Tampon especially for feminine hygiene and a process and apparatus for producing this

Abstract
A tampon having a relatively high density, compressed core (16) and a plurality of lower density longitudinal ribs (17) is disclosed. The longitudinal ribs (17) have a softer fiber structure and a coarser capillary structure and extend radially from the core (16). The longitudinal ribs (17) are separated one from another by outwardly open longitudinal grooves (18). A process for preparing the tampon and an apparatus useful in the process are also disclosed.
Description




BACKGROUND OF THE INVENTION




The invention relates to a tampon, especially for feminine hygiene, having a relatively high density compressed core and a plurality of lower density longitudinal ribs, as well as, to a process and an apparatus for producing the tampon.




A tampon of the abovementioned generic type is known from German Auslegeschrift 1,491,161. This tampon has proved appropriate in practice because of its high absorption capacity, fluid retention capacity, rate of absorption, stability and buckling strength. For this, the tampon has longitudinal grooves which are caused by pointed press jaws and on each of the two sides of which occur longitudinal ribs which are pressed to the approximately cylindrical final form of the tampon during a subsequent pressing operation by means of press jaws with partially cylindrical press faces.




SUMMARY OF THE INVENTION




The object on which the invention is based is to improve the tampon of the abovementioned generic type in such a way that the absorption capacity and rate of absorption of the tampon appertaining to the two are essentially maintained, but the specific absorption capacity of the tampon is increased.




This and other objects are achieved by the tampon having disclosed that makes it possible to obtain an appreciable increase in the specific absorption capacity (ml/g), whilst preserving the hitherto obtained absorption capacity and rate of absorption, with a surprisingly smaller amount of fibre material being used. This effect is attributable to a coarser capillary structure of the fibre material in the outer layer of the tampon.




Thus, it was found that a tampon according to the invention consisting of 100% rayon fibres with a weight of 2.4 g without the withdrawal string can have a specific absorption capacity of 4.8 ml/g with a rate of absorption of 1.9 ml/s. The absorption capacity of such a tampon at a static counterpressure of 20 mbars is 11.3 ml. In a test with a pulsating counterpressure of 20 to 110 mbars approximating extremely closely to the practical conditions of use, the absorption capacity of the tampon according to the invention can amount to 8.0 ml and the specific absorption capacity to 3.4 ml/g.




The diameter of the tampon is set at between 13 and 15 mm according to the customary physiological conditions, and the central fibre core can preferably have a diameter of 4 to 8 mm. A high buckling strength of the tampon can thus be achieved, whilst at the same time the soft surface of the tampon guarantees a pleasant handling of the tampon.




The invention relates, furthermore, to a process for producing this tampon A process of this type is known from German Auslegeschrift 1,491,161 already mentioned.




According to the invention, this process for producing the tampon according to the invention is improved by means of pressing only narrow strip-shaped portions of the surface of the blank.




The invention relates, moreover, to an apparatus for producing the tampon and for carrying out the above-mentioned process. An apparatus of this generic type is likewise known from German Auslegeschrift 1,491,161. According to the invention, this known apparatus is improved, with the effect of the best possible production of the tampon according to the invention. The fact that only press cutters are provided on the end faces of the segment-shaped pressed jaws and of the sliding plates guarantees a merely partial pressing of the winding blank to produce a preform which is subsequently subjected only to a weak concentric shaping in the following forming die, thereby providing a smooth, soft and aesthetically pleasing surface of the tampon, but which, despite the use of a smaller amount of fibre material, allows an appreciably increased specific absorption capacity of the tampon, without the tampon suffering from a loss of absolute absorption capacity in comparison with the known tampon mentioned.




The apparatus according to the invention is advantageously developed by means of the features mentioned in the subclaims.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention is explained in more detail below by means of the diagrammatic drawing of an exemplary embodiment of a tampon and of an apparatus for producing this. In the drawing:





FIG. 1

shows the tampon according to the invention in a middle longitudinal section along the sectional line I—I in

FIG. 2

,





FIG. 2

shows a cross-section along sectional line II—II shown in

FIG. 1

, showing heavy outwardly open grooves the tampon of the current invention,





FIG. 3

shows a cross-section through the preform along the line III—III in

FIG. 10

,





FIG. 4

shows a cross-section of the tampon of the invention, heavy closed grooves,





FIG. 5

shows a diagrammatic view of a preforming press in the opened state with a winding blank arranged in it,





FIGS. 6 and 7

show a separate closing movement of the pressing dies, wherein

FIG. 6

illustrates a first pressing face of the preforming press with closed press segments, whilst a second, final press face of the preforming press is illustrated in

FIG. 7

showing the sliding plates in the closed position, wherein all press dies enclose the preform arranged in it, and





FIGS. 8 and 9

show an alternative sequence of movements of the press dies, wherein the press segments and the sliding plates are simultaneously moved into the closed position;

FIG. 8

shows an interphase of the pressing procedure and

FIG. 9

the press dies completely closed with the preform arranged in it, and





FIG. 10

shows a partially sectional side view of the apparatus for producing the tampon with the preforming press and with the following forming die.











