The present disclosure relates to railroad tank cars and in particular relates to attachment of stub sills to the ends of the tank of such a car.
Railway tank cars may be used for carrying a variety of liquid, gaseous, and semi-liquid ladings. Such railway tank cars often include a horizontal, generally cylindrical tank. For many such tank cars, the tank not only carries the lading, but is also used as a primary structural member to carry longitudinal train loads.
These cars typically have stub center sills on each end of the car along with transverse bolster assemblies. The sills carry couplers at their outer ends, and the bolsters have truck assemblies pivotally connected thereto to support the ends of the tank car on the railway tracks. Saddle assemblies, combined with the bolster assemblies, are typically provided at each end of the car. The saddle assembly usually is mated with a doubler plate or saddle pad that is attached to the tank. The saddle pad is typically of steel plate construction and conformed to fit onto the adjacent outer surface of the cylindrical tank.
Each end of the tank typically has a convex head and a doubler plate or head pad of steel plate. In securing the stub center sill to the tank a head brace, typically a U-shaped, wedge-like piece, is placed between the head pad and portions of the stub center sill. It has been conventional to weld the head brace into place, but such welds have been subject to a significant number of fatigue cracks on the head braces or the weld joints associated with the head braces.
According to the present disclosure, a railroad tank car, and a method for assembling a portion of such a tank car, defined by the claims appended hereto, are provided in which a head brace is included in the connection between a stub center sill and the tank, with the interconnection between the stub center sill, the head brace, and the tank being accomplished so as to avoid potential stress concentrations and consequent stress fractures.
In one embodiment of such a railroad tank car a stub center sill includes upwardly extending ears included in side plates of the stub center sill, with the ears extending along and conforming to the shape of the tank in a transitional area between a cylindrical portion and the head of the tank, and a head brace includes arms that lie partly alongside and are welded to the ears.
In one embodiment of the railroad tank car disclosed herein, a doubler plate extends alongside and is welded to the laterally outer face of a side plate of a stub center sill alongside upwardly extending ear portions of the side plates and adjacent an inboard end of a head brace where it overlaps the ears of the side plates.
In one embodiment of the tank car disclosed herein, a head brace rests atop and is welded to a top plate of the stub center sill, and the stub center still has side plates that include a step against which inboard ends of the side portions of the head brace abut.
In accordance with a method disclosed herein, a stub center sill may be connected to the tank of a tank car through a continuous weld joint extending, without a weld termination, along the entire distance from a body bolster along the top of the stub center sill and the head brace.
The foregoing and other features of the disclosures herein will be more readily understood upon consideration of the following detailed description of embodiments taken in conjunction with the accompanying drawings.
Referring now to the drawings which form a part of the disclosure herein, a portion of a railroad tank car 20 includes a tank 22 of steel or other suitable metal and intended for carrying liquid cargo, supported by a stub center sill 24 to which a tank saddle 26 is attached. Conventionally, the saddle 26 extends from a bolster 28 and around a generally cylindrical part 30 of the tank 22 a short distance longitudinally inboard from the convex head 32 of the tank 22. The stub center sill 24 may extend for distance inboard beyond the bolster 28 toward the center of the length of the car 20, as at 33.
As shown here, and in most cases, a doubler plate or head pad 34 of steel is present on a portion of the bottom of the tank above the stub center sill 24, extending around a transitional part 35 of the shape of the tank and onto the head 32, to receive and distribute into the tank 22 various forces applied to the center sill 24 during operation of a train including the car 20.
The stub center sill 24, as may be seen with reference also to
A conventional center bearing 44 may be provided on the bolster 28 at the bottom of the center sill 24, and the saddle 26 extends laterally from the bolster 28 and is welded to a doubler plate 45 that is mounted on the exterior of the tank 22 and extends circumferentially upward toward the middle of the height of the tank's generally cylindrical part 30.
