Tap centerer method and structure for coherent optical receiver

Information

  • Patent Grant
  • 10128959
  • Patent Number
    10,128,959
  • Date Filed
    Tuesday, October 24, 2017
    7 years ago
  • Date Issued
    Tuesday, November 13, 2018
    6 years ago
Abstract
A method and structure for tap centering in a coherent optical receiver device. The center of gravity (CG) of the filter coefficients can be used to evaluate a proper convergence of a time-domain adaptive equalizer. However, the computation of CG in a dual-polarization optical coherent receiver is difficult when a frequency domain (FD) adaptive equalizer is adopted. In this case, the implementation of several inverse fast-Fourier transform (IFFT) stages is required to back time domain impulse response. Here, examples of the present invention estimate CG directly from the FD equalizer taps and compensate for an error of convergence based off of the estimated CG. This estimation method and associated device architecture is able to achieve an excellent tradeoff between accuracy and complexity.
Description
BACKGROUND OF THE INVENTION

The present invention relates to communication systems and integrated circuit (IC) devices. More particularly, the present invention provides for improved methods and devices for optical communication.


Over the last few decades, the use of communication networks exploded. In the early days Internet, popular applications were limited to emails, bulletin board, and mostly informational and text-based web page surfing, and the amount of data transferred was usually relatively small. Today, Internet and mobile applications demand a huge amount of bandwidth for transferring photo, video, music, and other multimedia files. For example, a social network like Facebook processes more than 500 TB of data daily. With such high demands on data and data transfer, existing data communication systems need to be improved to address these needs.


Optical communication is one major technological area that is growing to address these high demands on data. Optical communication systems typically communicate data over a plurality of channels corresponding to different phases and/or polarizations of the optical signal. While the data communicated over the different channels is typically aligned relative to a common clock when transmitted by the transmitter, delay (or skew) may be introduced into one or more of the channels based on characteristics of the transmitter, receiver, and/or the optical fiber. As a result, the relative timing of the data in the various channels may be misaligned at the receiver, causing degradation of the recovered data.


Although there are several types of devices and methods related to optical communication systems, they have been inadequate for the advancement of various applications. Conventional embodiments consume large areas or large amounts of power and suffer from performance limitations. Therefore, improved devices and methods for optical communication systems and related electronics are highly desired.


BRIEF SUMMARY OF THE INVENTION

The present invention relates to communication systems and integrated circuit (IC) devices. More particularly, the present invention provides for improved methods and devices for optical communication.


The center of gravity (CG) of the filter coefficients can be used to evaluate a proper convergence of a time-domain adaptive equalizer. Examples of the present invention provide for structures and methods of estimating the CG directly from the FD equalizer taps and compensate for an error of convergence based off of the estimated CG.


In an example, the present invention provides a coherent optical receiver device. The device includes an input signal; a chromatic dispersion (CD) equalizer module being configured to compensate for CD affecting the input signal; and a polarization mode dispersion (PMD) equalizer module being configured to compensate for PMD affecting the input signal following compensation by the CD equalizer module. The PMD equalizer module having a plurality of PMD taps and is coupled to the CD equalizer and a least means square (LMS) module. The device can also include an interpolated timing recovery (ITR) module coupled to the PMD equalizer module and an error evaluation module coupled to the ITR module. The ITR module is configured to synchronize the input signal. The LMS module is coupled to the error evaluation module, the CD equalizer module, and the PMD equalizer module, and the LMS module is configured to filter the input signal.


In an example, the error evaluation module is configured to iteratively adjust a determinant of a frequency-domain (FD) coefficient-based matrix to minimize an error of convergence. The error evaluation module can also be configured to estimate a group delay nd from the plurality of PMD taps. In a specific example, the error evaluation module includes an iterator module coupled in a loop to a phase error module, a loop filter module, and a feedback module. The iterator module is configured to compute an iterative function ρk+1m, 0); the phase error module is configured to adjust the error of convergence Δnd of the input signal resulting in an adjusted input signal; the loop filter is configured to filter the adjusted input signal; and the feedback module is configured to provide the adjusted input signal to the iterator module.


In an example, the present invention provides a method of operating a coherent optical receiver device. The method can include providing an input signal; compensating, by a chromatic dispersion (CD) equalizer module, for CD affecting the input signal; and compensating, by a polarization mode dispersion (PMD) equalizer module for PMD affecting the input signal following compensation by the CD equalizer module. The PMD equalizer module can have a plurality of PMD taps and be coupled to the CD equalizer and a least means square (LMS) module. The method can include synchronizing, by an interpolated timing recovery (ITR) module coupled to the PMD equalizer module, the input signal and filtering, by the LMS module, the input signal, where the LMS module is coupled to the error evaluation module, the CD equalizer module, and the PMD equalizer module.