DESCRIPTION OF THE PREFERRED EMBODIMENT





FIGS. 1 and 2

show a tampon


10


for feminine hygiene formed from an approximately cylindrical blank


11


which is shaped by winding up a portion of length of nonwoven material, needled if appropriate. The nonwoven can consist of natural or synthetic fibres or of a mixture of such fibres. Natural fibres coming under consideration are preferably those of cotton. Rayon or other synthetic fibres are also highly suitable. The circumferential surface of this winding blank is pressed in a way known per se radially relative to the longitudinal mid-axis of the winding blank over an even number of at least six, preferably eight portions mutually adjacent in the circumferential direction of the winding blank


11


.




According to the invention, these circumferential portions of the winding blank


11


are exclusively narrow strip-shaped portions


12


,


13


of the circumferential surface


14


of the winding blank


11


which are arranged at equal angular distances a from one another and which are pressed to produce a preform


15


in

FIGS. 3

,


7


and


9


. As seen in cross-section, the preform


15


consists of a central approximately circular fibre core


16


of high compression and stability or buckling strength and of longitudinal ribs


17


extending radially outwards from the fibre core


16


and of a fibre structure softer than that of the fibre core and of correspondingly coarser capillary structure (FIG.


3


). The longitudinal ribs


17


are separated from one another by outwardly open longitudinal grooves


18


. Only the soft longitudinal ribs


17


of the preform


15


are exposed to a low uniform radial pressure during manufacture relative to the longitudinal mid-axis


19


of the preform


15


, in such a way that the radially outer ends


20


of the longitudinal ribs


17


form a soft essentially smoothly cylindrical surface of smaller diameter corresponding to the final form of the tampon


10


.




It was found that the tampon according to the invention has a stability 100% higher than that of the known tampon. It was shown, furthermore, that approximately 10% of the fibres used for the tampon can be saved, without any appreciable impairment, if any, of the absorption capacity. In contrast, the rate of absorption is in the upper range of known tampons, whilst the specific absorption capacity is increased appreciably in relation to known tampons.




The following table illustrates a comparative test of the tampon according to the invention consisting of a needled nonwoven composed of 100% of rayon fibres from Hoechst AG, and a tampon obtainable in the trade under the commercial designation “Standard O.B.”:















TABLE











Tampon according




STANDARD O.B.







to the invention




Tampon



























1.




Weight (g)




2.4




2.7







without the







withdrawal string






2.




Absorption




11.3




11.5-12.5







capacity (ml)







20 mbars static







counterpressure







in test unit






3.




Specific absorp-




4.8




4.2-4.5







tion capacity







(ml/g)






4.




Rate of absorption




1.9




1.5-2.0







(ml/s)






5.




Absorption capacity




8.0




8.6







(ml) in ABTS test







unit with pulsating







counterpressure







of 20-110 mbars






6.




Specific absorption




3.4




3.1







capacity (ml/g) in







ABTS test unit














The absorption capacity values indicated in line 2 of the Table were determined in a test unit, in which the tampon is surrounded by an elastic diaphragm which exerts a static counterpressure on the tampon, whilst one end of the tampon is sprinkled with water. This resulted in the specific fluid absorption capacity in ml/g of fibre material of the tampon evident from line 3 of the Table.




The rate of absorption emerging from line 4 was determined in this test arrangement. The values show that, at a weight of the tampon according to the invention reduced by approximately 10%, the absorption capacity of the tampon is not essentially reduced in relation to the known tampon, the rate of absorption is of the upper limit of that of the known tampon, and the specific absorption capacity is appreciably higher than in the known tampon. Since the specific absorption capacity is evidence of a better utilization of the absorbency of the fibre material per unit weight, it is clear that the tampon according to the invention can be produced more cheaply as a result of the lower weight of material.




Lines 5 and 6 of the Table give values for the absorption capacity and the specific absorption capacity determined in a test arrangement allowing test conditions such as actually occur when the tampon is being worn.




