TANKLESS TOILET WHICH OPERATES INDEPENDENTLY OF THE WATER SUPPLY PRESSURE

Information

  • Patent Application
  • 20200407961
  • Publication Number
    20200407961
  • Date Filed
    March 07, 2019
    5 years ago
  • Date Published
    December 31, 2020
    3 years ago
Abstract
The invention relates to a tankless intelligent toilet, using a direct flush technique, comprising a hinged pan (5), a bowl (2) with a water seal against odours (21), a funnel (3) below the bowl (2), for removing waste and a control unit (8) operationally connected to: a presence sensor (19); a flow sensor (12), which measures the amount of water flowing into the system; a solenoid valve (13), which allows or prevents the inflow of water into the toiler; an actuation mechanism (16), which opens and closes the hinged pan (5); and a locking mechanism (9) which locks the hinged pan (5) in the closed position. The flush mode of the toiler can be determined and the water supply to the system can be controlled, maintaining the water seal against odours, ensuring low water consumption with each flush, independently of the supply pressure, and guaranteeing a high level of performance.
Description
TECHNICAL FIELD

The present invention refers to a smart, tankless intelligent sanitary apparatus, which uses a direct discharge method and is based on a swing-tray mechanism (5) and a control unit (8) operationally attached to a presence sensor (19), which informs the control unit (8) if the sanitary device is in use; a flow sensor (12), which measures the volume of water entering the system; a solenoid valve (13), which allows or prevents the entry of water into the sanitary device; an operating mechanism (16), which opens and closes the hinged tray (5); and a locking mechanism (9), which fixes the hinged tray (5) in closed position, this combination allows to determine the mode of discharge of the toilet and regulate the water supply to the system, maintaining the formation of a water mirror that constitutes the hydraulic odour seal, ensuring that water consumption at each discharge is the same, independent of the fluid inlet pressure, and guaranteeing high performance, good dragging and excellent cleaning with very low water consumption.


STATE OF THE ART

The correct functioning of a sanitary device depends on the guarantee of an odour/gas trap, coming from the discharge line, and on the fulfilment of four main characteristics: performance, dragging, cleanliness and water consumption. Performance refers to the amount of waste that a sanitary device is capable of disposing of. Usually, this characteristic is expressed in units of mass (g) and is measured under the MaP (Maximum Performance) standard. For its part, dragging is the indicator of the certainty of transport of the waste through the discharge pipes to avoid obstruction, which is usually quantified by means of the tests set forth in ASME A112.19.2. In relation to the toilets ability to clean the internal walls of the bowl and that the water remaining after the flush cycle is as clean as possible. Finally, consumption is the amount of water used by the toilet in each flush cycle, usually defined in units of flush volume (lpf) and calculated according to ASME A112.19.2.


Discharge devices in different markets are regulated by environmental and quality standards that restrict the design spectrum. The design of a sanitary landfill can be understood as a function of the balance of the 4 variables described above. To date it has not been feasible to maximize the 4 variables by using traditional toilet designs such as siphonic bowls, siphon-jet toilets, or blowout, wash-down toilets. Generally, sacrifice of one of these four features is required to maximize the performance of another.


In the state of the art one of the strongest barriers is found in water consumption, which is traditionally the variable that manufacturers seek to optimize, to the detriment of dragging, cleaning or performance.


In the review of the state of the art, you will find publications of sanitary that use mechanical traps to achieve optimization of water consumption. Among them is the U.S. Pat. No. 6,467,101B1 which describes a fully mechanically operated toilet with a cylinder that communicates with the water source, a plunger arranged in a sliding manner inside the cylinder and a plurality of spray nozzles communicated with the mixing tube. When the drain valve is opened to allow water to enter the cylinder, the piston is pushed upwards, increasing the air and water pressure inside the mixing tube, allowing the spray nozzles to clean the toilet with a jet of the air and water mixture. This toilet has a funnel-shaped bottom end and has a suspended bucket, placed in the lower opening of the funnel so that, when the piston is pushed up, the bucket pivots on its axis, opening the mouth of the funnel and allowing the release of its contents, including waste.