In an example, the method includes iteratively adjusting, by an error evaluation module coupled to the ITR module, a determinant of a frequency-domain (FD) coefficient-based matrix to minimize an error of convergence. The iterative adjustment can include estimating, by the error evaluation module, the group delay nd from the plurality of PMD taps. In a specific example, the error evaluation module includes iterator module coupled in a loop to a phase error module, a loop filter module, and a feedback module; further, the iterative adjustment of the determinant of the FD coefficient-based matrix includes computing, by an iterator module, the iterative function ρk+1m, 0); adjusting, by the phase error module, the error of convergence Δnd of the input signal resulting in an adjusted input signal; filtering, by the loop filter, the adjusted input signal; and providing, by the feedback module, the adjusted input signal to the iterator module.


The tap centering algorithm described above can be used to estimate CG directly from the FD equalizer taps and compensate for an error of convergence based off of the estimated CG. This estimation method and associated device architecture is able to achieve an excellent tradeoff between accuracy and complexity. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.


A further understanding of the nature and advantages of the invention may be realized by reference to the latter portions of the specification and attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to more fully understand the present invention, reference is made to the accompanying drawings. Understanding that these drawings are not to be considered limitations in the scope of the invention the presently described embodiments and the presently understood best mode of the invention are described with additional detail through the use of the accompanying drawings in which:



FIG. 1 is a simplified set of graphs illustrating the impulse response and group delay according to an example of the present invention.



FIG. 2 is a simplified set of graphs illustrating simulation results of the center of gravity and the group delay according to an example of the present invention.



FIG. 3 is a simplified diagram illustrating an error evaluation module according to an example of the present invention.



FIG. 4 is a simplified set of graphs illustrating simulation results of the center of gravity and the group delay according to an example of the present invention.



FIG. 5 is a simplified diagram illustrating a block diagram of a coherent optical receiver according to an example of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to communication systems and integrated circuit (IC) devices. More particularly, the present invention provides for improved methods and devices for optical communication.


The following description is presented to enable one of ordinary skill in the art to make and use the invention and to incorporate it in the context of particular applications. Various modifications, as well as a variety of uses in different applications will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to a wide range of embodiments. Thus, the present invention is not intended to be limited to the embodiments presented, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.


In the following detailed description, numerous specific details are set forth in order to provide a more thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without necessarily being limited to these specific details. In other instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention.


The reader's attention is directed to all papers and documents which are filed concurrently with this specification and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference. All the features disclosed in this specification, (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.


Furthermore, any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. Section 112, Paragraph 6. In particular, the use of “step of” or “act of” in the Claims herein is not intended to invoke the provisions of 35 U.S.C. 112, Paragraph 6.


Please note, if used, the labels left, right, front, back, top, bottom, forward, reverse, clockwise and counter clockwise have been used for convenience purposes only and are not intended to imply any particular fixed direction. Instead, they are used to reflect relative locations and/or directions between various portions of an object.


The center of gravity (CG) of the filter coefficients can be used to evaluate a proper convergence of a time-domain adaptive equalizer. Examples of the present invention provide for structures and methods of estimating the CG directly from the FD equalizer taps and compensate for an error of convergence based off of the estimated CG. The derivation of the relevant algorithms is provided below.


I. Evaluation of the Center of Gravity

Let f(n) be the discrete time, causal, impulse response of the fractional spaced equalizer. The CG of f(n) is defined as follows:










c
g

=





n
=
0





n





f


(
n
)




2







n
=
0








f


(
n
)




2







(
1
)








This equation can be used as a measure of the proper convergence of the equalizer. The following derivations produce a simple method to estimate CD based on the taps of the frequency domain equalizer.


A. Evaluation of the CG in the Presence of Chromatic Dispersion (CD)


In the presence of chromatic dispersion (CD), the Fourier transform (FT) of f(n) can be defined as follows:

F(Ω)=|F(Ω)|ejndΩ−jβΩ2   (2)

where nd is the group delay at Ω=0 and β is the CD parameter. Without loss of generality, it can be assumed that |F(Ω)| is the magnitude of an ideal low-pass filter (i.e., a rectangular pulse in the frequency domain).


