Tank device for a motor vehicle

Information

  • Patent Grant
  • 11577602
  • Patent Number
    11,577,602
  • Date Filed
    Wednesday, September 1, 2021
    3 years ago
  • Date Issued
    Tuesday, February 14, 2023
    a year ago
  • Inventors
  • Original Assignees
    • MAGNA Energy Storage Systems GesmbH
  • Examiners
    • Vilakazi; Sizo B
    • Kirby; Brian R
    Agents
    • Jordan IP Law, LLC
    • Vaughn; Todd A.
Abstract
A tank device for a motor vehicle includes a tank container defined by a tank wall having at least one stop region, and at least one lever sensor arranged in the interior of the tank container. The at least one stop region is an end stop for the lever sensor to prevent adhesion of the lever sensor to the tank wall.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority under 35 U.S.C. § 119 to European Patent Publication No. EP 20203502.8 (filed on Oct. 23, 2020), which is hereby incorporated by reference in its complete entirety.


TECHNICAL FIELD

One or more embodiments relate to a tank device for a motor vehicle, for example, a fuel tank for a motor vehicle.


BACKGROUND

It is known that tanks in motor vehicles, such as fuel tanks, can have one or more “lever sensors” in the interior of the tank container. A lever sensor has a lever arm, with a free end, which can move “freely” to an extent limited by the lever arm. At the free end, it is possible, for example, to arrange a float which can float on the surface of a liquid in the tank, e.g., a fuel. At the end of the lever arm opposite the free end, the lever sensor can be secured and the position of the lever arm can be read out. Such a lever sensor can be used, in particular, to detect the current filling level of a tank, and is then also referred to as a “tank sensor.”


End stops are usually also provided for lever sensors in tanks. An end stop for a lever sensor is a component which is usually secured on the tank wall and which forms a defined end stop for the lever sensor. The component for the end stop is usually also formed with a surface which prevents unwanted adhesion of the lever sensor to the end stop component.


SUMMARY

In accordance with one or more embodiments, a tank device for a motor vehicle that can be constructed in a simple and low-cost manner and at the same time makes reliable functioning of the lever sensor possible. The tank device comprises a lever sensor arranged in the interior of a tank container.


In accordance with one or more embodiments, a tank device for a motor vehicle comprising a tank container which is formed by a tank wall having at least one tank stop region, and at least one lever sensor arranged in the interior of the tank container, wherein the at least one stop region is structured to act as an end stop of the lever sensor to prevent adhesion of the lever sensor to the stop region of the tank wall.


In accordance with one or more embodiments, a lever sensor is used in the interior of a tank container, while no separate component is used as the end stop for the lever sensor, the wall of the tank container itself instead being structured in such a way that it acts as a reliable end stop for the lever sensor. The wall of the tank container is therefore formed as a stop zone in a region which is provided for the purpose of acting as an end stop, the “stop region.” In this stop region, the tank wall is therefore specially shaped to prevent adhesion of the end of the lever sensor, for example, of a float. A separate component, which would form the stop, can therefore be dispensed with and also does not have to be secured on the tank wall in a complicated manner.


In accordance with one or more embodiments, the stop region is a limited zone around the intended impact point or the intended impact surface of the end region of the lever sensor. If a plurality of lever sensors is provided in the tank, there is preferably in each case one stop region for each lever sensor, the stop region being designed as described. The tank wall outside the stop regions is structured differently than in the stop region(s), with the result that adhesion of the lever sensor to the tank wall would not be prevented or would be prevented to a lesser extent there. In particular, the inside surface of the tank wall can be structured to be smooth and/or flat outside the stop regions.


In accordance with one or more embodiments, at an end region, the lever sensor can have a stop surface which is provided to strike against the stop region of the tank wall. The stop region of the tank wall is structured to have a size (in area) that is greater or larger than the size (in area) of the stop surface of the lever sensor. The stop region of the tank wall comprises a surface which has a side length or diameter of no more than 20 mm, or no more than 10 mm.


In accordance with one or more embodiments, the stop surface of the lever sensor is arranged on a floating element of the lever sensor.