The system designated as ABTS, corresponding to Absorptive Behaviour Test System, is computer-assisted and serves for the acquisition and processing of measurement data regarding the absorption behaviour of absorbent products and for controlling the test cycle.




The test of the tampon is conducted under the following conditions which, as mentioned, occur approximately in vivo:




chemical/physical compositions of the test fluid




spacial arrangement of the product, for example inclination




positioning of the product in the measuring cell




strength of the flow




interruption (start/stop) of the flow




pressure variant.




The test cycle is software-controlled automatically and allows a dialogue between the operator and system. The measurement data are required automatically, their evaluation taking place according to statistical factors. The test cycle for each random sample can be tracked on a video screen by means of a measurement curve and, if appropriate, printed out automatically. Furthermore, the fluid distribution in the product is represented qualitatively and quantitatively. Moreover, the leakage behaviour of the tampon can be checked. By leakage is meant the phenomenon in which menstrual fluid can escape between the body wall and tampon. The feed of test fluid to the tampon is carried out exclusively without pressure, since the fluid level is at the height of the test tampon. The fluid is therefore sucked up into the tampon solely as a result of the wetting of the tampon and the wick effect caused by the capillary forces of the latter, and by means of the pulsating counterpressure on the tampon which is felt in practice.




The values determined with this ABTS test device illustrate, in lines 5 and 6 of the Table, that, at the pulsating counterpressure indicated, the absorption capacity of the tampon is only slightly lower than in the reference tampon, but here too the specific absorption capacity of the tampon according to the invention per gram of fibre material is approximately 10% higher than in the reference tampon.




The diameter of the tampon according to the invention is between 13 and 15 mm in its final form. The central fibre core


16


has a diameter of approximately 4 to 8 mm.





FIG. 4

shows an enlarged cross-sectional representation of the fibre structure of the tampon according to the invention. It is possible to see clearly the central fibre core


16


, from which extend outwards eight longitudinal ribs


17


touching one another at their outer ends


20


. The tampon cross-section shows, moreover, that the loose fibre structure with its coarser capillary structure of the longitudinal ribs


17


is preserved, despite the concentric pressure to which these longitudinal ribs are exposed during the production of the final form of the tampon. In contrast, the fibre core


16


having a high fibre compression guarantees a stability or buckling strength which is twice as high as that of the reference tampon and which is of great importance when the tampon is used as a digital tampon.




The figures illustrate an apparatus according to the invention for producing the tampon. According to

FIGS. 5

to


7


, this apparatus consists of two groups of altogether eight press dies arranged in a plane perpendicular to the press axis


21


, the first group of press dies forming press segments


22


and the second group of press dies forming sliding plates


24


. In the closing position shown in

FIG. 6

, the side flanks


23


of these four press segments


22


form respectively for each of the four press dies of the second group guide surfaces which are designed as sliding plates


24


. At the same time, the press segments


22


and the sliding plates


24


serve, as a preforming press, for pressing the winding blank


11


to produce the preform


15


in FIG.


7


. Exclusively press cutters


27


projecting from the end faces


25


and


26


of the press segments


22


and of the sliding plates


24


serve for pressing the blank. It is evident from

FIGS. 5

to


7


that the press cutters project from the end faces


25


and


26


of the press segments


22


and sliding plates


24


at equal angular distances and over the same length. The shape and dimensions of all the press cutters are identical. The press cutters are therefore also equipped at their front end with the same pressing faces


28


which, in the exemplary embodiment illustrated, each extend parallel to the press axis and are curved outwards in the manner of a semi-cylinder.




In the exemplary embodiment, the length and width of the press cutters


27


radial relative to the press axis


21


amount to 10 mm and 2 mm respectively. In the closed state of the preforming press, the pressing faces


28


of the press cutters


27


assume a clear distance of 2 to 4 mm from the press axis


21


(FIG.


10


).




In contrast with

FIGS. 6 and 7

,

FIGS. 8 and 9

show a synchronous closing movement of the press segments


22


and sliding plates


24


in the radial direction.

FIG. 8

shows an intermediate phase of this closing movement of the press dies, whilst the final closing position of these press dies is shown in FIG.


9


. The position of the dies shown in

FIG. 9

corresponds to the final dimension of the preform


15


. The simultaneous pressing movement of the press segments


22


and the sliding plates


24


has the advantage, that the geometrical uniformity of the circumferential strip-shaped portions


12


and


13


of the preform


15


will be enhanced. If the tampon is wetted by a fluid the tampon will expand to a more circular shape than in case of the sequential movement of the press dies as shown in

FIGS. 6 and 7

.