A portion of the upper margin 42 of each side plate 38 of the stub center sill 24 is shaped to fit against the bottom or outer surface of the head pad 34, along the bottom of the cylindrical portion 30. An ear-like portion 46 of each side plate 38 extends upward above the mainly horizontal part of the upper margin 42 and has a concave upper margin shape at 50, fitting closely to the head pad 34 in the transitional portion 35 of the tank 22. An outboard margin 52 of each ear 46 may be straight and may be sloped downward and outward, longitudinally of the car 20, toward a horizontal portion of the upper margin 42 extending further outboard, away from the tank 22.
A generally U-shaped head brace 54, shown in
As may best be seen in
A doubler plate 63 may be provided along the upper portion of each side plate 38 of the stub center sill 24. The doubler plates 63 extend generally longitudinally, from a location longitudinally outboard of the bolster 28 to a location longitudinally outboard beyond the head brace 54. After the stub center sill is assembled to include the bottom plate 36, side plates 38, and top cover plate 40, the doubler plates 63 are welded in place on the laterally outward sides of the side plates 38. The doubler plate 63 are intended to reinforce the side plates 38, but may be of thinner material than that of the side plates 38. For example, the side plates 38 may be of 9/16 inch thick steel plate, and the doubler plates 63 may be of ¼ inch thick plate, as may best be seen in
A small ear 64 on each doubler plate 63 protrudes upward to fit along the surface of the doubler pad 34. A longitudinally outboard margin portion 65 of the ear 64 corresponds in shape to the adjacent portion of the margin of the arm 56 of the head brace 54. As may be seen in
Referring also to
In order to provide a secure weld joint 70, several welding passes will ordinarily be required and used, but there is no weld joint termination required within the entire length of the weld joint 70, from the outboard side of the bolster 28 along the upper margin 42 of the side plates 38, along the upper margin 72 of the doubler plates 63, and the upper margin 59 of the head brace 54, so that the interconnection between the head brace and the tank 22 through the doubler pad 34 is free of weld joint terminations which would, as in previous head brace attachment weld joints, tend to produce stress concentrations that could lead to cracks and failures of interconnection of a stub center sill 24 to the cargo tank 22 of a tank car 20.
The head brace 54, as may be seen in
The head brace 54 may be fashioned from metal plate of an appropriate thickness, for example steel plate ½ inch thick, as shown in
Head braces of various other shapes can be used in joining the stub center sill 24 to the tank 22 with a similarly continuous weld joint 70 extending from the outboard side of the bolster 28 along the stub center sill 24 and the particular head brace without any weld terminations which could present a risk of failure because of stress concentrations. As shown in
Referring to
As with the head braces 54 and 84, an upper margin 106 of the head brace 100 is shaped so as to fit snugly against the doubler pad 34 on the head 32 of the cargo tank 22 when the head brace is bent to its intended shape as shown in
The head braces 84 and 100 can thus be installed in the same fashion as described above with respect to the head brace 54, without any weld joint termination in a location where resulting stress concentrations might result in failures of the weld joint interconnecting the stub center sill 24, the head brace 100, and the tank 22.
Referring next to
Each of the side plates 118 is shaped to include a step-down face 126 leading to a stepped-down horizontal, longitudinally outwardly extending upper margin portion 128 of each side plate 118, that can be seen in
The head brace 114 rests atop the top plate 130, with its upper margin 140 welded to the head pad 34 and its lower margin 142 welded to the horizontal top plate 130. The head brace 114 includes a pair of arms 144 that extend parallel with each other along the lateral margins 146 of the top plate 130, as may be seen also in
A continuous weld joint 152 interconnects the upper margin 140 of the head brace 114 with the head pad 34, and a weld joint 154 interconnects the lower margin 142 of the head brace 114 with the top of the horizontal top plate 130 continuously along portions of the lateral margins 146 and transversely across the top of the horizontal top plate 130, as may be seen best in
The head brace 114 may be formed in a fashion similar to that used in formation of the head braces 54, 84, and 100, particularly the head brace 84 shown in
As an alternative to the head brace 114, a slightly different head brace 164, shown in
The head brace 164 may also be formed in a fashion similar to that used in formation of the head brace 84 shown in
Unlike the head brace 114 a central part 174 is bent arcuately at each of three bends, a central bend 176 and two side bends 178 adjacent the planar, parallel arms 166. Each of the bends 176 and 178 may be formed with a relatively small radius of curvature, so that two flat panels 180 are defined between the central bend 176 and the side bends 178, as may be seen in
A tank car 20 as described above may be assembled by first fastening a preformed head 32 to the cylindrical part 30 of the tank and then attaching the head pad 32 and the doubler plate 45 to the tank 22.