In accordance with one or more embodiments, the at least one stop surface or a plurality of stop surfaces is arranged on a tank wall of the tank device which is at the top in the installed position.


In accordance with one or more embodiments, the stop region of the tank wall has a plurality of structures protruded from the surface which reduce adhesion of the lever sensor to the tank in comparison with a smooth surface.


In accordance with one or more embodiments, the structures on the surface of the tank wall comprise elevations and/or depressions. For example, the structures on the surface of the tank wall may take the form of corrugations, channels, notches, grooves, ribs and/or knobs.


Additionally or alternatively, the stop region of the tank wall has at least one deformation towards the inside or towards the outside thereof. The at least one deformation comprises a curvature, in particular, a camber.





DRAWINGS

One or more embodiments will be illustrated by way of example in the drawings and explained in the description below.



FIG. 1 illustrates a three-dimensional partial representation of a tank device, in accordance with one or more embodiments.



FIG. 2 illustrates a plan view from the inside of the stop region of the tank device of FIG. 1.



FIG. 3 illustrates a side view of the stop region of a tank device of FIG. 2.



FIG. 4 illustrates a sectional view of the stop region of the tank device of FIG. 3.





DESCRIPTION


FIGS. 1 through 4 illustrate a tank device for a motor vehicle, in accordance with one or more embodiments.


The illustrated example of FIG. 1 provides an overview of a segment of the interior of the tank device, which comprises a tank container formed or otherwise defined by a tank wall 1. Arranged in the interior of the tank is a lever sensor 2 to sense or determine a filling level in the tank container. The level sensor 2 is mounted on a floating element 6 or float arranged on the tank wall 1.


The tank wall 1 includes a stop region 3 arranged at a top or uppermost inner surface the tank, particularly in the installed position. The stop region 3 is formed integrally into the tank wall 1. At the stop region 3, the lever sensor 2 has a stop surface on the floating element 6 of the lever sensor 2. The stop region 3 of the tank wall 1 is structured to act as an end stop of the lever sensor 2, namely, for the floating element 6, and to prevent adhesion of the lever sensor 2 to the tank wall 1. For this purpose, the stop region 3 of the tank wall 1 has a plurality of structures on a surface thereof. In the illustrated embodiment, the structures comprise elevations and depressions in the form of corrugations or ribs 4.


As illustrated in FIGS. 3 and 4, the stop region 3 of the tank wall 1 is additionally structured having an inwardly directed curvature 5, i.e., a camber. The stop region 3 serves to prevent adhesion of the lever sensor 2 to the tank wall 1 without the need to secure an additional component on the tank wall for this purpose.


The terms “coupled,” “attached,” or “connected” may be used herein to refer to any type of relationship, direct or indirect, between the components in question, and may apply to electrical, mechanical, fluid, optical, electromagnetic, electromechanical or other connections. In addition, the terms “first,” “second,” etc. are used herein only to facilitate discussion, and carry no particular temporal or chronological significance unless otherwise indicated.


Those skilled in the art will appreciate from the foregoing description that the broad techniques of the embodiments can be implemented in a variety of forms. Therefore, while the embodiments have been described in connection with particular examples thereof, the true scope of the embodiments should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification, and following claims.


