This application claims priority from International PCT Application No. PCT/NO2008/000065, filed on Aug. 20, 2008, which claims priority from Norwegian Patent Application No. 20070958, filed Feb. 20, 2007, the disclosures of each of which are incorporated herein by reference in their entireties.
The present invention relates to tanks for storage and transportation of fluids such as hydrocarbons, including low temperature liquefied natural gas. This includes tanks for ships, for gravity base and floating offshore structures, and for land-based installations.
Tanks may be designed in many different configurations, such as spheres, cylinders, cones and shells in general, as well as prismatic shapes. The principle advantage of prismatic shapes is that they nest close to each other, minimising the volume taken up by such tanks. Simple prismatic tanks are far less efficient structurally as they rely on bending action for mobilisation of strength. Shells develop strength through direct tension in the plane of the shell. This develops greater strength for the same amount of material.
A more efficient design of prismatic shapes is to incorporate internal stays (tension beams). By developing tension as the main means of restraining the internal load or pressure, such prismatic staid tanks are comparable to shell shapes in structural efficiency. WO 2006/001711 A2 discloses such tanks and is hereby incorporated by reference.
Apart from having sufficient strength to restrain yielding, the tank structure must also be designed to prevent crack propagation as a consequence of fatigue. The principle concern of such structures is crack propagation at weld locations, as opposed to locations in base metal where crack propagation will progress very slowly or even be arrested.
The object of the present invention is to design a double barrier tank such that all connections between the two barriers are base metal without local stress raisers, to ensure that fatigue cracks do not propagate from one liquid barrier to the other.
The object of the present invention is obtained by a prismatic tank.
The more common way of joining a continuity of beam sections to foam a tank wall is to place the joints between the beams close to the inflection points where the axial stresses in the flanges are zero and the shear load is modest. However, in the present invention the joints between the beam sections are placed at the connecting points of the internal stays. In the beam joints, only the flanges of the beams are connected to each other and not the webs. Instead, the webs are recessed in a smooth curve, so that the end faces of the recessed webs form an opening with a rounded contour. Thus, there will be no weld or other connection between the end faces of the webs, thereby avoiding stress concentrations and material changes susceptible to fatigue crack propagation. The reduction in shear strength caused by the opening may be counteracted by a stiffening bracket applied to the inner wall of the tank generally in the plane of the web. These brackets may suitably be made to attach the internal stays of the tank to the double wall.
Further details of the invention will be described below with reference to the exemplifying embodiments shown schematically in the appended drawings, wherein:
The bracket 6 is preferably welded to the rib 12 before the stay 3 is attached to the bracket. Furthermore, if expedient from a manufacturing point of view, the bracket 6 may be divided into two symmetrical parts, each being welded to the respective beam section 4 before the beam sections are joined at the joint 5, whereupon the bracket parts are welded together before being attached to the stay 3. The stay may be attached to the bracket 6 by means (not shown), e.g. for both on either side of the web 15 of the stay. This will cause the force between the stay 3 and bracket 6 to be taken up mainly as a friction force created in the contact area between the bracket 6 and the respective flange 16 of the stay 3 (
An enlarged cross-section taken along line IV-IV in
The figure shows two beam sections 4 joined together along adjoining longitudinal edges of the outer and inner flanges 7, 8 by welds 17. The webs 9 extending between the flanges 7, 8 will be recognised, as also the openings 11 made in the webs. On the inner side of the inner flange 8, the rib 12 will be seen as an extension of the respective web 9, as will the weld 13 between the rib 12 and respective bracket 6. Furthermore, the second opening 14 is also shown.
According to the purpose of the present invention, it is also important to avoid stress concentrations and fatigue crack propagation at the corners of the tank. A simple mitre joint where the flanges and webs of the beam sections are welded together, would therefore not be satisfactory. Consequently, the invention suggests special connection pieces or beams for such purposes.
It will be understood that the invention is not limited to the exemplifying embodiments shown in the drawings and described above, but that it may be modified and varied within the scope of the appended claims. Thus, means of joining tank element other than welding and bolting may be used, such as gluing or riveting. Furthermore, to reduce the detrimental effect of minor dimensional differences or slight warping of the beam sections at their end faces to be joined, a transition piece, e.g. in the form of an I-beam section, may be inserted between said faces. In such cases, a second opening should be introduced in the weld areas on either side of the I-beam section.
Number | Date | Country | Kind |
---|---|---|---|
20070958 | Feb 2007 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO2008/000065 | 2/20/2008 | WO | 00 | 11/25/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/103053 | 8/28/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3472414 | Rodrigues | Oct 1969 | A |
20070194051 | Bakken et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
0298181 | Jul 1987 | EP |
1591601 | May 1970 | FR |
WO 2006001711 | Jan 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100084407 A1 | Apr 2010 | US |