Let x(n) be a sequence with FT given by X(Ω). Then, it is verified that the FT of nx(n) results in






j








dX


(
Ω
)



d





Ω


.






The real function x(n) is defined as follows:

x(n)=n|f(n)|2   (3)

with FT given by the following:













X


(
Ω
)


=



j







d

d


(
Ω
)





[


1

2

π







-
π

π




F


(
Θ
)





F
*



(

Θ
-
Ω

)



d





Θ



]









=




1

2

π







-
π

π





F


(
Θ
)




[

j






d

d





Ω





F
*



(

Θ
-
Ω

)



]



d





Θ










(
4
)








with the FT of |f(n)|2 being







[


1

2

π







-
π

π




F


(
Θ
)





F
*



(

Θ
-
Ω

)



d





Θ



]

.





Since








X


(
Ω
)


=



n




x


(
n
)




e


-
j






Ω





n





,





then X(0) is as follows:










X


(
0
)


=




n



x


(
n
)



=




n
=
0





n





f


(
n
)




2








(
5
)







Next, the FT of the sequence x(n)=n|f(n)|2 at Ω=0 (i.e., X(0)). Since |F(Ω)| is assumed to have an ideal low-pass response (i.e., its derivative is zero at Ω=0; this assumption is also valid for practical filters such as raised cosine pulses), the result is as follows:











lim

Ω
->
0




j






d

d





Ω




{


-

j


[


2


β


(

Θ
-
Ω

)



+

n
d


]







F


(

Θ
-
Ω

)






e



jn
d



(

Θ
-
Ω

)


+

j







β


(

Θ
-
Ω

)


2





}



=


(


2

βΘ

+

n
d


)





F


(
Θ
)






e


j






n
d


Θ

+

j





β






Θ
2









(
6
)








Replacing (6) in (4), and taking into account that |F(θ)|2 is an even function, the following is obtained:










X


(
0
)


=





n
=
0





n





f


(
n
)




2



=



1

2

π







-
π

π




(


2

β





Θ

+

n
d


)






F


(
Θ
)




2


d





Θ



=



n
d



[


1

2

π







-
π

π







F


(
Θ
)




2


d





Θ



]


=


n
d






n
=
0








f


(
n
)




2










(
7
)








Finally, the center of gravity (1) reduces to the following:










c
g

=






n
=
0





n





f


(
n
)




2







n
=
0








f


(
n
)




2



=



X


(
0
)






n
=
0








f


(
n
)




2



=

n
d







(
8
)







From (8), the CG of the time-domain impulse response f(n) can be easily derived from the group delay of F(Ω) at Ω=0.


B. Numerical Results



FIG. 1 shows the impulse response (graphs 101 and 103) and the group delay (graphs 102 and 104 for two optical channels with chromatic dispersion: 850 ps/nm (50 km) in graphs 101 and 102; and 3400 ps/nm (200 km) in graphs 103 and 104. Baud rate is 32 GBd. A raised cosine filter with roll-off factor of 20% is used. Here, it is verified that the GD at Ω=0 (˜11 and 22 samples for 50 and 200 km, respectively) agrees very well with the center of the impulse response (i.e., ˜the center of gravity).



FIG. 2 provides simulation results of the center of gravity and the group delay Ω=0 for a frequency domain, multiple-input multiple-output, frequency spreading equalizer (FD-MIMO-FSE) with quadrature phase shifting keying (QPSK) modulation (graph 201). FIG. 2 also depicts the received constellation at the equalizer output (graph 202). An FS-MIMO-FSE with 128 taps, 50% overlap (i.e., Nfft=256), and oversampling (OS) of 4/3 is considered. A tap leakage algorithm is used. The baud rate is 1/T=32 GBd and the optical signal to noise ratio (OSNR) is 14 dB. The simulation results consider an optical channel with variable differential group delay (DGD) between 0 and 468 ps with a low-pass filter for different values of the low-pass filter (LPF) parameter (β). In FIG. 2, the LPF parameter is β=2−12. The evolution of the DGD and CG is similar in all cases. Also, the total CG remains approximately constant around 64. On the other hand, the CG for a given polarization follows the variation of the DGD very well (i.e., 234 ps is ˜10 samples at T/OS). Further, the fluctuations of the GD estimation can be mitigated by reducing the bandwidth of the low-pass filter at the expense of higher latency.


