Tamping machine having a measuring sensor coupled to mechanical measuring device on an auxiliary track

Information

  • Patent Grant
  • 6546876
  • Patent Number
    6,546,876
  • Date Filed
    Monday, June 4, 2001
    23 years ago
  • Date Issued
    Tuesday, April 15, 2003
    21 years ago
Abstract
A mobile tamping machine for tamping ballast under a railroad track includes a machine frame supported on undercarriages running on a main track for moving the machine in an operating direction. A tamping unit is mounted on the machine frame between the undercarriages, and a track lifting and lining unit for leveling and lining the main track is vertically and transversely adjustably mounted on the machine frame immediately ahead of the tamping unit in the operating direction, with drives being provided for vertically and transversely adjusting the track lifting and lining unit. An auxiliary lifting unit is mounted on the machine frame for lifting a branch track branching off the main track at a track switch. A common measuring system associated with the track lifting and lining unit and the auxiliary lifting unit is provided for controlling the lifting of the track switch. The common measuring system includes a mechanical measuring device, which connects the track lifting and lining unit to the auxiliary lifting device and is telescopically extensible transversely to the longitudinal direction of the machine frame, and a measuring sensor.
Description




CROSS-REFERENCES TO RELATED APPLICATIONS




This application claims the priority of Austrian Patent Application Serial No. GM 434/2000, filed Jun. 9, 2000.




BACKGROUND OF THE INVENTION




The present invention relates, in general, to a track maintenance machine, and more particularly to a mobile tamping machine for tamping ballast under a railroad track.




U.S. Pat. No. 4,905,604 describes a tamping machine for tamping straight and switch sections of a railroad track. The tamping machine includes a machine frame which is supported on undercarriages for travel on a main track in an operating direction. A tamping unit is mounted on the machine frame between the undercarriages, and a track lifting and lining unit is vertically and transversely adjustably mounted on the machine frame immediately ahead of the tamping unit in the operating direction for leveling and lining the main track. In addition, the tamping machine includes an auxiliary lifting unit which is mounted on the machine frame for lifting a branch track branching off the main track at a track switch. A special measuring system is provided to control the lifting of the branch track by the auxiliary lifting unit, and includes a measuring axle running on the main track and another measuring axle running on the branch track. The two measuring axles are coupled together by a rod carrying a cross level indicator. In this manner, an operator is able to lift the branch track by remote-controlled operation of the auxiliary lifting unit to accurately conform a lifting of the branch track to a lifting of the main track by closely monitoring the cross level indicator.




It would be desirable and advantageous to provide an improved tamping machine which is simple in structure and yet ensures an exact conformity between the vertical positions of the main and branch tracks at a switch.




SUMMARY OF THE INVENTION




According to one aspect of the present invention, a tamping machine includes a machine frame supported on undercarriages for travel on a main track in an operating direction; a tamping unit mounted on the machine frame between the undercarriages; a track lifting and lining unit, vertically and transversely adjustably mounted on the machine frame immediately ahead of the tamping unit in the operating direction, for leveling and lining the main track; drive means for vertically and transversely adjusting the track lifting and lining unit; an auxiliary lifting unit, mounted on the machine frame, for lifting a branch track branching off the main track at a track switch; and a measuring system, operatively connected to both the track lifting and lining unit and the auxiliary lifting unit, for controlling a lifting of the track switch, wherein the measuring system includes a mechanical measuring device, which connects the track lifting and lining unit to the auxiliary lifting device and is telescopically extendible in a direction transversely to the longitudinal axis of the machine frame, and a measuring sensor.




Such a common measuring system has a simple configuration and is yet able to realize an automatic and accurate coordination of both the track lifting and lining unit and the auxiliary lifting unit. In this way, an accurate and swift track position correction can be accomplished without any problems, even when track switches are involved which have long ties with an elastic joint. As a consequence of the simplicity of the measuring system, the correction of the track position is not impaired in any way and the operator's view of the track remains unobstructed.




According to another feature of the present invention, the mechanical measuring device may be a cable and the measuring sensor may be a rotary potentiometer operatively connected to the cable. Another option may include the configuration of the measuring device as a measuring beam and the configuration of the measuring sensor as a goniometer operatively connected to the measuring beam. Suitably, the measuring beam is configured so as to be telescopically extendible.