If appropriate, however, the press faces can also have a mutually differing shape. If appropriate, the sliding plates can also be designed differently, for example made angular, arrow-shaped or drop-shaped. It is essential that they load and press only a narrow circumferential portion of the blank corresponding approximately to a generatrix. Furthermore, the cycle of movement of the two groups of press dies can, where appropriate, also take place simultaneously or interruptedly in the preforming and post forming and alternately between these two movement actions. Thus, it can be important, according to the process of German Auslegeschrift 1,491,161, first to close all the press dies simultaneously only up to the circumference of the blank


11


, in order to centre the blank as exact as possible in relation to the press axis


21


, before commencing the actual pressing operation, so as to ensure that the central fibre core


16


comes to rest exactly in the middle of the tampon


10


. This is desirable to obtain the highest possible buckling strength or stability of the tampon, above all when the latter is to be used as a digital tampon.




According to

FIG. 10

, the preforming press described is followed by a stationary conical forming die


29


. This forming die


29


is arranged coaxially relative to the press axis


21


. The entry orifice


30


of the forming die has a diameter of 20 mm which corresponds approximately to the orifice of the preforming press in the closed state of its press dies which is shown in FIG.


7


. The inner face


31


is narrowed towards the cylindrical exit orifice


32


according to an obtuse-angled circular cone, the exit orifice


32


has a diameter of 13 mm and its cross-section corresponds to the final cross-section of the finished tampon


10


. Arranged on the input side of the preforming press is a ram


33


which serves for introducing the winding blank


11


into the preforming press and for ejecting the preform


15


through the forming die


29


. For this purpose, the ram


33


is arranged movably to and fro coaxially in relation to the press axis


21


. Rams of this type are known in the art, and therefore there is no need to represent the driving elements for the ram.




The production of the tampon according to the invention by means of the above-described apparatus is carried out according to the following process: the essentially cylindrical winding blank


11


is pressed solely on the narrow strip-shaped portions


12


and


13


, arranged at equal angular distances from one another, of the circumferential surface of the winding blank, to produce the preform


15


which, as seen in cross-section, consists of the central approximately circular fibre core


16


of high compression and buckling strength or stability and of longitudinal ribs


17


of softer fibre structure extending radially outwards from the fibre core


16


. At the same time, the longitudinal ribs


17


are separated from one another by the outwardly open longitudinal grooves


18


. Thereafter, only the soft longitudinal ribs


17


of the preform


15


are exposed to a low uniform pressure radial relative to the longitudinal mid-axis of the preform, until the outer ends of the longitudinal ribs have produced a soft essentially smoothly cylindrical surface of smaller diameter corresponding to the final form of the tampon


10


. As mentioned, preferably before the actual pressing, the winding blank


11


is centred relative to the press axis


21


of the preforming press as a result of the simultaneous concentric closing of the press segments


22


and sliding plate


24


approximately as far as the circumference of the winding blank.




After the pressing of the preform, the latter is ejected through the forming die


29


by means of the ram


33


and thereby brought to the final dimension of the tampon which is determined by the exit orifice


32


of the forming die


29


.