II. Center-Tap Algorithm

A. Timing Recovery based on the Taps of Adaptive FD Equalizers


Let F(Ωm) be the frequency domain coefficient of the MIMO-FSE at a certain frequency Ωm such that 0<ΩmOS/T<π/T. The MIMO FD coefficient can be expressed as follows:

Fm)=e−jndΩm−jτΩm−jβΩ2mePm)Jm)   (9)

where τ is the sampling phase error, nd is the group delay at Ω=0 and τ=0 (i.e., no sampling phase error; also, from (8), assume cg=nd), β is the CD parameter, ϕ is an arbitrary phase, P(Ωm) is a real positive number related to the magnitude of the frequency response of the impulse response of the electrical filter used for both polarizations, while J(Ωm) is a 2×2 unitary Jones matrix. Let ejθ(Ω)G(Ω) be the frequency response of a filter with G(Ω) and θ(Ω) denoting the magnitude and the phase response, respectively. The zero-forcing equalizer response results in F(Ωm)=e−jθ(Ω)P(Ω) with P(Ω)=1/G(Ω).


Note the following equation:

F(−Ωm)=e−jndΩm−jτΩm+jβΩ2me−jϕP(−Ωm)JH(−Ωm)   (10)

where H denotes transpose and complex conjugation. From (9) and (10), a 2×2 matrix Mfm) can be defined as follows:











M
f



(

Ω
m

)


=


F


(

Ω
m

)





F
H



(

-

Ω
m


)







(
11
)






=


e



-
j






2






n
d



Ω
m


-

j





2






τΩ
m






P


(

Ω
m

)




J


(

Ω
m

)





J
H



(

-

Ω
m


)







(
12
)








The determinant of Mfm) results in the following:

ρ(Ωm)=det{Mfm)}=e−j4ndΩm−j4τΩcustom character(106m)   (13)

where custom characterm)=(P(Ωm)P(−Ωm))2 is real and positive. In general, the sampling phase τ changes with time, therefore the determinant can be rewritten as follows:

ρ(Ωm)=e−j4ndΩm−j4τ(t)Ωmcustom characterm)   (14)


Without loss of generality, it can be assumed that the sampling phase error at t=0 is zero (i.e., ρ(Ωm, 0)=e−j4ndΩmcustom characterm)). Thus, the angle of the product is as follows:

ρ(Ωm, t)ρ*(Ωm, 0)=e−j4τ(t)Ωmcustom character2m)   (15)

Here, (15) provides an estimate of the sampling phase error at instant t, which can be used for timing recovery.


B. Center-Tap Algorithm


Next, it is assumed that the FD equalization is achieved by using an overlap-and-save technique. Without loss of generality, we also assume that the overlap factor is 50%; therefore, the time domain impulse response has Nfft/2 taps. In an ideal situation, the center of gravity should be half the number of taps, that is, nd=Nfft/4 taps. However, as a result of an imperfect start-up procedure (e.g., interaction between the timing recovery stage and the adaptive equalizer), the CG of the time-domain equalizer response may be shifted to a certain side. The latter effect may cause performance degradation; therefore, an algorithm to center the equalizer taps is required.


We define the error of convergence as follows:

Δnd=nd−Nfft/4   (16)

Note that the optimal convergence is experienced when the CG (or nd) is Nfft/4, that is, when Δnd=0. From (16), the determinant (14) at instant t=0 can be expressed as follows:

ρ(Ωm, 0)=e−j4ΔndΩm−jNfftΩmcustom characterm)   (17)


A timing recovery stage based on (15) seeks to keep to zero the phase error with respect to the reference (17). Therefore, in order to minimize the “convergence error” Δnd, the reference (35) is iteratively adjusted by using the following:











ρ

k
+
1




(


Ω
m

,
0

)


=



ρ
k



(


Ω
m

,
0

)




e

j





αΔ








n
^

d



(
k
)









(
18
)






=



ρ
k



(


Ω
m

,
0

)




e

j





α





i
=
0

k





n
^

d



(
i
)










(
19
)








where α is a small positive gain and Δ{circumflex over (n)}d(k) is the error of convergence at the k-th iteration (Δ{circumflex over (n)}d(0)=Δnd) given by the following:

Δ{circumflex over (n)}d(k)={circumflex over (n)}d(k)−Nfft/4   (20)

with {circumflex over (n)}d(k) being the group delay at Ω=0 at the k-th iteration, which is estimated as described in Section I. From (17) note that (19) can be thought of as a first-order PLL designed to compensate a (constant) phase error of −4ΔndΩm (see FIG. 3). Then, it is verified that









lim






k




->




Δ








n
^

d



(
k
)



=


0





while







lim

k
->






ρ
k



(


Ω
m

,
0

)




=


e


-
j







N
fft



Ω
m






𝒫


(

Ω
m

)


.