There is also U.S. Pat. No. 9,045,887, which describes another mechanical trap toilet designed to reduce water consumption during on its axis, opening the mouth of the funnel and allowing the release of its contents, including waste. waste disposal. This toilet is based on a flap valve mechanism, which includes a valve element that has (1) a closed state in which that valve element covers that bottom outlet to prevent waste in that bowl from moving down through that bottom outlet to that drain line; and (2) an open state in which that valve element moves away from that bottom outlet to allow that residue in that cup to move down through that bottom outlet to that drain line under the force of gravity. In addition to said flap valve, the toilet comprises a liquid discharge medium and a solid discharge medium. In a realization of said invention, the user presses a first button to automatically open the saucer vertically down and flush the urine into an adjacent drainage line with approximately 0.25 gallons (250 ml) of water and in a second performance, the user presses a second button to automatically release a staged flow capable of causing a solid human waste to be carried further into an adjacent drainage line. This allows us to say that it is the user who selects the method of evacuation. Therefore, if the second button is not pressed, the solid waste will not be disposed of correctly.


In both cases mentioned above, water is supplied when the mechanical trap is opened. The advancement in U.S. Pat. No. 9,045,887 uses a distinct that allows to select if the discharge is of liquid waste or to use the method of discharge of two stages, when the waste is solid. Despite improving water consumption, the tests carried out on the toilets mentioned above showed that the probability of solid waste getting stuck in the toilet outlet and water being evacuated without taking all the waste with it is high In other words, low water consumption would be achieved to the detriment of capacity of dragging it.


Contrary to the teachings of the state of the art, the toilet of the present invention presents a different discharge process, since the water is supplied to the cup with the tray closed flooding the well of the toilet, raising and by dispersing the solid waste, providing enough potential energy so that when the tray is opened, the supplied water and the solid waste are evacuated with enough energy to prevent them from getting stuck at the toilet outlet or at the beginning of the drainage line and exceeding the standard for dragging tests (ASME A112.19.2.) In turn, the shape of the well, the hopper and the tray has smooth, accelerated geometries that facilitate the flow of water and solid waste into the drainage line, causing them to lose as little kinetic energy as possible. Different from this invention, in the prior art the geometries have geometrical transitions with sharp curves and strong edges that favor clogging in the drainage line.


In addition to the problems evidenced in the previous paragraphs, the performance of the mechanical trap toilets is affected by the inlet water pressure, if the pressure is low there will not be enough water flow to guarantee their performance, if the pressure is high the water consumption is higher, because the toilets such as those disclosed in U.S. Pat. No. 9,045,887, where the control of water quantity is done by time, cannot guarantee that water consumption will be constant, since such consumption will fluctuate with the water inlet pressure. Unlike that, in the case of the present invention the performance of the toilet is not affected if the flow is low, since the control unit measures the volume of water entering the toilet, ensuring that the amount of water consumed in each flush is the same and that the required flooding is always achieved to maximum performance, without the need to make additional requirements of the supply line or to place additional devices or equipment that guarantee the inlet pressure, achieving that the water consumption is the same regardless of the water inlet conditions.


On the other hand, U.S. Pat. No. 9,045,887 refers to a toilet whose discharge does not end up forming a water mirror, so the toilet must be used without a water mirror, unless the user presses a button to generate the water mirror. This causes three problems, the first of which is that the size of the of the water mirror is decided by the user, therefore not possible to guarantee water consumption, a second problem arises when the user uses the toilet without a water mirror, which will cause solid waste to adhere strongly to the walls of the toilet, affecting hygiene. The most serious problem is that the odour seal depends on the physical contact of the tray and the well, specifically the adjustment of the seal (48), and in case it fails or wears out, the toilet will not have an odour seal and odours from the pipe cannot be prevented from escaping, contaminating the bathroom.


In the present invention, the odour seal is created by the water mirror forming a water seal. Consequently, the odour seal is not dependent on the tight closure of the tray and the packaging, the packaging in this invention has the sole function of facilitating the flooding process at the time of discharge.


On the other hand, in U.S. Pat. Nos. 9,045,887 and 6,467,101B1 the water supply to the well or cup is done by sprinklers that are not integrated into the well. This type of protruding geometry creates corners and spaces that are difficult to access, allowing dirt and bacteria to accumulate and making cleaning difficult, affecting the cleanliness and hygiene of the sanitary device. In the present invention, the water is supplied directly to the well from the top of the well, so that it does not there are places where waste can accumulate, the bowl is easily cleaned, using 100% of the water for washing, helping to keep the toilet clean.


