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5491615 | Nichols | Feb 1996 | A |
5547017 | Rudd | Aug 1996 | A |
5566879 | Longtin | Oct 1996 | A |
5673850 | Uptegraph | Oct 1997 | A |
5697552 | McHugh et al. | Dec 1997 | A |
5765636 | Meyer et al. | Jun 1998 | A |
5782296 | Mehta | Jul 1998 | A |
5795505 | Burns | Aug 1998 | A |
5873519 | Beilfuss | Feb 1999 | A |
5924486 | Ehlers et al. | Jul 1999 | A |
5937942 | Bias et al. | Aug 1999 | A |
5983146 | Sarbach | Nov 1999 | A |
6059195 | Adams | May 2000 | A |
6116512 | Dushane | Sep 2000 | A |
6196467 | Dushane | Mar 2001 | B1 |
6205533 | Margolous et al. | Mar 2001 | B1 |
6211782 | Sandelman et al. | Apr 2001 | B1 |
6213404 | Dushane | Apr 2001 | B1 |
6241156 | Kline et al. | Jun 2001 | B1 |
6304803 | Dao | Oct 2001 | B1 |
6315211 | Sartain | Nov 2001 | B1 |
6318639 | Toth | Nov 2001 | B1 |
6415023 | Iggulden | Jul 2002 | B2 |
6435418 | Toth et al. | Aug 2002 | B1 |
6458080 | Brown | Oct 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6499038 | Kitayama | Dec 2002 | B2 |
6502758 | Cottrell | Jan 2003 | B2 |
6549870 | Proffitt et al. | Apr 2003 | B2 |
6595430 | Shah | Jul 2003 | B1 |
6617954 | Firestine | Sep 2003 | B2 |
6621507 | Shah | Sep 2003 | B1 |
6628997 | Fox et al. | Sep 2003 | B1 |
6714222 | Bjorn et al. | Mar 2004 | B1 |
6783079 | Carey et al. | Aug 2004 | B2 |
6814299 | Carey | Nov 2004 | B1 |
6824069 | Rosen | Nov 2004 | B2 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6892547 | Strand | May 2005 | B2 |
6988671 | DeLuca | Jan 2006 | B2 |
7003378 | Poth | Feb 2006 | B2 |
7028912 | Rosen | Apr 2006 | B1 |
7047092 | Wimsatt | May 2006 | B2 |
7050026 | Rosen | May 2006 | B1 |
7055759 | Wacker et al. | Jun 2006 | B2 |
D524663 | Moore | Jul 2006 | S |
D525154 | Moore | Jul 2006 | S |
D527288 | Moore | Aug 2006 | S |
D527658 | Moore | Sep 2006 | S |
D530633 | Moore | Oct 2006 | S |
7114554 | Bergman et al. | Oct 2006 | B2 |
D531528 | Moore | Nov 2006 | S |
7142948 | Metz | Nov 2006 | B2 |
D533793 | Moore | Dec 2006 | S |
D534088 | Moore | Dec 2006 | S |
7146253 | Hoog et al. | Dec 2006 | B2 |
D534443 | Moore | Jan 2007 | S |
7156317 | Moore | Jan 2007 | B1 |
7156318 | Rosen | Jan 2007 | B1 |
D536271 | Moore | Feb 2007 | S |
7181317 | Amundson et al. | Feb 2007 | B2 |
7222800 | Wruck | May 2007 | B2 |
7225054 | Amundson et al. | May 2007 | B2 |
7274972 | Amundson et al. | Sep 2007 | B2 |
7287709 | Proffitt et al. | Oct 2007 | B2 |
7302642 | Smith et al. | Nov 2007 | B2 |
7306165 | Shah | Dec 2007 | B2 |
7320110 | Shah | Jan 2008 | B2 |
7360717 | Shah | Apr 2008 | B2 |
7438469 | Moore | Oct 2008 | B1 |
7454269 | Dushane et al. | Nov 2008 | B1 |
7489303 | Pryor | Feb 2009 | B1 |
7513438 | Mueller | Apr 2009 | B2 |
7556207 | Mueller et al. | Jul 2009 | B2 |
7565813 | Pouchak | Jul 2009 | B2 |
7575179 | Morrow et al. | Aug 2009 | B2 |
7584897 | Schultz et al. | Sep 2009 | B2 |
7593212 | Toth | Sep 2009 | B1 |
7604046 | Bergman et al. | Oct 2009 | B2 |
7614567 | Chapman, Jr. et al. | Nov 2009 | B2 |
7636604 | Bergman et al. | Dec 2009 | B2 |
7693582 | Bergman et al. | Apr 2010 | B2 |
7693583 | Wolff et al. | Apr 2010 | B2 |
7703694 | Mueller et al. | Apr 2010 | B2 |
7706923 | Amundson et al. | Apr 2010 | B2 |
7748225 | Butler et al. | Jul 2010 | B2 |
7702421 | Sullivan et al. | Aug 2010 | B2 |
7775454 | Mueller et al. | Aug 2010 | B2 |