As a result of the high latency in the “phase error” computation block of FIG. 3 due to the equalizer adaptation, the centered process (18) should be done slowly (e.g., α<<1). As shown, error evaluation module 300 includes an iterator module 310 coupled in a loop to a phase error module 320, a loop filter module 330, and a feedback module 340. In an example, the error evaluation module 300, which can be implemented in a timing recovery module, is configured to estimate the group delay nd from the plurality of PMD taps. In a specific example, estimating the group delay nd is accomplished using two of the plurality of PMD taps. In a specific example, these modules implement the algorithms described previously. The iterator module is configured to compute ρk+1m, 0) and the phase error module is configure dot adjust the error of convergence Δnd of the input signal resulting in an adjusted input signal. The loop filter is configured to filter the adjusted input signal and the feedback module is configured to provide the adjusted input signal to the iterator module. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.



FIG. 4 shows two sets of graphs (401/402 and 403/404), each with the group delay and CG on one graph and the received constellation on another graph. FIG. 4 shows an example with Nfft=256 where the equalizer taps are initialized with an “error of convergence” (Δnd) of ˜4 (graphs 401 and 402) and −3 (graphs 403 and 404). The update process (18) was carried out every 4000 data symbols with α=2−7. In both cases, it is verified that the center of gravity at regime tends to the optimal value nd=Nfft/4=64.



FIG. 5 is a simplified diagram illustrating a block diagram of a coherent optical receiver according to an example of the present invention. As shown, device 500 can include an input signal; a first fast Fourier transform (FFT) module receiving the input signal, the first FFT module 511 being configured to compute a first discrete Fourier transform (DFT) of the input signal; a chromatic dispersion (CD) equalizer module 520 coupled to the first FFT module 511, the CD equalizer module 520 being configured to compensate for CD affecting the input signal; a polarization mode dispersion (PMD) equalizer module 530 coupled to the CD equalizer and a least means square (LMS) module 580, the PMD equalizer module 530 being configured to compensate for PMD affecting the input signal following compensation by the CD equalizer module. The PMD equalizer module 530 includes a plurality of PMD taps. In a specific example, the CD equalizer module includes a non-adaptive frequency-domain (FD) equalizer, and the PMD equalizer module includes an adaptive FD equalizer. Further, the input can be a dual polarization input with an x-type and y-type inputs.


In an example, the device can also include an inverse FFT (IFFT) module 540 coupled to the PMD equalizer module 530, the IFFT module being configured to compute an inverse DFT of the input signal; an interpolated timing recovery (ITR), slicer, and error evaluation module 550 coupled to the IFFT module 540. The ITR, slicer, and the error evaluation can be separate modules, the ITR module being configured to retime the input signal, the slicer module being configured to derive the data stream, and the error evaluation module being configured to retime the input signal. The error evaluation module can include a structure and function similar to that shown in FIG. 3.


In an example, the device can include a zero padding module 560 coupled to the slicer and error evaluation module 550, the zero padding module 560 being configured to increase a sampling rate of the input signal; and a second FFT module 570 coupled to the zero padding module 560, the second FFT module 570 being configured to compute a second DFT of the input signal. In an example, the LMS module 580 is coupled to the second FFT module 570, the CD equalizer module 520, and the PMD equalizer module 530. The LMS module 580 outputs to the PMD equalizer module 530 and is configured to filter the input signal. Those of ordinary skill in the art will recognize other variations, modifications, and alternatives.


The reduction of complexity results from not having to use separate FD BCD and FFE equalizers. As shown in FIG. 5, only one (dual polarization) FFT and only one (dual polarization) IFFT are required in the signal path. An architecture using separate FD blocks for the BCD and FFE requires extra FFTs and IFFTs as a result of going back and forth from the frequency domain to the time domain. Further, the LMD update can be viewed as computing a correlation between the input signal and the error. Here, this correlation is computed in the frequency domain, which reduces complexity the same way as in convolution computations.


With this architecture, an interaction problem arises when TR is achieved after the adaptive equalizer (i.e., PMD equalizer). This problem occurs because the adaptation algorithm of the equalizer and the timing-synchronizer use the same (equalized) signal as their input. The equalizer tries to compensate the misadjustment of the discrete time impulse response due to the sampling phase error, while the TR tries to equalize the distortion of the impulse response by changing the sampling phase. As a consequence, the timing phase and the equalizer taps are drifting. Conventional solutions to this problem have severe drawbacks in (time variant) coherent optical channels. Making the timing loop much faster than the equalizer can mitigate this interaction problem, but the timing phase may still drift slowly over long periods of time.