Finally, U.S. Pat. Nos. 9,045,887 and 6,467,101B1 do not have intelligent control, the first one is totally mechanical and the other one is a very basic control system, controlled by time. In both alternatives, if something unexpected happens, such as something stops the movement of the tray, the water valve does not close, no water supply, etc. such toilets have no ability to identify the fault. In the present invention the control unit is a closed-loop automatic control system (SAC), which detects at all times the position of the tray, determines whether the user is present and regulates how much water he has supplied. As such, the control has the ability to make decisions such as stop or relax the system to prevent damage to the mechanisms, increase energy and water consumption, and even shut off the water supply automatically in the event of leaks or blockages.


In the state of the art, mechanical trap toilets require approximately 5 liters of water to make a solid waste discharge that meets the established standards. In the present invention, this task is performed with only 2.5 liters, which represents a saving of 50% with respect to the existing toilets.


Thus, the present invention aims at developing an intelligent sanitary device, which optimizes water consumption, ensuring that the amount of water required is equal to or less than 2.5 liters and that the same amount is always used, regardless of the pressure of the inlet fluid; that it has a water mirror that eliminates the emergence of odors from the outlet pipe and facilitates cleaning of the bowl; to monitor at all times the position of the bowl, determine if the toilet has been used, regulate how much water it has supplied and make decisions about stopping or releasing the system, to avoid damage to the mechanisms, increase energy and water consumption, and even turn off the water supply automatically, in case of leaks or blockages; while ensuring a high performance, excellent dragging and cleaning with very low water consumption, all this.





DESCRIPTION OF THE DRAWINGS


FIG. 1: Longitudinal section showing the internal components of the toilet of the present invention, where the tray (4) is observed in position closed and the water level when the toilet is at rest forming the water mirror and water seal



FIG. 2: Rear view of the toilet of the present invention.



FIG. 3: Top view showing the activation sensor.



FIG. 4: Isometric view of the tray (5).



FIG. 5: Isometric view of packaging (4).



FIG. 6: Top view of the toilet of the present invention, where the water path is illustrated.



FIG. 7: Longitudinal cut showing the path of the water in the toilet of this invention and where you observe the tray (4) in open position.



FIG. 8: Longitudinal cut showing the water level when the cup is flooded, just before opening the tray to start the flush.





DETAILED DESCRIPTION

The present invention refers to an intelligent, tankless sanitary device, because it comprises a hinged tray (5), a well (2) with a water mirror and hydraulic odour seal (21), a hopper (3), located under the well (2) and used to convey the waste into the drain line, and a control unit (8) operationally linked to a presence sensor (19), which informs the control unit (8) whether the sanitary device is in use; to a flow sensor (12), which measures the volume of water entering the system; to a solenoid valve (13), which allows or prevents water to enter the toilet; an actuator (16), which opens and closes the hinged tray (5); and a locking mechanism (9), which secures the hinged tray (5) in the closed position.


Preferably, the hinged tray (5) has a curved geometry shown in FIG. 4, its geometry and size allow the creation of a water mirror and hydraulic odour seal in the well (2), whose dimensions vary between 104 mm and 120 mm wide by 127 mm and 150 mm long. Clean water is deposited on the tray (5), which forms the water mirror (21) and constitutes a hydraulic odour seal, whose height fluctuates between 51 mm and 70 mm in depth, when the toilets are on standby. This tray (5) rotates on its axes (51 and 52) until an opening of between 40 and 60 degrees is achieved. Preferably, this opening is 45 to 55 degrees.


On the other hand, the operating mechanism (16) can be any type of mechanism capable of inducing the necessary movement to open and close the tray (5), such as a linear actuator, a motor, a servo motor, a reduction motor, a 4-bar mechanism, a transmission with belts and pulleys, among others. In a preferred alternative to the invention, the drive mechanism (16) is a belt and pulley transmission, while the locking mechanism (9) of the tray (5) is selected from the group that consists of a linear actuator mechanism with pin, pins, ratchet, self-locking gear motor, torsion springs in general any mechanism that allows the tray to be stopped in the closed position at rest and without generating power consumption.


In addition to the above, the sanitary apparatus of the present invention comprises a water inlet (10), directly connected to the hydro-sanitary network. Through said entrance the water enters the toilet and then passes through a filter (11), which retains solid particles and impurities that could be contained in the water of the aqueduct.