7784291 | Butler et al. | Aug 2010 | B2 |
7784705 | Kasper et al. | Aug 2010 | B2 |
7801646 | Amundson et al. | Sep 2010 | B2 |
7802618 | Simon et al. | Sep 2010 | B2 |
7845576 | Siddaramanna | Dec 2010 | B2 |
7861941 | Schultz et al. | Jan 2011 | B2 |
7867646 | Rhodes | Jan 2011 | B2 |
7941819 | Stark | May 2011 | B2 |
7954726 | Siddaramanna et al. | Jun 2011 | B2 |
7963454 | Sullivan | Jun 2011 | B2 |
D643318 | Morrow | Aug 2011 | S |
7992794 | Leen et al. | Aug 2011 | B2 |
8066263 | Soderlund | Nov 2011 | B1 |
8083154 | Schultz et al. | Dec 2011 | B2 |
8091795 | McLellan | Jan 2012 | B1 |
8167216 | Schultz et al. | May 2012 | B2 |
8175782 | Gepperth et al. | May 2012 | B2 |
D662837 | Morrow | Jul 2012 | S |
D662838 | Morrow | Jul 2012 | S |
D662839 | Morrow | Jul 2012 | S |
D662840 | Morrow | Jul 2012 | S |
D663224 | Morrow | Jul 2012 | S |
8219251 | Amundson et al. | Jul 2012 | B2 |
8239067 | Amundson et al. | Aug 2012 | B2 |
8239922 | Sullivan | Aug 2012 | B2 |
8244383 | Bergman et al. | Aug 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8346396 | Amundson et al. | Jan 2013 | B2 |
8387892 | Koster et al. | Mar 2013 | B2 |
8517088 | Moore et al. | Aug 2013 | B2 |
8538588 | Kasper | Sep 2013 | B2 |
8549658 | Kolavennu et al. | Oct 2013 | B2 |
8620460 | Eergman et al. | Dec 2013 | B2 |
8689353 | Bünter | Apr 2014 | B2 |
8690074 | Moore | Apr 2014 | B2 |
8701210 | Cheng et al. | Apr 2014 | B2 |
8733667 | Moore et al. | May 2014 | B2 |
8950687 | Bergman | Feb 2015 | B2 |
8978994 | Moore et al. | Mar 2015 | B2 |
9014860 | Moore et al. | Apr 2015 | B2 |
9201431 | Lyle | Dec 2015 | B2 |
9304676 | Poplawski | Apr 2016 | B2 |
9686880 | Khoury | Jun 2017 | B1 |
9989273 | Read et al. | Jun 2018 | B2 |
20010003451 | Armstrong | Jun 2001 | A1 |
20020065809 | Kitayama | May 2002 | A1 |
20020096572 | Chene et al. | Jul 2002 | A1 |
20040133314 | Ehlers | Jul 2004 | A1 |
20040193324 | Hoog | Sep 2004 | A1 |
20040230402 | Jean | Nov 2004 | A1 |
20040245352 | Smith | Dec 2004 | A1 |
20040256472 | DeLuca | Dec 2004 | A1 |
20040260427 | Wimsatt | Dec 2004 | A1 |
20050027997 | Ueno | Feb 2005 | A1 |
20050033707 | Ehlers | Feb 2005 | A1 |
20050040248 | Wacker | Feb 2005 | A1 |
20050040249 | Wacker | Feb 2005 | A1 |
20050044906 | Spielman | Mar 2005 | A1 |
20050082836 | Lagerwey | Apr 2005 | A1 |
20050108620 | Allyn et al. | May 2005 | A1 |
20050119793 | Amundson et al. | Jun 2005 | A1 |
20050194457 | Dolan | Sep 2005 | A1 |
20050198591 | Jarrett | Sep 2005 | A1 |
20060030954 | Bergman | Feb 2006 | A1 |
20060290140 | Yoshida | Jun 2006 | A1 |
20060220386 | Wobben | Oct 2006 | A1 |
20070045429 | Chapman, Jr. | Mar 2007 | A1 |
20070045441 | Ashworth | Mar 2007 | A1 |
20070114291 | Pouchak | May 2007 | A1 |
20070221741 | Wagner | Sep 2007 | A1 |
20070228182 | Wagner et al. | Oct 2007 | A1 |
20070228183 | Kennedy | Oct 2007 | A1 |
20070257120 | Chapman et al. | Nov 2007 | A1 |
20070278320 | Lunacek et al. | Dec 2007 | A1 |
20080271475 | Wuesthoff | Nov 2008 | A1 |
20090001182 | Siddaramanna | Jan 2009 | A1 |
20090024965 | Zhdankin | Jan 2009 | A1 |
20090045263 | Mueller et al. | Feb 2009 | A1 |
20090057424 | Sullivan et al. | Mar 2009 | A1 |
20090057427 | Geadelmann | Mar 2009 | A1 |
20090062964 | Sullivan | Mar 2009 | A1 |
20090129931 | Stiesdal | May 2009 | A1 |
20090140056 | Leen | Jun 2009 | A1 |
20090140064 | Schultz | Jun 2009 | A1 |
20100031193 | Stark | Feb 2010 | A1 |
