The present invention relates to a modular tank system, as well as a tank and frame suitable for use in said system.
In off-shore oil industry, chemical tanks are commonly used for receiving, storage, back-loading, processing and transport of various fluids such as helifuel, Mono Ethylene Glycol (MEG), hydrocarbon contaminated drilling and completion fluids and crude/waste oil. Present tanks are provided as separate units arranged on various locations onboard an offshore installation. For example, on a semi-submersible drilling rig the location is typically the main deck, riser/pipe deck. Normally 2″ rubber hoses are connected manually for transferring liquid to and from tanks, dependent upon operations.
Mounting and arranging prior art chemical tanks offshore is time consuming and also commonly requires welding of boundaries to obtain a drip/spill tray to capture any leakage from the tanks.
In for instance well test and completion operations the mounting/arranging is especially time consuming in connection with the installation of 30/50 m3 storage tanks. Such installation does not only comprise welding and sea-fastening, including the boundaries mentioned above, but also the rig up of all rubber hoses for inlet and outlet, as well as for vent lines towards safe routing overboard, or to a flare system.
Due to limitations on rig structure, spreader beams are needed to be spotted and welded to strengthen the deck to distribute the heavy load from theses storage tanks mentioned above.
A further disadvantage of present 30/50 m3 storage tanks is that they have to be shipped empty. Dimensions on some of the storage tanks are wider (width and height) than allowable for transport onshore with transport trucks. With a frame being wider than 2.6 m, a follow car is needed and transport is only allowed at certain time periods and weekdays.
Further, the 30/50 m3 storage tanks are only for atmospheric pressure, and may not be used for liquids having concentrations of hydrocarbon gases entrapped.
For transportation, liquids from the 30/50 m3 storage tanks must be transferred to portable slop tanks. Common sizes for portable tanks on the marked are 500 gallons and 1000 gallons (i.e. commonly from 2300 liters up to max 4500 liters), and they come in both vertical and horizontal configurations.
These portable tanks have only atmospheric pressure rating, and needs to be manned during filling operations. The filling occurs through an open manhole at the top of the tank. Consequently, personnel are exposed to fumes from hydrocarbon contaminated waste during filling. Further, the portable tanks are open vented under filling, and explosive fumes are a potential hazard onboard. The mix of both vertical and horizontal portable tanks shipped offshore, in combination with the deck layout (I-beams), makes it difficult to spot tanks next to each other for efficient space exploitation onboard a rig, where normally there is very little space available.
In addition to the above-described issues related to present storage tanks and/or portable slop tanks, some rigs also have limitations regarding the filling of portable slop tanks in that transfer and filling is only allowed after a well is shut in.
Further issues related to the present storage and/or portable slop tanks is that it is time consuming to transfer and fill the portable slop tanks during for instance a production testing, and further that none of the tanks have any integrated protection against fire. In present solutions, water must be rigged up/directed if not present onboard.
The purpose of the present invention is to avoid or alleviate at least some of the disadvantages of the prior art tanks and/or tank systems.
The present invention provides a modular tank system, as well as a tank and a mounting frame for use in such a system. The invention is defined in the appended claims and in the following:
In a first aspect, the present invention provides A modular tank system comprising at least two pressure tanks and a mounting frame, wherein
The first inlet of the pressure vessel is preferably arranged in a lower half of the pressure vessel, even more preferred arranged in a bottom part of the pressure vessel, such that the pressure vessel may be emptied through the inlet if required.
In an embodiment of the first aspect, the invention provides a modular tank system, wherein:
In yet an embodiment of the first aspect, the invention provides a modular tank system, wherein:
In yet an embodiment of the first aspect, the invention provides a modular tank system, wherein the at least two fluid connectors of the frame process line, and the first fluid connector of the tank process line of the at least two pressure tanks, are arranged such that the frame process line is fluidly connected to the tank process line of one of the at least two pressure tanks when the pressure tank is mounted upon the base frame.
In yet an embodiment of the first aspect, the invention provides a modular tank system, wherein the frame process line, and optionally the frame suction line, the frame vent line and the frame relief line, comprises a process line port, a suction line port, a vent line port and a relief line port, respectively. Each of the respective line ports providing a common fluid connection to the at least two fluid connectors of the frame process line, the frame suction line, the frame vent line and the frame relief line, respectively.