Likewise, the toilet has a pressure regulating device (14), which in the case of very high inlet pressure, lowers it to appropriate levels to avoid splashing in the bowl.


Alternatively, the presence sensor (19) can also be equipped with a manual (18), which is activated by the user to start the download. The presence sensor (19) can be of any technology that can detect the presence of the body, such as infrared, inductive, microwave, ultrasonic, etc.


In a preferred mode of the invention, the toilet has a self-calibration sensor (17) which detects the closing position of the tray (5), when the toilet is connected to the power source (20) said toilet starts the initial self-calibration routine, to detect the closing position, the control unit (8) gives the command to the operating mechanism (16) to close the tray until 20 that the self-calibration sensor (17) sends the closing signal to the control unit (8). The control unit (8) stores this position in the memory as the closing position and all other movements are calculated with respect to this position. This prevents a manual calibration procedure from having to be performed between the drive mechanism, the locking mechanism and the control.


However, the well (2) has a nozzle (15) at the top, which discharges the water onto a track (22) that directs the water to the walls of the well (2) by making a downward spiral path (23), to clean the walls of the well (2). This well (2) has a gasket (4) assembled at its lower end, which comes into contact with the tray (5) when it is in a closed position, in order to prevent the flow of water between the tray (5) and the well (2) and encourage the flooding process during the toilet flushing process, and thus, achieve the desired level, as shown in FIG. 8, without water waste.


Under the well (2), the sanitary device comprises a hopper (3), which has a geometry with smooth curves. Specifically, the hopper (3) has two upper projections (31, 32), which surround the lower part of the cup (2), and a central curvature (34), where the diameter of the hopper (3) is narrowed, its direction is changed and the mouth (35) is formed, which receives the waste from the cup (2), as shown in FIG. 7. As a result, the centre line (24) of the cup (2) does not coincide with the centre line (36) of the hopper mouth (35), and the deviation between these axes (24,36) makes it easier for the waste to be conveyed to the drainage line with the least possible loss of kinetic energy.


Similarly, the sanitary unit has structural elements such as a casing (1), a seat (7) and a cover (6).


Tray Control


In a preferred mode, the toilet has two modes of discharge, one for solid waste disposal and the other for liquid disposal. In both cases, the sequence and times of the system depend on the volume of water delivered to the system, which is regulated by the flow sensor (12), while the control unit (8) establishes which type of discharge to perform according to the information captured by the presence sensor (19).


EXAMPLES
Example 1: Solid Waste Discharge Mode

When the solid waste discharge cycle starts, the tray (5) is in the closed position, the water mirror level and hydraulic odour seal in the well (2) is in its initial state as shown in FIG. 1, the control unit (8) delivers between 700 ml and 900 ml of water to disperse, raise and increase the potential energy of the load, reaching the maximum water level in the well (2)


To avoid wasting water during flooding, the well (2) has a gasket (4), shown in detail in FIG. 5, which, when it comes into contact with the tray (5), prevents the flow of water between tray (5) and well (2)


Once the control unit (8) detects that between 700 ml and 900 ml of water have been supplied, by means of the flow sensor (12), the tray (5) opens and the water accumulated with the waste is evacuated through the mouth (35) of the hopper (3). While the tray (5) is open, the control unit (8) continues to supply water through the nozzle (15) to help evacuate the load, clean the well (2) and tray (5), and to allow the solid waste to be dragged through the drain line. When the control unit (8) detects that 800 ml to 1000 ml of water has already been supplied, the control unit (8) gives the command to the of drive (16) to close the tray (5). When the tray (5) is in the closed position, the control unit (8) gives the command to the locking mechanism (9) to secure the tray in the closed position, de-energises the drive mechanism (16) and supplies an additional 700 ml to 900 ml, to recover the water mirror (21) and with it to generate the hydraulic odour seal, and return to the initial state as shown in FIG. 1.


Example 2: Liquid Waste Discharge Mode

In this mode of operation the system is intended to discharge with less water, the control unit (8) opens the tray (5) and the water that forms the water mirror and odour seal (21) shown in FIG. 1, together with the liquid waste is evacuated through the mouth (35) of the hopper (3). While the tray is open, the control unit (8) supplies between 150 ml and 300 ml of water to clean the well (2) and the tray (5) and to assist to evacuate the liquid waste. When the control unit (8), by means of the flow sensor (12), determines that 150 ml to 300 ml of water have already been supplied, the control unit (8) gives the order to close the tray (5). When the tray (5) is in the closed position, the control unit (8) gives the order to the locking mechanism (9) to secure the tray in the closed position, unlocking it, deenergizes the drive mechanism (16) and supplies an additional 700 ml to 900 ml of water to recover the water mirror and the odour seal (21) and leave the toilet in its initial state as shown in FIG. 1.