LIST OF REFERENCE SYMBOLS






    • 1 tank wall


    • 2 lever sensor


    • 3 stop region


    • 4 ribs


    • 5 curvature


    • 6 floating element




Claims
  • 1. A tank device for a motor vehicle, comprising: a tank container defined by a tank wall having at least one stop region in an interior of the tank container, the at least one stop region having a plurality of structures on a surface thereof that are formed as corrugations; andat least one lever sensor arranged in the interior of the tank container,wherein the at least one stop region is an end stop for the lever sensor to prevent adhesion of the lever sensor to the tank wall.
  • 2. The tank device of claim 1, wherein the structures comprise elevations and/or depressions.
  • 3. The tank device of claim 1, wherein the at least one stop region comprises at least one deformation directed towards an inside of the tank wall or towards an outside of the tank wall.
  • 4. The tank device of claim 1, wherein the at least one deformation comprises a camber.
  • 5. The tank device of claim 1, wherein the stop region of the tank wall is formed located at a top of the tank wall in an installed position of the tank container.
  • 6. The tank device of claim 1, further comprising a floating element arranged at one end of the lever sensor.
  • 7. The tank device of claim 6, wherein the floating element is provided for abutment against the at least one stop region.
  • 8. A tank device for a motor vehicle, comprising: a tank container defined by a tank wall having at least one stop region formed integrally into the tank wall at an uppermost inner surface in an interior of the tank container, the at least one stop region having a plurality of structures on a surface thereof that include elevations and depressions formed as ribs;a floating element in the interior of the tank container, the floating element having a stop surface for abutment against the at least one stop region; andat least one lever sensor, extending from the floating element in the interior of the tank container,wherein the at least one stop region is an end stop for the lever sensor to prevent adhesion of the lever sensor to the tank wall, the at least one stop region having a size that is greater than a size of the stop surface.
  • 9. The tank device of claim 8, wherein the at least one stop region comprises at least one deformation directed towards an inside of the tank wall or towards an outside of the tank wall.
  • 10. The tank device of claim 8, wherein the at least one deformation comprises a camber.
  • 11. The tank device of claim 8, wherein the stop region of the tank wall is formed located at a top of the tank wall in an installed position of the tank container.
  • 12. A motor vehicle, comprising: a tank device including: a tank container defined by a tank wall having at least one stop region formed integrally into the tank wall at an uppermost inner surface in an interior of the tank container, the at least one stop region having a plurality of structures on a surface thereof that include elevations and depressions formed as ribs;a floating element in the interior of the tank container, the floating element having a stop surface for abutment against the at least one stop region; andat least one lever sensor, extending from the floating element in the interior of the tank container,wherein the at least one stop region is an end stop for the lever sensor to prevent adhesion of the lever sensor to the tank wall, the at least one stop region having a size that is greater than a size of the stop surface.
Priority Claims (1)
Number Date Country Kind
20203502 Oct 2020 EP regional
US Referenced Citations (34)
Number Name Date Kind
1390892 Eimke Sep 1921 A
2508290 Poetsch May 1950 A
3079125 Tischler Feb 1963 A
3381709 Pregno May 1968 A
4184370 Schlick Jan 1980 A
4220047 Mauboussin Sep 1980 A
4845986 Hayashi Jul 1989 A
4886089 Gabrlik Dec 1989 A
5004002 Kobayashi Apr 1991 A
5172714 Kobayashi Dec 1992 A
5267475 Gaston Dec 1993 A
5814213 Glasgow Sep 1998 A
6000913 Chung Dec 1999 A
6230690 Umetsu May 2001 B1
7032610 Matsuo Apr 2006 B2
7418975 Nojiri Sep 2008 B2
7458261 Miyagawa Dec 2008 B2
7484409 Dykstra Feb 2009 B2
7555946 Sawert Jul 2009 B2
9062563 Varanasi Jun 2015 B2
9770979 Cragel Sep 2017 B2
10865750 Soreo Dec 2020 B2
20020046770 Hattori Apr 2002 A1
20020157706 Bergsma Oct 2002 A1
20040003843 Sugiyama Jan 2004 A1
20060090552 Ziegler May 2006 A1
20080168837 Okada Jul 2008 A1
20090071512 Lee Mar 2009 A1
20090101370 Tasovski Apr 2009 A1
20090139326 Kanahara Jun 2009 A1
20150328981 Cragel Nov 2015 A1
20170307432 Fuller Oct 2017 A1
20170356408 Yang Dec 2017 A1
20180143065 Klimesch May 2018 A1
Foreign Referenced Citations (8)
Number Date Country
69318657 Oct 1998 DE
102007026146 Dec 2007 DE
102008045539 Mar 2009 DE
112012005441 Jul 2020 DE
3069320 Jan 2019 FR
20130026635 Mar 2013 KR
WO-2006104076 Oct 2006 WO
WO-2021085122 May 2021 WO
Related Publications (1)
Number Date Country
20220126680 A1 Apr 2022 US