According to an example of the present invention, a tap centering algorithm can be used to estimate CG directly from the FD equalizer taps and compensate for an error of convergence based off of the estimated CG. This estimation method and associated device architecture is able to achieve an excellent tradeoff between accuracy and complexity.


In an example, the present invention provides a method of operating a coherent optical receiver device. The method can include providing an input signal; computing, by a first fast Fourier transform (FFT) module receiving the input signal, a first discrete Fourier transform (DFT) of the input signal. The method can include compensating, by a chromatic dispersion (CD) equalizer module coupled to the first FFT module, for CD affecting the input signal; and compensating, by a polarization mode dispersion (PMD) equalizer module coupled to the CD equalizer module and coupled to a least means square (LMS) module and having a plurality of PMD taps, for PMD affecting the input signal following the compensation by the CD equalizer module. Further, the method can include computing, by an inverse FFT (IFFT) module coupled to the PMD equalizer module, an inverse DFT of the input signal. In an example, the method includes filtering, by the LMS module coupled to the CD equalizer module and the second FFT module and the PMD equalizer module, the input signal.


In an example, the method includes iteratively adjusting, by an error evaluation module coupled to the ITR module, a determinant of a frequency-domain (FD) coefficient-based matrix to minimize an error of convergence. The iterative adjustment can include estimating, by the error evaluation module, the group delay nd from the plurality of PMD taps. In a specific example, the error evaluation module includes iterator module coupled in a loop to a phase error module, a loop filter module, and a feedback module; further, the iterative adjustment of the determinant of the FD coefficient-based matrix includes computing, by an iterator module, the iterative function ρk+1m, 0); adjusting, by the phase error module, the error of convergence Δnd of the input signal resulting in an adjusted input signal; filtering, by the loop filter, the adjusted input signal; and providing, by the feedback module, the adjusted input signal to the iterator module.


While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.