In an alternative mode of the present invention, there is only one mode when the solid and liquid waste discharge cycle starts, the tray (5) is in the closed position, the water mirror level and odour seal (21) in the well (2) is in its initial state as shown in FIG. 1, the control unit (8) supplies between 700 ml and 900 ml of water to disperse, raise and increase the potential energy of the load, reaching the maximum level of water in the well (2) as illustrated in FIG. 8. To avoid wasting water during the flood, the well (2) has a gasket (4), shown in detail in FIG. 5, which when it comes into contact with the tray (5) prevents the flow of water between the tray (5) and the well (2) Once the control unit detects that between 700 ml and 900 ml of water has been supplied, this is done by means of the flow sensor (12), the tray (5) opens and the water accumulated with the waste is evacuated through the hopper (3). While the tray (5) is open, the control unit (8) continues to supply water through the nozzle (15) continuously to help evacuate the load, clean the well (2) and the tray (5), and allow the solid waste to be dragged along the line drainage system. When the control unit (8) detects that 800 ml to 1000 ml of water has already been supplied, the control unit (8) gives the command to the drive mechanism (16) to close the tray (5), when the tray (5) is in the closed position, the control unit (8) gives the command to the locking mechanism (9) to secure the tray (5) in the closed position and de-energizes the drive mechanism (16), supplies an additional 700 ml to 900 ml to recover the water body and odour seal (21) and return to the initial state as shown in FIG. 1.


Example 3: Control Tray

The geometry of the tray (5), shown in FIG. 4, is designed to store enough water to create a water mirror and seal hydraulic odour seal (21) in the well (2) as shown in FIG. 1, this water mirror and hydraulic odour seal (21) has dimensions between 104 mm and 120 mm wide by 127 mm and 150 mm long, and its height fluctuates between 51 mm and 70 mm deep


The tray (5) is attached to the hopper (3) by means of its axes (51 and 52) that allow its rotation. The tray (5) is controlled by the drive mechanism (16) and the locking mechanism (9). The drive mechanism (16) transmits the rotation movement to the tray (5) with the speed and position defined by the control unit (8), the locking mechanism (9) fixes the tray in closed position.


Whenever the toilet is at rest, the locking mechanism (9) keeps the tray (5) in the closed position. When the control unit (8) gives the command to open the tray (5), the control unit (8) operates the locking mechanism (9) to release the tray (5). Once the tray (5) is free, the control unit (8) activates the drive mechanism (16), which turns the tray (5) between 40 and 60 degrees, as shown in FIG. 7, until the maximum opening position is reached. At the end of the discharge, the drive mechanism (16) returns the tray (5) to its closed position and the tray (5) is fixed by the locking mechanism (9), which keeps the tray (5) in position closed and thus the system remains in this position waiting for a new discharge sequence.


Example 4: Auto Calibration

In addition to the mechanisms described above, the toilet has a self-calibrating sensor (17), which detects the closed position of the tray (5). When the toilet is connected to the power source (20), the toilet starts the initial routine to detect the closed position. The control unit (8) gives the order the drive mechanism (16) to close the tray until the self-calibration sensor (17) sends the closing signal to the control unit (8). The control unit (8) stores this position in the memory as the closing position and all other movements are calculated with respect to this position. This prevents a manual calibration procedure from having to be performed between the operating mechanism (16), the locking mechanism (9) and the control unit (8).


Example 5. Operating Mode

When the appliance is not in use, the control unit (8) is in standby mode, in low energy mode, the tray (5) is closed and fixed in this position by the locking mechanism (9), the cup (2) has a water mirror (21) as shown in FIG. 1, and the solenoid valve (13) is normally closed to prevent water from entering.


To start the discharge, the control unit detects the presence of the user or the user can pass his hand near the presence sensor (19) or press the hand switch (18). The control unit (8) is activated and starts the discharge sequence by sending a signal that opens the solenoid valve (13), which allows the water to enter the system through the water inlet (10), which is directly connected to the hydro-sanitary network. The water passes through the filter (11), which retains solid particles that could affect the operation of the system.