According to another feature of the present invention, the tamping machine may further include a lifting drive, connected to the auxiliary lifting unit, for lifting the branch track, and a control device, connected to the measuring sensor, for actuating the lifting drive.











BRIEF DESCRIPTION OF THE DRAWING




Other features and advantages of the present invention will be more readily apparent upon reading the following description of preferred exemplified embodiments of the invention with reference to the accompanying drawing, in which:





FIG. 1

is a simplified side elevational view of one embodiment of a tamping machine according to this invention;





FIG. 2

is an enlarged cross sectional view of the tamping machine taken along the line II in

FIG. 1

; and





FIG. 3

is an enlarged cross sectional view of another embodiment of a tamping machine according to the invention.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




Throughout all the Figures, same or corresponding elements are generally indicated by same reference numerals.




Turning now to the drawing, and in particular to

FIG. 1

, there is shown a simplified side elevation of one embodiment of a mobile tamping machine according to the invention, generally designated by reference numeral


1


, for tamping ballast under a track


4


which defines a track plane


39


(

FIG. 2

) and is comprised of rails


2


fastened to ties


3


. The illustrated tamping machine


1


includes a machine frame


6


which is supported on undercarriages


5


for travel on the track


4


by means of a motive drive


8


actuated by a motor


7


in an operating direction indicated by arrow


9


. An operator's cab


10


houses a control device


11


for operating the various operating devices and drives of the machine.




A tamping unit


12


for tamping ballast of the track


4


is mounted on the machine frame


6


between the undercarriages


5


and vertically and transversely adjustable by drives


13


. The tamping unit


12


, involved here, is of conventional design and suitable in particular for use in track switches. An exemplified track switch


28


is shown in FIG.


2


and has a long tie


3


which connects a main track


32


to a branch track


27


, branching off the main track


32


, and is comprised of two tie parts linked together by an elastic joint


42


. The tamping unit


12


includes tamping tines


14


which are immersible into the ballast and may be moved relative to one another in longitudinal direction of the machine frame


6


by reciprocating drives


15


. Structure and operation of a tamping unit of this type is generally known and not described in more detail for sake of simplicity.




A track lifting and lining unit


17


for leveling and lining the track


4


, i.e. a main track


32


(FIG.


2


), is mounted on the machine frame


6


immediately ahead of the tamping unit


12


in the operating direction and configured for movement in vertical and transverse directions by drives


16


. The track lifting and lining unit


17


travels on the main track


32


and includes flanged rollers


35


, which run on the rails


2


of the main track


32


, and lifting rollers


33


, which are actuated by drives


34


so as to be engageable under the head of the rails


2


. The drives


16


for lifting the track


4


are controlled by a track position measuring system


23


which is indicated in

FIG. 1

by a reference chord


21


engaged by a measuring axle


22


running on the track


4


. All of the heretofore described structure and operation is entirely conventional and are illustrated only schematically for sake of simplicity.




A pair of identical auxiliary lifting units


18


, shown here only schematically, are mounted on the machine frame


6


adjacent to the track lifting and lining unit


17


for lifting the branch track


27


which branches off the main track


32


at the track switch


28


. The auxiliary lifting units


18


are so mounted to the machine frame


6


as to allow optional lifting of a branch track


27


on either side of the main track


32


, i.e. one auxiliary lifting unit


18


is provided to lift a branch track


27


on one side of the main track


32


and the other auxiliary lifting unit


18


is provided to lift a branch track


27


on the other side of the main track


32


.




As shown in

FIG. 2

, one end of each auxiliary lifting unit


18


is linked to the machine frame


6


by a joint


24


defined by an axis which extends in a longitudinal direction of the machine frame


6


, whereby the auxiliary lifting units


18


extend transversely to the longitudinal direction of the machine frame


6


. Each auxiliary lifting unit


18


is vertically adjustable by a drive


19


and extendible transversely to the machine frame


6


by a drive


25


. A lifting device


26


is mounted to the joint-distal end of each auxiliary lifting unit


18


and essentially includes a double-flanged roller


29


, which rolls along a rail of the branch track


27


, and a lifting roller


31


, which is adjustable by a drive


30


for engagement under the head of the rail of the branch track


27


.