In a second aspect, the present invention provides a pressure tank for use in a modular tank system according to the first aspect, the pressure tank comprises a pressure vessel and a protection frame within which the pressure vessel is arranged, the pressure vessel comprises a vent outlet and a first inlet, wherein
In an embodiment of the second aspect, the invention provides a pressure tank wherein the pressure vessel comprises
In yet an embodiment of the second aspect, the invention provides a pressure tank wherein the vent outlet of the pressure vessel is a second outlet arranged in an upper half of the pressure vessel and fluidly connected to at least one of a tank vent line and a tank relief line, the tank vent line and the tank relief line comprises a first fluid connector.
In yet an embodiment of the second aspect, the invention provides a pressure tank, wherein the tank process line is arranged such that the first fluid connector of the tank process line is arranged at a bottom section of the pressure tank and the second fluid connector of the tank process line is arranged at a top section of the pressure tank.
In yet an embodiment of the second aspect, the invention provides a pressure tank wherein the first fluid connector and the second fluid connector of the tank process line are arranged such that said second fluid connector is connectable to a first fluid connector of the tank process line of another pressure tank according to the second aspect, when said another pressure tank is mounted on top of the pressure tank.
In yet an embodiment of the second aspect, the invention provides a pressure tank wherein the pressure vessel has a substantially circular circumference in a horizontal plane during use, and the inlet is arranged such that a process stream will enter the pressure vessel in a direction being substantially tangential to the circular circumference at the inlet.
In yet an embodiment of the second aspect, the invention provides a pressure tank comprising a tank process line and at least one of a tank suction line, a tank vent line or a tank relief line. Preferably, each of the tank process line, the tank suction line, the tank vent line and the tank relief line is arranged between the pressure vessel and the protection frame, such that the lines are not easily damaged. Further, each of the tank process line, the tank suction line, the tank vent line and the tank relief line comprises a pipe or conduit arranged in a substantially vertical direction when the pressure tank is in use. The pipe (or the tank process line, the tank suction line, the tank vent line or the tank relief line) comprises a first fluid connector and a second fluid connector, arranged at opposite ends of the pipe, wherein the first fluid connector is arranged at the bottom of the pressure tank and the second fluid connector is arranged at the top of the pressure tank.
In a third aspect, the present invention provides a mounting frame for use in a modular tank system according to the first aspect, comprising a base frame upon which at least two pressure tanks may be mounted, the base frame comprises a frame process line having at least two fluid connectors and at least one process line port, wherein each fluid connector is connectable to a first fluid connector of a tank process line of one of the at least two pressure tanks, and arranged such that the frame process line may be fluidly connected to the tank process line when said pressure tank is mounted upon the base frame.
In an embodiment of the third aspect, the invention provides a mounting frame wherein the base frame comprises a frame suction line comprising at least two fluid connectors and a suction line port, each fluid connector connectable to a first fluid connector of a tank suction line of one of the at least two pressure tanks and arranged such that the frame suction line may be fluidly connected to the tank suction line when the pressure tank is mounted upon the base frame.
In yet an embodiment of the third aspect, the invention provides a mounting frame wherein the base frame comprises at least one of a frame vent line and a frame relief line, the frame vent line and frame relief line comprising at least two fluid connectors and a relief line port and a vent line port, respectively, each fluid connector connectable to at least one of a first fluid connector of a tank vent line and a tank relief line of one of the at least two pressure tanks, and arranged such that at least one of the frame vent line and the frame relief line may be fluidly connected to the cooperating tank vent line and tank relief line when the pressure tank is mounted upon the base frame.
In yet an embodiment of the third aspect, the invention provides a mounting frame wherein the base frame comprises a first and second pair of parallel sidewalls, and a bottom plate.
In yet an embodiment of the third aspect, the invention provides a mounting frame wherein the sidewalls and bottom plate provides a drip tray into which spillage from a mounted pressure tank may be collected during use.