The flow sensor (12) measures the amount of water entering the system, to ensure that the toilet works with the same amount of water and has the same performance, regardless of the pressure of the water supply system. When water supply pressures are very high, undesirable splashing can occur, so the toilet has a pressure regulating device (14), which lowers the water pressure to an appropriate level.


The water enters the well (2) from the top through the nozzle (15), which directs the water towards the walls of the well (2) making a spiral path, as illustrated in FIGS. 6 and 7, where the path of the water is shown by the track (22) and then, by the internal surface of the well (2), cleaning the residues that are attached. It is important to note that in this arrangement, 100% of the water used by the toilet is used to wash the walls of the well (2).


The tray (5) remains closed while the incoming water accumulates and raises its level to suspend, disperse the load, and increase its potential energy as you can see on FIG. 8. When the control unit (8) determines that between 700 m and 900 ml of water has entered, using the information provided by the flow sensor (12), it sends a signal to the drive mechanism (16) open the tray (5) by rotating it on its axes (51 and 52), until an opening of 45 to 55 degrees is achieved. The tray (5) remains open, while the water with the suspended load is evacuated through the hopper (3) into the drain line. Once the load is removed, the drive mechanism (16) returns the tray (5) to its closed position and the water continues to flow out of the nozzle (15) until the amount needed to create the hydraulic odour seal and water mirror (21) is replenished, the amount of water is determined by the control unit (8) by means of the water volume information provided by the sensor (12).


Thus, the toilet of the present invention uses between 2 and 3 liters of water per flush for liquids and solids, activated by the user by means of a single presence sensor or button.