Claims
  • 1. A tampon for feminine hygiene, comprising a generally cylindrical absorbent portion having a generally cylindrical compressed, solid fibre core from which longitudinal ribs extend radially outward, wherein each of the ribs has a proximal end attached to the fibre core, each of the ribs is compressed less than the fiber core, thereby having a coarser capillary structure than the fibre core, each of the ribs is separated from adjacent ribs at the proximal end by an amount greater than such rib is separated from an adjacent longitudinal rib proximate the distal end.
  • 2. The tampon of claim 1, wherein the absorbent portion comprises a needled nonwoven material.
  • 3. The tampon of claim 1, wherein each of the longitudinal ribs contacts an adjacent longitudinal rib at a point adjacent its distal end.
  • 4. The tampon of claim 1, wherein the compressed fiber core has a diameter of 4 to 8 mm.
  • 5. An apparatus for producing a tampon from an approximately cylindrical tampon blank, comprising: (i) first and second groups of press dies, at least three press dies in each group, the press dies arranged in a plane perpendicular to a longitudinal press axis and adapted to move radially inward toward the longitudinal press axis into a closed position so as to press the tampon blank into a tampon preform, the first group of press dies having side flanks so that when the first group of press dies are in the closed position their side flanks form guide surfaces for each of the second group of press dies, each of the press dies having an end face, the end faces collectively forming a generally cylindrical surface having a diameter when the press dies are in the closed position, each of the press dies having a press cutter having a distal end projecting from its end face toward the longitudinal press axis, the distal ends of the press cutters are extended to an essentially equal radial distance from the longitudinal press axis in forming the tampon preform, each of the press cutters adapted to form a groove in the tampon preform, leaving ribs extending outward from the longitudinal press axis between adjacent grooves, the ribs each having a distal end; and (ii) a stationary conical forming die arranged coaxially relative to the longitudinal press axis for softening the distal ends of the ribs, the forming die having an entry orifice having a diameter that approximately corresponds to the diameter of the generally cylindrical surface formed by the end faces of the press dies in the closed position, and a smaller exit orifice.
  • 6. Apparatus according to claim 5, wherein each press cutter projects radially inward from the press die ends face by an equal distance and is separated from its respective adjacent press cutter by an equal angular amount (α).
  • 7. Apparatus according to claim 6, wherein the end face of each of the press dies has the same shape.
  • 8. Apparatus according to claim 7, wherein each press cutter has a longitudinally extending curved face.
  • 9. Apparatus according to claim 5, wherein the length of each of the press cutters in the longitudinal direction and the width of each of the press cutters in the radial direction are about 10 mm and 2 mm, respectively.
  • 10. Apparatus according to claim 9, wherein when the press dies are in the closed position, the distal ends of the press cutters are disposed 2 to 4 mm from the longitudinal axis.
  • 11. Apparatus according to claim 5, wherein the entry orifice has a diameter of 20 mm and the exit orifice has a diameter of 13 mm.
  • 12. Apparatus according to claim 11, wherein the approximately cylindrical tampon blank has a diameter and all the press dies are adapted to move radially inward to approximately the diameter of the tampon blank, the press dies of the first group being adapted to move further radially inward into the closed position before the press dies of the second group move further radially inward.
  • 13. Apparatus according to claim 11, wherein all of the press dies are adapted to simultaneously move radially inward into the closed position.
  • 14. Apparatus according to claims 13, further comprising (i) an input end adapted to receive the blank, and (ii) a ram arranged on the input end, the ram being axially movable for pushing the preform through the conical forming die.
Priority Claims (1)
Number Date Country Kind
39 34 153 Oct 1989 DE
Parent Case Info

This is a continuation of application Ser. No. 08/124,374 filed Sep. 20, 1993 now abandoned, which is a continuation of application Ser. No. 07/929,844 now abandoned filed Aug. 13, 1992, which is continuation application Ser. No. 07/799,922 now abandoned, filed Nov. 26, 1991, which is a continuation application of Ser. No. 07/596,454, filed Oct. 12, 1990 now abandoned, which are hereby incorporated by reference and all abandoned.

US Referenced Citations (20)
Number Name Date Kind
2152230 Webb Mar 1939
2188423 Robinson Feb 1940
2263909 Webb Nov 1941
2330257 Bailey Sep 1943
2425004 Rabell Aug 1947
2566190 Greiner et al. Aug 1951
2798260 Niepmann et al. Jul 1957
3359981 Hochstrasser Dec 1967
3422496 Wolff et al. Jan 1969
3854481 Messing Dec 1974
4109354 Ronc Aug 1978
4175561 Hirschman Nov 1979
4453296 Friese Jun 1984
4498218 Friese Feb 1985
4627849 Walton Dec 1986
4675217 Forsman Jun 1987
4685178 Nakanishi Aug 1987
4816100 Friese Mar 1989
5165152 Kramer et al. Nov 1992
5592725 Brinker Jan 1997
Foreign Referenced Citations (8)
Number Date Country
261771 Aug 1947 CH
1491161 Jun 1969 DE
26 23 368 Nov 1980 DE
3606150 Aug 1987 DE
1082770 Sep 1967 GB
1548714 Jul 1979 GB
2076656 Dec 1981 GB
8303537 Oct 1983 WO
Non-Patent Literature Citations (1)
Entry
EPO Search Report for Application No. 90119538.8.
Continuations (4)
Number Date Country
Parent 08/124374 Sep 1993 US
Child 08/427468 US
Parent 07/929844 Aug 1992 US
Child 08/124374 US
Parent 07/799922 Nov 1991 US
Child 07/929844 US
Parent 07/596454 Oct 1990 US
Child 07/799922 US