20100070089 | Harrod et al. | Mar 2010 | A1 |
20100117975 | Cho et al. | May 2010 | A1 |
20100127502 | Uchino et al. | May 2010 | A1 |
20100145528 | Bergman et al. | Jun 2010 | A1 |
20100261465 | Rhoads et al. | Oct 2010 | A1 |
20100318200 | Foslien | Dec 2010 | A1 |
20110004825 | Wallaert | Jan 2011 | A1 |
20110031806 | Altonen et al. | Feb 2011 | A1 |
20110046792 | Imes | Feb 2011 | A1 |
20110054710 | Imes | Mar 2011 | A1 |
20110112998 | Abe | May 2011 | A1 |
20110261002 | Verthein | Oct 2011 | A1 |
20110273394 | Young | Nov 2011 | A1 |
20120067561 | Bergman | Mar 2012 | A1 |
20120074710 | Yoshida | Mar 2012 | A1 |
20120131504 | Fadell | May 2012 | A1 |
20120168524 | Moore et al. | Jul 2012 | A1 |
20120169675 | Moore et al. | Jul 2012 | A1 |
20120203379 | Sloo | Aug 2012 | A1 |
20120221149 | Kasper | Aug 2012 | A1 |
20120229521 | Hales, IV | Sep 2012 | A1 |
20120232703 | Moore | Sep 2012 | A1 |
20120239221 | Mighdoll | Sep 2012 | A1 |
20120329528 | Song | Dec 2012 | A1 |
20130024685 | Kolavennu et al. | Jan 2013 | A1 |
20130032414 | Yilmaz | Feb 2013 | A1 |
20130056989 | Sabhapathy | Mar 2013 | A1 |
20130090767 | Bruck et al. | Apr 2013 | A1 |
20130123991 | Richmond | May 2013 | A1 |
20130211783 | Fisher et al. | Aug 2013 | A1 |
20130215088 | Son et al. | Aug 2013 | A1 |
20130263034 | Bruck | Oct 2013 | A1 |
20130338838 | Moore | Dec 2013 | A1 |
20130345883 | Sloo | Dec 2013 | A1 |
20140081465 | Wang et al. | Mar 2014 | A1 |
20140098247 | Rao | Apr 2014 | A1 |
20140152631 | Moore et al. | Jun 2014 | A1 |
20140156087 | Amundson | Jun 2014 | A1 |
20140163746 | Drew | Jun 2014 | A1 |
20140254577 | Wright et al. | Sep 2014 | A1 |
20140316581 | Fadell et al. | Oct 2014 | A1 |
20140319233 | Novotny | Oct 2014 | A1 |
20150081568 | Land, III | Mar 2015 | A1 |
20150095843 | Greborio et al. | Apr 2015 | A1 |
20150100167 | Sloo | Apr 2015 | A1 |
20150167995 | Fadell | Jun 2015 | A1 |
20150233595 | Fadell | Aug 2015 | A1 |
20150280935 | Poplawski et al. | Oct 2015 | A1 |
20160062618 | Fagan | Mar 2016 | A1 |
20160123618 | Hester et al. | May 2016 | A1 |
20160124828 | Moore et al. | May 2016 | A1 |
20160131385 | Poplawski et al. | May 2016 | A1 |
20160154576 | Moore et al. | Jun 2016 | A1 |
20170103689 | Moore et al. | Apr 2017 | A1 |
20170131825 | Moore et al. | May 2017 | A1 |
20170300025 | Moore et al. | Oct 2017 | A1 |
20170364104 | Poplawski et al. | Dec 2017 | A1 |
20180005195 | Jacobson | Jan 2018 | A1 |
20180031266 | Atchison | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
2441221 | Feb 2006 | GB |
58065977 | Apr 1983 | JP |
2004218436 | Aug 2004 | JP |
2006009596 | Jan 2006 | JP |
20050034417 | Apr 2005 | KR |
Entry |
---|
Braeburn Systems LLC, “Temperature Limiting Adjustments for Heating and Cooling (1000 Series)”, Important Installation Instructions, no date. |
ComfortLink II XL950 Control, User Guide, Trane U.S. Inc., 2011. |
Cardio lie Installer's Guide, System Version 2.5xx, 5th edition, 2008, Secant Home Automation Inc. |
What you should know about flexible displays (FAQ); http://news.cnet.com/8301-1035_3-57607171-94/what-you-should-know-about-flexible-d . . . ; Nov. 25, 2013. |
Brae8urn Systems LLC, “Temperature Limiting Adjustments for heating and Cooling (1000 Series)”, Mportant Installation Instructions., no date. |
Number | Date | Country | |
---|---|---|---|
20170364104 A1 | Dec 2017 | US |