Claims
  • 1. Intelligent sanitary device, without water tank and operating independently of the water inlet pressure, characterized by the fact that it comprises a swinging tray (5); a well (2) with a water mirror and hydraulic odour seal (21); a hopper (3), located under the well (2) and used to convey the waste to the drainage line; and a control unit (8) operationally linked to a presence sensor (19), which informs the control unit (8) if the sanitary device is in use, to a flow sensor (12), which measures the volume of water entering the system, to a solenoid valve (13), which allows or prevents the entry of water into the sanitary device, and to an actuating mechanism (16), which opens and closes the hinged tray (5).
  • 2. Intelligent sanitary device, without water tank and operating independently of the water inlet pressure, in accordance with claim 1, characterized by the fact that it also includes a locking mechanism (9), which fixes the hinged tray (5) in the closed position.
  • 3. Intelligent sanitary device, without water tank and operating independently of the water inlet pressure, in accordance with claim 1, characterized by the fact that it also comprises a water inlet (10) directly connected to the hydro-sanitary network followed by a filter (11), which retains solid particles and impurities contained in the water of the aqueduct.
  • 4. Intelligent sanitary device, without a water tank and operating independently of the water inlet pressure, in accordance with claim 1, characterized by the fact that it also comprises a pressure regulating device (14).
  • 5. Intelligent sanitary device, without water tank and with operation independent of the water inlet pressure, according to claim 1, characterized by the fact that it also includes a self-calibration sensor (17), which detects the closed position of the tray (5) when the toilet is connected to the power source (20) and sends this information to the control unit (8).
  • 6. Intelligent sanitary device, without water tank and operating independently of the water inlet pressure, in accordance with claim 1, characterized by the fact that it also comprises a housing (1), a seat (7) and a cover (6).
  • 7. Intelligent sanitary device, without water tank and operating independently of the water inlet pressure, according to claim 1, characterized by the fact that the well (2) has a nozzle on top (15) and a track (22), which directs the water towards the walls of the well (2) by making a downward spiral path (23) to clean the walls of the well (2), and at its lower end a gasket (4), which comes into contact with the tray (5) when it is in a closed position.
  • 8. Intelligent sanitary device, without water tank and with operation independent of the water inlet pressure, according to claim 1, characterized by the water mirror and hydraulic odour seal (21) formed in the cup (2), on the tray (5) is between 104 mm and 120 mm wide, between 127 mm and 150 mm long and a height between 51 mm and 70 mm, when the toilet is in rest.
  • 9. Intelligent sanitary device, without water tank and with operation independent of the water inlet pressure, according to claim 1, characterized by the fact that the tray (5) rotates on its axes (51, 52) and has an opening between 40 and 60 degrees.
  • 10. Intelligent sanitary device, without water tank and operating independently of water inlet pressure, according to the claim 9, characterized by the fact that the tray (5) has an opening of between 45 and 55 degrees.
  • 11. Intelligent sanitary device, without water tank and operating independently of the water inlet pressure, according to claim 1, characterized by the fact that the drive mechanism (16) is selected from the group consisting of a linear actuator, a motor, a servo motor, a reduction motor, a 4-bar mechanism, a transmission with belts and pulleys, among others.
  • 12. Intelligent sanitary device, without water tank and operating independently from water inlet pressure, according to claim 10, characterized by the fact that the drive mechanism (16) is a belt and pulley transmission.
  • 13. Intelligent sanitary device, without water tank and with operation independent of the water inlet pressure, according to claim 2, characterized by the fact that the locking mechanism (9) of the tray (5) is selected from the group consisting of a linear actuator mechanism with pin, pins, ratchet, self-locking pressure reducer, or any mechanism that stops the tray in the open and closed positions at rest, without generating energy consumption.
  • 14. Intelligent sanitary device, without water tank and with operation independent of the water inlet pressure, according to claim 1, characterized by the fact that the presence sensor (19) is selected from the group consisting of an infrared, inductive, microwave, ultrasonic and other presence sensors.
  • 15. Intelligent sanitary device, without water tank and operating independently of water inlet pressure, according to the claim 14, characterized by the fact that the presence sensor (19) also includes a manual switch (18).
  • 16. Intelligent sanitary device, without water tank and operating independently of the water inlet pressure, according to claim 1, characterized by the fact that the hopper (3), located under the cup (2), has two upper projections (31, 32), which surround the lower part of the cup (2), and a central curvature (34) where the diameter of the hopper (3) is narrowed, its direction is changed and the mouth (35) is formed, which receives the waste from the cup (2).
  • 17. Intelligent sanitary device, without water tank and operating independently of the water inlet pressure, in accordance with claim 16, characterized by the fact that the cup (2) has a central axis (24), which does not coincide with the central axis (36) of the hopper mouth (35) (3).
  • 18. Method for discharging liquid and solid waste by means of the intelligent sanitary device, without a water tank and operating independently of the water inlet pressure, characterized by the following steps: a. at the start of the cycle, the tray (5) is closed and the control unit (8) supplies between 700 ml and 900 ml of water to disperse, raise and increase the potential energy of the load,b. once the control unit (8) detects that between 700 ml and 900 ml of water have been supplied, the tray (5) opens and the water accumulated with the waste is evacuated through the mouth (35) of the hopper (3),c. the control unit (8) continues to supply water through the nozzle (15) to help evacuate the load, clean the well (2) and the tray (5), and to allow the solid waste to be dragged through the drainage line,d. when the control unit (8) detects that 800 ml to 1000 ml of water has already been supplied, the control unit (8) gives the command to the drive mechanism (16) to close the tray (5),e. once the tray (5) is in the closed position, the control unit (8) gives the order to the locking mechanism (9) to secure the tray in the closed position, de-energizes the drive mechanism (16) and supplies an additional 700 ml to 900 ml, to recover the water mirror (21) and with it, generate the hydraulic odour seal, and return to the initial state.
  • 19. Method for discharging liquid waste by means of the intelligent sanitary device, without water tank and operating independently of the water inlet pressure, characterized by the following steps: a. when the cycle starts, the tray (5) is closed and the control unit (8) opens the tray (5) and the water forming the water mirror and hydraulic odour seal (21) together with the liquid waste is evacuated through the mouth (35) of the hopper (3),b. when the tray is open, the control unit (8) supplies 150 ml to 300 ml of water to clean the well (2) and the tray (5) and to help evacuate the liquid waste,c. when the control unit (8), by means of the flow sensor (12), determines that between 150 ml and 300 ml of water has been supplied, the control unit (8) closes the tray (5),d. the control unit (8) then activates the locking mechanism (9) to secure the tray in the closed position, de-energises the drive mechanism (16) and supplies an additional 700 ml to 900 ml of water to recover the water body and the water odour seal (21) and leave the toilet in its initial state.
Priority Claims (1)
Number Date Country Kind
NC2018/0002525 Mar 2018 CO national
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2019/051829 3/7/2019 WO 00