In yet an embodiment of the third aspect, the invention provides a mounting frame comprising two base frames pivotally connected, such that the base frames may be folded together.
The pressure vessel is preferably rated for pressures of at least 50 psi, in the range of 50-350 psi, or in the range of 150-250 psi. In the present disclosure, the term “pressure vessel” is intended to mean a vessel suitable for handling fluids under pressure, wherein at least parts of the fluids are liquids under normal atmospheric pressure and room temperature. The latter requirement introduces certain restrictions, especially regarding the level at which inlets and outlets must be arranged on the vessel to allow for inlet/outlet of liquids.
The term “is arranged in” in relation to the position of inlets/outlets of the pressure vessel is intended to define at which point a fluid passing through an inlet/outlet enters or exits the internal volume of the pressure vessel. For instance, a process fluid stream entering through the first inlet may optionally pass through the wall of the vessel at any suitable point, for example via a conduit, as long as the first inlet is arranged such that the process fluid enters the lower half of the pressure vessels internal volume. Preferably, the inlets/outlets pass through the wall of the pressure vessel at the position at which they are arranged.
The invention is described in more detail by reference to the following drawings of a preferred embodiment of a tank system comprising a pressure tank and a mounting frame:
An embodiment of a pressure tank 1 for use in a modular tank system according to the invention is depicted in
In order to fluidly connect the tank process line 6 of a first pressure tank with the tank process line of a second pressure tank 1′, the first fluid connector 12 and the second fluid connector 23 of the tank process line are arranged such that the second fluid connector 23 of the first pressure tank 1 will connect with the first fluid connector of the second pressure tank 1′ when said second pressure tank 1′ is mounted on top of the first pressure tank 1, see also
The first and second pressure tank are secured together by having the upper face of the upper cross beams featuring first locking means 35, for instance a pneumatic twist lock, and the lower face of the lower cross beams featuring second locking means 36, for instance a recess, e.g. an ISO corner, for receiving the first locking means when the second pressure tank is mounted on top of the first pressure tank. Cooperating locking means 73, preferably similar to the first locking means 35, are also arranged on the mounting frame, see
To facilitate transport and movement of the pressure tank, the protection frame comprises lifting eyes 37 secured to the upper cross beams.
Further, the pressure vessel 3 of the present pressure tank comprises a suction outlet 7 (or a first outlet 7), and a vent/relief outlet 9 (or a second outlet 9).
The suction outlet 7 is for withdrawing fluids from the pressure vessel 3, and is arranged at the lower end cap 28 of the pressure vessel. The suction outlet 7 is fluidly connected to a tank suction line 8. A pneumatic actuator driven valve 40 is arranged between the suction outlet 7 and the tank suction line 8. The valve 40 acts as a first fluid barrier. The tank suction line is arranged similar to the tank process line 6, featuring a first fluid connector 13 and a second fluid connector 38, at the lower cross beam 34 and the upper cross beam 33, respectively. The second fluid connector 38 of the tank suction line 8 of a first pressure tank 1 is able to connect with the first fluid connector 13 of the tank suction line 8 of a second pressure tank 1′ in a manner as described above for the tank process line. When not coupled, the first and second fluid connector 13, 38 of the tank suction line 8 will act as a second fluid barrier during for instance transportation.
The vent/relief outlet 9 is fluidly connected to a tank vent line 10 and a tank relief line 11 through a distributor 62 having a distributor vent line outlet 41 and a distributor relief line outlet 42. The tank vent line 10 and the tank relief line 11 are arranged similar to the tank process line 6, both the tank vent line and the tank relief line featuring a first fluid connector 14,14′ and a second fluid connector 39,39′, at the lower cross beam 34 and the upper cross beam 33, respectively. The second fluid connectors 39,39′ of the tank vent line 10 and the tank relief line 11 of a first pressure tank 1 are able to connect with the first fluid connectors 14,14′ of the tank vent line 10 and the tank relief line 11, respectively, of a second pressure tank 1′ in a manner as described above for the tank process line. The pressure vessel 3 may be depressurized via the distributor by allowing gas to be routed through the vent line 10 to a safe zone. The distributor relief line outlet 42/tank relief line 11 act as the last barrier to avoid rupture of the pressure vessel. Pressure build-up in the tank relief line 11 above maximum allowable work pressure will initiate opening of a rupture disc or safety valve.