Claims
  • 1. A coherent optical receiver device, the device comprising: an input signal;a first fast Fourier transform (FFT) module receiving the input signal, the first FFT module being configured to compute a first discrete Fourier transform (DFT) of the input signal;a chromatic dispersion (CD) equalizer module coupled to the first FFT module, the CD equalizer module being configured to compensate for CD affecting the input signal;a polarization mode dispersion (PMD) equalizer module coupled to the CD equalizer and a least means square (LMS) module, the PMD equalizer module being configured to compensate for PMD affecting the input signal following compensation by the CD equalizer module, the PMD equalizer module having a plurality of PMD taps;an inverse FFT (IFFT) module coupled to the PMD equalizer module, the IFFT module being configured to compute an inverse DFT of the input signal;an interpolated timing recovery (ITR) module coupled to the IFFT module, the ITR module being configured to synchronize the input signal;an error evaluation module coupled to the ITR module, the error evaluation module being configured to iteratively adjust a determinant of a frequency-domain (FD) coefficient-based matrix to minimize an error of convergence; anda second FFT module coupled to the error evaluation module, the second FFT module being configured to compute a second DFT of the input signal;wherein the LMS module is coupled to the second FFT module, the CD equalizer module, and the PMD equalizer module, the LMS module being configured to filter the input signal.
  • 2. The device of claim 1 wherein the input signal is a dual-polarization input with an x-type polarization input and a y-type polarization input.
  • 3. The device of claim 1 wherein the CD equalizer module includes a non-adaptive frequency-domain (FD) equalizer, and wherein the PMD equalizer module includes an adaptive FD equalizer.
  • 4. The device of claim 1 wherein the error evaluation module iteratively adjusts the determinant according to the following equation:
  • 5. The device of claim 4 wherein the error evaluation module is configured to estimate the group delay nd from the plurality of PMD taps.
  • 6. The device of claim 4 wherein the error evaluation module includes an iterator module coupled in a loop to a phase error module, a loop filter module, and a feedback module, wherein the iterator module is configured to compute the iterative function ρk+1(Ωm, 0);wherein the phase error module is configured to adjust the error of convergence Δnd of the input signal resulting in an adjusted input signal;wherein the loop filter is configured to filter the adjusted input signal; andwherein the feedback is configured to provide the adjusted input signal to the iterator module.
  • 7. The device of claim 1 further comprising a zero padding module coupled between the error evaluation module and the second FFT module, the zero padding module being configured to increase a sampling rate of the input signal.
  • 8. The device of claim 1 wherein the error evaluation module includes a slicer module configured to derive a data stream from the input signal.
  • 9. A method of operating a coherent optical receiver device, the method comprising: providing an input signal;computing, by a first fast Fourier transform (FFT) module receiving the input signal, a first discrete Fourier transform (DFT) of the input signal;compensating, by a chromatic dispersion (CD) equalizer module coupled to the first FFT module, for CD affecting the input signal;compensating, by a polarization mode dispersion (PMD) equalizer module having a plurality of PMD taps and coupled to the CD equalizer module and coupled to a constrained frequency-domain block least means square (CFBLMS) module, for PMD affecting the input signal following the compensation by the CD equalizer module;computing, by an inverse FFT (IFFT) module coupled to the PMD equalizer module, an inverse DFT of the input signal;synchronizing, by an interpolated timing recovery (ITR) module coupled to the IFFT module, the input signal;iteratively adjusting, by an error evaluation module coupled to the ITR module, a determinant of a frequency-domain (FD) coefficient-based matrix to minimize an error of convergence;computing, by a second FFT module coupled to the error evaluation module, a second DFT of the input signal; andfiltering, by the LMS module, the input signal;wherein the LMS module is coupled to the second FFT module, the CD equalizer module, and the PMD equalizer module.
  • 10. The method of claim 9 wherein the input signal is a dual-polarization input with an x-type polarization input and a y-type polarization input.
  • 11. The method of claim 9 wherein the compensation of CD and PMD occurs in the same stage.
  • 12. The method of claim 9 wherein the iteratively adjusting the determinant is according to the following equation:
  • 13. The method of claim 12 further comprising estimating, by the error evaluation module, the group delay nd from the plurality of PMD taps.
  • 14. The method of claim 12 wherein iteratively adjusting the determinant of the FD coefficient-based matrix includes the following: computing; by an iterator module coupled in a loop to a phase error module, a loop filter module, and a feedback module; the iterative function ρk+1(Ωm, 0);adjusting, by the phase error module, the error of convergence Δnd of the input signal resulting in an adjusted input signal;filtering, by the loop filter, the adjusted input signal; andproviding, by the feedback module, the adjusted input signal to the iterator module.
  • 15. The method of claim 9 further comprising deriving, by a slicer module configured with the error evaluation module, a data stream from the input signal.
  • 16. The method of claim 9 further comprising increasing, by a zero padding module coupled between the error evaluation module and the second FFT, a sampling rate of the input signal.
  • 17. A coherent optical receiver device, the device comprising: an input signal;a chromatic dispersion (CD) equalizer module being configured to compensate for CD affecting the input signal;a polarization mode dispersion (PMD) equalizer module coupled to the CD equalizer and a least means square (LMS) module, the PMD equalizer module being configured to compensate for PMD affecting the input signal following compensation by the CD equalizer module, the PMD equalizer module having a plurality of PMD taps;an interpolated timing recovery (ITR) module coupled to the PMD equalizer module, the ITR module being configured to synchronize the input signal;an error evaluation module coupled to the ITR module, the error evaluation module being configured to iteratively adjust a determinant of a frequency-domain (FD) coefficient-based matrix to minimize an error of convergence; andwherein the LMS module is coupled to the error evaluation module, the CD equalizer module, and the PMD equalizer module, the LMS module being configured to filter the input signal.
  • 18. The device of claim 17 wherein the input signal is a dual-polarization input with an x-type polarization input and a y-type polarization input.
  • 19. The device of claim 17 wherein the CD equalizer module includes a non-adaptive frequency-domain (FD) equalizer, and wherein the PMD equalizer module includes an adaptive FD equalizer.
  • 20. The device of claim 17 wherein the error evaluation module iteratively adjusts the determinant according to the following equation:
  • 21. The device of claim 20 wherein the error evaluation module is configured to estimate a group delay nd from the plurality of PMD taps.
  • 22. The device of claim 20 wherein the error evaluation module includes an iterator module coupled in a loop to a phase error module, a loop filter module, and a feedback module, wherein the iterator module is configured to compute an iterative function ρk+1(Ωm, 0);wherein the phase error module is configured to adjust the error of convergence Δnd of the input signal resulting in an adjusted input signal;wherein the loop filter is configured to filter the adjusted input signal; andwherein the feedback module is configured to provide the adjusted input signal to the iterator module.
  • 23. A method of operating a coherent optical receiver device, the method comprising: providing an input signal;compensating, by a chromatic dispersion (CD) equalizer module, for CD affecting the input signal;compensating, by a polarization mode dispersion (PMD) equalizer module coupled to the CD equalizer and a least means square (LMS) module, for PMD affecting the input signal following compensation by the CD equalizer module, the PMD equalizer module having a plurality of PMD taps;synchronizing, by an interpolated timing recovery (ITR) module coupled to the PMD equalizer module, the input signal;iteratively adjusting, by an error evaluation module coupled to the ITR module, a determinant of a frequency-domain (FD) coefficient-based matrix to minimize an error of convergence; andfiltering, by the LMS module, the input signal;wherein the LMS module is coupled to the error evaluation module, the CD equalizer module, and the PMD equalizer module.
  • 24. The method of claim 23 wherein the input signal is a dual-polarization input with an x-type polarization input and a y-type polarization input.
  • 25. The method of claim 23 wherein the compensation of CD and PMD occurs in the same stage.
  • 26. The method of claim 23 wherein iteratively adjusting the determinant is according to the following equation:
  • 27. The method of claim 26 further comprising estimating, by the error evaluation module, the group delay nd from the plurality of PMD taps.
  • 28. The method of claim 26 wherein iteratively adjusting the determinant of the FD coefficient-based matrix includes the following: computing; by an iterator module coupled in a loop to a phase error module, a loop filter module, and a feedback module; the iterative function ρk+1(Ωm, 0);adjusting, by the phase error module, the error of convergence Δnd of the input signal resulting in an adjusted input signal;filtering, by the loop filter, the adjusted input signal; andproviding, by the feedback module, the adjusted input signal to the iterator module.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application claims priority to and incorporates by reference, for all purposes, the following U.S. provisional patent applications: U.S. Provisional App. No. 62/412,052, filed on Oct. 24, 2016; U.S. Provisional App. No. 62/412,071, filed on Oct. 24, 2016; U.S. Provisional App. No. 62/412,033, filed on Oct. 24, 2016; U.S. Provisional App. No. 62/412,047, filed on Oct. 24, 2016; U.S. Provisional App. No. 62/412,015, filed on Oct. 24, 2016; U.S. Provisional App. No. 62/412,002, filed on Oct. 24, 2016; and U.S. Provisional App. No. 62/412,039, filed on Oct. 24, 2016. The present application also incorporates by reference, for all purposes, the following U.S. patents: U.S. Pat. No. 9,337,934, filed on Nov. 29, 2013, and issued on May 10, 2016; U.S. Pat. No. 9,178,625, filed on Dec. 3, 2013, and issued on Nov. 3, 2015; and U.S. Pat. No. 9,077,572, filed on Jan. 17, 2013, and issued on Jul. 7, 2015.

