The invention is based on a tank.
In motor vehicles having a combustion engine, the pollutant nitrogen oxide, inter alia, has to be reduced because of more stringent exhaust emission regulations. One method which is used is the “SCR” method—a selective catalytic reduction method, in which the pollutant nitrogen oxide is reduced to nitrogen and water with the aid of, for example, a liquid reducing agent. The reducing agent which is stored in a tank is conveyed by a conveying module, which is preferably arranged in the vicinity of the tank or on or in the tank, via a line from the tank to a metering module which is arranged in the region of the exhaust gas tract and commonly has a nozzle for the finely distributed injection of the reducing agent into the exhaust gas.
DE 102006027487 has already disclosed a tank for storing a liquid reducing agent of this type for use in an exhaust gas aftertreatment system of a motor vehicle, in particular for the selective catalytic reduction of nitrogen oxides, in which movably mounted components are submerged into the AdBlue, an aqueous urea solution, which is liquid above −11 degrees Celsius.
By contrast, the tank according to the invention has the advantage of, in a simple manner, avoiding chafing or abrasion at contact points of components located in the tank, which chafing or abrasion would otherwise occur as a consequence of sloshing movements of the active ingredient in the tank or when ice is formed in the tank.
The use of a fabric hose is particularly advantageous; said fabric hose can be fitted in a simple manner and is highly flexible and therefore does not have an effect on the overall rigidity of the parts to be protected. Axial positional orientation can easily take place since the fabric hose is automatically fixed in the axial direction by fastening points of the lines to be protected and of the suction lance.
In the event of a hose or fabric hose made of hard plastic being used, the coefficient of friction with respect to adjacent components is greatly reduced, thus effectively avoiding abrasion and wear.
The combination of a soft, flexible suction lance and of a hard fabric hose ensures reliable protection against abrasion while simultaneously maintaining the flexibility which is advantageous in the case of a medium which freezes.
An abrasion-protected suction lance is advantageously provided with a heating wire which can thaw the suction lance and the ice in the relatively close surroundings thereof.
If the abrasion protection has holes, as a braided hose or a fabric hose may have because of not being tightly knitted but rather merely being used as a spacer, a consistent thermal connection of a continuous liquid region of the active ingredient between the wall of a suction lance, which is provided with heating wires, and adjacent ice regions is ensured through the holes of the abrasion protection. The heating wire heat can therefore optimally thaw the ice around the suction lance. Furthermore, in such a “liquid gap” around the suction lance, an amount of runback which is recycled into the tank has the opportunity of flowing back again into the direct region around the heater. If the spacer were planar, heating in this direct form would not be provided and the active ingredient would be heated merely indirectly via the spacer. Furthermore, the amount thawed around the heater is effectively vented into the air space above the ice. Protection against chafing is advantageously provided, the protection at the same time ensuring intimate contact of the liquid with a heater integrated in the suction hose or the suction lance.
Further advantages emerge by means of the further features mentioned in the further dependent claims and in the description.
Exemplary embodiments of the invention are illustrated in the drawing and are explained in more detail in the description below.
In the drawing
The reducing agent which freezes below −11° C. undergoes an increase in volume by approx. 10% during the liquid/solid phase transition. If the tank freezes from the tank base, the growth in volume of the reducing agent will arise at the surface. Due to this fact, the ice may exert a non-negligible pressure on the tank upper shell 6 or on the tank cover 13. Accordingly, the tank upper shell will undergo vertical deformation. The tank contains various components (heater 21, level sensor 17, suction lance 11) which are led out of the upper shell 6 of the tank via the separate cover 13. On account of the above-described ice pressure problem and for installation reasons, the feed lines for the components and the suction lance are designed with a corresponding excess length which has already been described. Said excess length takes up a defined, curved position in the completely fitted tank. Owing to said curvature, a possible vertical extension of the tank upper shell can be absorbed without the components being damaged. The suction lance 11 runs in the slosh pot 7, and, after the cover has been installed in the tank, is placed onto the wall of the slosh pot in a predetermined arch. The electric feed lines (not illustrated specifically) of the heater, the electric feed line 18 of the level sensor and the electric feed line of a temperature sensor (not illustrated specifically) are likewise placed onto adjacent components in the container interior in previously defined positions. In the case of the suction lance which bears against the slosh pot wall, abrasion may occur in the region of the contact point of suction lance/splash pot wall due to the accelerations which occur (for example on a rough road section). Similarly, as a consequence of contact with other components, chafing and therefore abrasion may occur at the electric lines. This is even more the case if the suction lance and the lines have, for example, an elastomer sheath which has a tendency to increased abrasion in the contact region.
The present invention shows how chafing or abrasion at the previously described contact points 19 can be avoided. Basically, spacers are incorporated. The lines and suction hoses affected by the abrasion are covered by a braided fabric hose which is customary in electrical engineering. Said fabric hose which is braided from a multiplicity of plastic fibers and bears tightly against the part to be protected takes on the function of the spacer here.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 041 723 | Aug 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/058554 | 7/7/2009 | WO | 00 | 2/28/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/023011 | 3/4/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4684786 | Mann et al. | Aug 1987 | A |
20060196263 | Stahlmann et al. | Sep 2006 | A1 |
20080149199 | Bleuel | Jun 2008 | A1 |
20090065508 | Haeberer et al. | Mar 2009 | A1 |
20100025408 | Haeberer et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
20313163 | Jan 2004 | DE |
202004018697 | Feb 2005 | DE |
102005030954 | Jan 2007 | DE |
102006027487 | Mar 2007 | DE |
2005299441 | Oct 2005 | JP |
2006144562 | Jun 2006 | JP |
2007285210 | Nov 2007 | JP |
2008115784 | May 2008 | JP |
2135786 | Aug 1999 | RU |
0227280 | Apr 2002 | WO |
2008023021 | Feb 2008 | WO |
2008040591 | Apr 2008 | WO |
Entry |
---|
PCT/EP2009/058554 International Search Report. |
Number | Date | Country | |
---|---|---|---|
20110168280 A1 | Jul 2011 | US |