The pressure tank 1 also features a fire extinguishing system comprising a deluge pipe section 43 featuring a suitable number of spray nozzles 44. The pipe section is arranged on the upper cross beams 33 of the protective frame and the spray nozzles are arranged to direct a spray of for instance water towards the pressure vessel 3. The deluge pipe section 43 is fluidly connected to a tank deluge line 45. The tank deluge line 45 is arranged similar to the tank process line 6, the tank deluge line 45 featuring a first fluid connector 46 and a second fluid connector 47, at the lower cross beam and the upper cross beam, respectively. The second fluid connector 47 of the tank deluge line 45 of a first pressure tank 1 is able to connect with the first fluid connector 46 the tank deluge line 45 of a second pressure tank 1′ in a manner as described above for the tank process line, and/or to a fluid connector on a frame deluge line, as described below.
Flanges 48 are arranged on the pressure vessel for accommodating level and/or pressure measuring sensors, see
The tank process line and/or the inlet 5 is fluidly connected to a manual ball valve 49, and the tank suction line and/or suction outlet 7 is fluidly connected to a manual ball valve 50. The ball valves 49,50 provide the possibility of manually emptying the tank if needed and also use of the tank independent of the mounting frame described below.
The pressure vessel 3 may be manufactured in any suitable material. Commonly, pressure vessels are made in stainless steel, but the pressure vessel may advantageously also be made in a transparent material having the required properties, such as carbon fiber, an acrylic polymer, polymer composites comprising reinforcing glass fiber, combinations thereof and similar.
The pressure vessel features a large flange 51, for instance 20 inch, arranged in the upper end cap 29. The large flange enables the option of having the pressure vessel equipped with a filter unit 52 for completion fluid treatment such as brine filtration, or with an agitator 53 for mixing of fluids. An embodiment of a pressure tank featuring a filter unit 52 is shown in
An embodiment of a mounting frame 2 for use in a modular tank system according to the invention is depicted in
Further, the frame process line 16 comprises multiple fluid connectors 20, the fluid connectors are each connectable to a first fluid connector 12 of the tank process line 6 of a pressure tank 1, when said pressure tank is mounted on the base frame 15 (or mounting frame 2). Similarly, the frame suction line 17 comprises multiple fluid connectors 21, the fluid connectors are each connectable to a first fluid connector 12 of the tank suction line 8 of a pressure tank 1, when said pressure tank is mounted on the base frame 15 (or mounting frame 2); the frame vent line 18 comprises multiple fluid connectors 22, the fluid connectors are each connectable to a first fluid connector 14 of the tank vent line 10 of a pressure tank 1, when said pressure tank is mounted on the base frame 15 (or mounting frame 2); the frame relief line 19 comprises multiple fluid connectors 22′, the fluid connectors are each connectable to a first fluid connector 14′ of the tank relief line 11 of a pressure tank 1, when said pressure tank is mounted on the base frame 15 (or mounting frame 2); and the frame deluge line 56 comprises multiple fluid connectors 63, the fluid connectors are each connectable to a first fluid connector 46 of the tank deluge line 45 of a pressure tank 1, when said pressure tank is mounted on the base frame 15 (or mounting frame 2).
The two base frames 15 are pivotally connected by hinges 60, see
A modular tank system according to the invention is depicted in
The stacking of two pressure tanks 1,1′ on top of each other is shown in more detail in
The embodied modular tank system comprises several features making it highly suitable for extensive processing of a provided fluid. However, more simple embodiments will also be highly advantageous in providing a tank system for tasks such as oil spill recovery, which does not require any further processing apart from loading, storage and subsequent transportation. Other possible applications of the modular tank system is in storage of glycol offshore, well testing services, connected to cleaning process equipment during general platform and rig shutdown, other well service operations, such as snubbing and coil tubing operations involving degassing, treatment and circulation of completion fluids (brine) during milling, washing operations etc.