The stub center sill 24, body bolster 28, and saddle 26 may be assembled and supported appropriately to receive the tank 22. The tank 22 may be lowered into position atop the assembled bolster 28, saddle 26, and stub center sill 24, or the tank 22 may be appropriately supported while the bolster 28, saddle 26, and stub center sill 24 are raised into position against the bottom of the tank 22, in contact against the circumferential doubler plate 45 and the head pad 34 and may be tack welded into the desired position. The bolster 28 and saddle 26 may be welded completely to the doubler plate 45. Alternatively, the bolster 28 and saddle 26 may be assembled and fastened to the tank 22 as a later step.
With the stub center sill 24 held in place, as by being tack welded to the tank 22, the appropriate head brace 54, 84, or 100, may be placed into position with its arms 56, 90, or 104 closely alongside and overlapping the ears 46 of the side plates 38, and with the upper margin 76, 92, or 106 in contact against the head pad 34, and the lower margin 62, 94, or 108 resting atop the cover plate 40.
The inboard-facing ends of the arms 56, 90, or 104 of the head brace 54, 84, or 100 are welded to the ears 46 as at 66 in
Once the stub center sill 24 is in place against the bottom of the head pad 34, and the head brace 54, 84, or 100 has been placed into position and has had its arms welded to the ears 46 in a weld 66 extending away from the tank 22, a continuous weld joint 70 can be made. The weld 70 extends from the location of the outboard side of the bolster 28 along the top of the stub center sill 24 and the upper margin 72 of the doubler plate 63, the upper margin 74 of the arms 56, and the upper margin 59 of the head brace 54 and continues further around the head brace 54 and in an inboard direction to the bolster 28 on the opposite side of the car 20. The direction in which the weld joint 70 is completed is not critical, but it may be seen that the weld joint 70 can be continuous, so that there is no need for a weld termination at a location where stresses would likely to be concentrated, and there is no need to terminate a weld in a corner or an arcuately curved portion of the joint between the stub center sill and the head pad 34 of the tank 22.
Similarly, in assembling the tank car 110, with the stub center sill 112 and the head brace 114 or 164 in place against the tank 22 the inboard ends 148 or 168 are welded to the step-down face 126, and the lower margin 172 may be fastened to the top plate 130. A continuous weld can then be made from the bolster along the upper margins 124 of the side web plates 118 and continuing along the upper margin 140 of the head brace 114 to attach the stub center sill 112 to the doubler plate 34 of the tank 22.
With the stub center sill 112 it is also possible to weld the lower margin 142 of the head brace 114 to the upper surface of the horizontal top plate 130 at 182 along the inside of the head brace 114, as may be seen in
The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
3308769 | Halcomb et al. | Mar 1967 | A |
3645213 | Taylor | Feb 1972 | A |
3742866 | Needham et al. | Jul 1973 | A |
3994239 | Baker et al. | Nov 1976 | A |
4466356 | Messersmith et al. | Aug 1984 | A |
4805540 | Mundloch et al. | Feb 1989 | A |
5351625 | Culligan et al. | Oct 1994 | A |
5467719 | Dalrymple et al. | Nov 1995 | A |
5613739 | Sands | Mar 1997 | A |
6357363 | Miltaru | Mar 2002 | B1 |
6557875 | Schlosser et al. | May 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20090241799 A1 | Oct 2009 | US |