A measuring system


20


is operatively connected to both the track lifting and lining unit


17


and a one of the auxiliary lifting units


18


for controlling the lifting of the track switch


28


and includes a mechanical measuring device


36


which is configured for extension transversely to the direction of longitudinal direction of the machine frame


6


and links the track lifting and lining unit


17


to the auxiliary lifting unit


18


. Although not shown in detail, it will be appreciated by persons skilled in the art that an analogous measuring system is provided to operatively connect the track lifting and lining unit


17


with the other one of the auxiliary lifting units


18


, shown only by dash-dot line in FIG.


2


. However, as the measuring systems


20


are of an identical construction, it will be understood by persons skilled in the art that a description of one of the measuring systems


20


is equally applicable to the other measuring system.




The measuring device


36


includes a cable


37


which defines a reference line of the measuring system


20


. The reference line coincides with a measuring plane


43


and extends parallel to the track plane


39


when the track switch


28


is properly positioned. The cable


37


of the measuring device


36


is wound on a spool


38


, attached on the track lifting and lining unit


17


, and is secured to the lifting device


26


of the auxiliary lifting unit


18


. The cable


37


has a length sufficient to follow an extension of the auxiliary lifting unit


18


, when the auxiliary lifting unit


18


is extended transversely to the longitudinal direction of the machine frame


6


to the distal rail of the branch track


27


. The measuring system


20


further includes a measuring sensor


41


which sends signals to the control device


11


in response to a disposition of the cable


37


with respect to the track plane


39


, for corresponding operation of the drive


19


for the auxiliary lifting unit


18


. In the nonlimiting example of

FIGS. 1 and 2

, the measuring sensor


41


is designed as a rotary potentiometer


40


.




The tamping machine


1


according to the present invention is operated as follows: As the tamping machine


1


advances along the track


4


to the track switch


28


, the track position of the main track


32


is corrected under the control of the track position measuring system


23


to level and/or line the main track


32


through actuation of the track lifting and lining unit


17


and by tamping the ballast under the ties


3


of the corrected track through actuation of the tamping unit


12


. As soon as the tamping machine


1


reaches the track switch


28


, a respective one of the auxiliary lifting units


18


is laterally extended on the side of the branch track


27


by actuating the drive


25


, and the lifting device


26


is engaged with a rail of the branch track


27


. The subsequent correction of the position of the track switch


28


follows automatically as drives


16


adjust the track lifting and lining unit


17


for lifting the track lifting and lining unit


17


together with the measuring device


36


to the desired position.




As the track position correction proceeds by the adjustment of the track lifting and lining unit


17


, the cable


37


forms the measuring plane


43


, and the drive


19


of the auxiliary lifting unit


18


is actuated to lift the branch track


27


, engaged by the lifting device


26


, until the switch


28


is aligned in the correct position. This is the case when the track plane


39


and the measuring plane


43


extend parallel to one another. As soon as the parallel relationship is realized, the rotary potentiometer


40


emits a signal to the control device


11


, and the actuation of the drive


19


of the auxiliary lifting unit


18


ceases. As a result, the branch track


27


of the switch


28


is positioned precisely in the track plane


39


of the main track


32


.





FIG. 3

illustrates another embodiment of a tamping machine


1


according to the invention. Parts corresponding with those in

FIG. 1

are denoted by identical reference numerals and not explained again. In this embodiment, the measuring device


36


includes a measuring beam


44


which is telescopically extendible transversely to the machine frame


6


. The measuring sensor


41


associated with the measuring beam


44


and fastened to the track lifting and lining unit


17


is hereby designed as a goniometer


45


. The goniometer


45


is adjusted in such a way that a signal is emitted to the control device


11


, when the track plane


39


and the measuring plane


43


extend parallel to one another. Actuation of the drive


19


is then stopped, since the accurate position of the branch track


27


has been reached.




While the invention has been illustrated and described as embodied in a tamping machine, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.