Detailed Description of Some Well Test Applications of the Modular Tank System According to the Present Invention
Cleanup Flow:
Providing a cleanup flow is usually the last step before handing over a well to the production facilities. A semi submersible drilling rig is the typically workhorse that both drill and run completions to finalize a well.
An increased amount of production wells have long horizontal sections with one or more branches (multilateral). Consequently, this leads to an increased amount of drilling and completion fluids that must be removed in order to get the well flowing.
A well test plant is mobilized and connected to the well to provide a means for safely collecting drilling and completion fluids, as well as hydrocarbons, see
The main equipment for distributing various liquids, and safely handle hydrocarbons, are:
Production cleanup to well test facilities involves offloading the drilling and completion fluids to a storage facility onboard the rig, followed by transfer/shipping onshore to a dedicated disposal facility.
Various storage tanks 66 are commonly used to make sure there is a high storage capacity. Such tanks are supplied by various vendors, and have capacities ranging from 25 m3 up to 50 m3. A common feature of all these tanks is that they have a low pressure rating of max allowable work pressure of 1.5 bars. They have to be shipped empty. Operationally these tanks constitute a temporary step for gaining time before transferring the drilling and completion fluids into portable slop tanks.
Portable slop tanks 67 are made in huge numbers from various vendors. Typically, these tanks are made in two sizes (2.3 m3 and 4-4.5 m3) and have atmospheric pressure rating. As a consequence, these tanks are only to be filled from the top (through an open manhole 68) by a person 69 operating a 2″ hose. To have volume control (i.e. avoid overfill) it is necessary to have a person on top of the tank during filling at all times, see
These portable slop tanks 67 do not have any drip tray to collect spill, therefore the rig is responsible for making sure there is a closed system around the tanks to catch any accidental discharge/spillage.
In summary, the liquid flow path in a present system for cleanup flow is:
Test Separator=>Calibration Tank=>30/50 m3 Tank=>Portable Tanks=>Lift to Supply vessel
In this connection it is worth mentioning that the liquid transfer stage between the calibration tank and the portable tanks has a large impact on the rate of cleanup due to the capacity of the triple skid diaphragm transfer pump. To avoid overfilling of the calibration tank during the cleanup process, the well has to be held back on the choke to limit the flow to avoid overfilling and discharge to sea.
Directing the liquid flow directly to the 30 m3 storage tank or the portable slop tanks (i.e. bypassing the calibration tank) is forbidden due to the high gas quantity in the drilling/completion fluids.
By using the modular tank system (MTS) according to the invention, the liquid flow path is significantly simplified:
Test separator=>MTS=>Lift to Supply vessel
The significantly lower space requirement of a cleanup flow system comprising the MTS according to the invention, compared to a common present day system, is illustrated in
In short, the MTS allows for:
Higher cleanup rates=faster unloading of the cushion/removal of drilling and completion fluids=less environmental impact (reduced flaring operations).
Drill Stem Testing:
Drill stem testing is an oil and gas exploration procedure to isolate, stimulate and flow a downhole formation to determine the fluids present and the rate at which they can be produced.
The main objective of a DST is to evaluate the commercial viability and the economic potential of a zone by identifying production capacity, pressure, permeability or extent of an oil or gas reservoir. These tests can be performed in both open and cased hole environments and provide exploration teams with valuable information about the nature of the reservoir.
The test is an important measurement of pressure behavior at the drill stem and is a valuable way of obtaining information on the formation fluid and establishing whether a well has found a commercial hydrocarbon reservoir.
The extent of drilling fluids in return on these wells are minor, however since this is an exploration well, there are uncertainties regarding the amount of flow, pressures and quality of the crude oil when it comes to combustion and burning. The risk of pollution to the sea during these operations is higher than in production cleanups.
The Barents Sea is a typical place where the oil companies and rigs are more cautious and protective towards environmental impact.
The MTS can provide liquid capacity on the rig to perform long enough flow periods to gather/obtain necessary data without having to burn crude oil.
An example of a setup for exploration testing is illustrated in
In conclusion, the present invention provides a modular tank system having a number of advantages in that it:
Number | Date | Country | Kind |
---|---|---|---|
20141365 | Nov 2014 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/076297 | 11/11/2015 | WO | 00 |