Claims
  • 1. A mobile tamping machine for tamping ballast under a railroad, comprising:(a) a machine frame defining a longitudinal axis and supported on undercarriages for travel on a main track in an operating direction; (b) a tamping unit mounted on the machine frame between the undercarriages; (c) a track lifting and lining unit, vertically and transversely adjustably mounted on the machine frame immediately ahead of the tamping unit in the operating direction, for leveling and lining the main track; (d) drive means for vertically and transversely adjusting the track lifting and lining unit; (e) an auxiliary lifting unit, mounted on the machine frame, for lifting a branch track branching off the main track at a track switch; and (f) a measuring system, operatively connected to both the track lifting and lining unit and the auxiliary lifting unit, for controlling a lifting of the track switch, said measuring system including a mechanical measuring device, which connects the track lifting and lining unit to the auxiliary lifting device and is extendible in a direction transversely to the longitudinal axis of the machine frame, and a measuring sensor, wherein the mechanical measuring device is a cable, and the measuring sensor is a rotary potentiometer operatively connected to the cable.
  • 2. The tamping machine of claim 1, further comprising a lifting drive, connected to the auxiliary lifting unit, for lifting the branch track, and a control device, connected to the measuring sensor, for actuating the lifting drive.
  • 3. A mobile tamping machine for tamping ballast under a railroad, comprising:(a) a machine frame defining a longitudinal axis and supported on undercarriages for travel on a main track in an operating direction; (b) a tamping unit mounted on the machine frame between the undercarriages; (c) a track lifting and lining unit, vertically arid transversely adjustably mounted on the machine frame immediately ahead of the tamping unit in the operating direction, for leveling and lining the main track; (d) drive means for vertically and transversely adjusting the track lifting and lining unit; (e) an auxiliary lifting unit, mounted on the machine frame, for lifting a branch track branching off the main track at a track switch; and (f) a measuring system, operatively connected to both the track lifting and lining unit and the auxiliary lifting unit, for controlling a lifting of the track switch, said measuring system including a mechanical measuring device, which connects the track lifting and lining unit to the auxiliary lifting device and is extendible in a direction transversely to the longitudinal axis of the machine frame, and a measuring sensor, wherein the mechanical measuring device is a measuring beam, and the measuring sensor is a goniometer operatively connected to the measuring beam, wherein the measuring beam is configured so as to be telescopically extendible.
  • 4. The tamping machine of claim 3, and further comprising a lifting drive, connected to the auxiliary lifting unit, for lifting the branch track, and a control device, connected to the measuring sensor, for actuating the lifting drive.
  • 5. A track maintenance machine for proper positioning of a track switch comprised of a main track and a branch track, comprising:a machine frame defining a longitudinal axis and supported on undercarriages for travel on the main track; a first unit, mounted to the machine frame, for lifting the main track; a second unit, mounted to the machine frame, for lifting the branch track, said second unit configured for extension in a direction transversely to the longitudinal axis; and a measuring system including an extendible measuring device, which has one end connected to the first unit and another end connected to the second unit, and a measuring sensor, which monitors a disposition of the measuring device with respect to a track plane as defined by the main track to thereby control a lifting operation of the second unit, and generates a stop signal to terminate the lifting operation, when the measuring device extends in parallel relationship to the track plane, wherein the measuring system has a spool secured to the first unit, said measuring device being a cable which is wound onto the spool.
  • 6. The machine of claim 5, wherein the measuring sensor is a rotary potentiometer.
  • 7. The machine of claim 5, and further comprising a control device operatively connected to the measuring sensor for controlling the lifting operation of the second unit.
  • 8. A track maintenance machine for proper positioning of a track switch comprised of a main track and a branch track, comprising:a machine frame defining a longitudinal axis and supported on undercarriages for travel on the main track; a first unit, mounted to the machine frame, for lifting the main track; a second unit, mounted to the machine frame, for lifting the branch track, said second unit configured for extension in a direction transversely to the longitudinal axis; and a measuring system including an extendible measuring device, which has one end connected to the first unit and another end connected to the second unit, and a measuring sensor, which monitors a disposition of the measuring device with respect to a track plane as defined by the main track to thereby control a lifting operation of the second unit, and generates a stop signal to terminate the lifting operation, when the measuring device extends in parallel relationship to the track plane, wherein the measuring device is a measuring beam, and the measuring sensor is a goniometer, wherein the measuring beam is configured so as to be telescopically extendible.
  • 9. The machine of claim 8, and further comprising a control device operatively connected to the measuring sensor for controlling the lifting operation of the second unit.
Priority Claims (1)
Number Date Country Kind
GM 434/2000 Jun 2000 AT
US Referenced Citations (7)
Number Name Date Kind
3821933 Plasser et al. Jul 1974 A
4625651 Theurer Dec 1986 A
4655142 Theurer et al. Apr 1987 A
4905604 Theurer Mar 1990 A
5379700 Theurer Jan 1995 A
5481982 Theurer et al. Jan 1996 A
5515788 Theurer et al. May 1996 A