US Referenced Citations (43)
Number Name Date Kind
4669116 Agazzi et al. May 1987 A
5870372 Kuribayashi Feb 1999 A
7693214 Shida Apr 2010 B2
7894728 Sun et al. Feb 2011 B1
8244142 Wagner et al. Aug 2012 B2
8565621 Ibragimov et al. Oct 2013 B2
8634726 Zhang et al. Jan 2014 B2
8655191 Kaneda et al. Feb 2014 B2
8687974 Zelensky et al. Apr 2014 B2
8712247 Hauske Apr 2014 B2
8731413 Dave et al. May 2014 B1
8873358 Saito et al. Oct 2014 B2
20060013590 Hueda et al. Jan 2006 A1
20070206963 Koc Sep 2007 A1
20080175590 Perkins et al. Jul 2008 A1
20090148164 Roberts Jun 2009 A1
20090252497 Younce et al. Oct 2009 A1
20100329677 Kaneda et al. Dec 2010 A1
20110064421 Zhang et al. Mar 2011 A1
20110150506 Tanimura et al. Jun 2011 A1
20110229127 Sakamoto et al. Sep 2011 A1
20110268459 Rollins et al. Nov 2011 A1
20120096061 Hauske Apr 2012 A1
20120177156 Hauske et al. Jul 2012 A1
20120213510 Stojanovic Aug 2012 A1
20120219302 Sun et al. Aug 2012 A1
20120257652 Malipatil et al. Oct 2012 A1
20120269513 Abe Oct 2012 A1
20120288275 Zhang et al. Nov 2012 A1
20130039665 Hauske Feb 2013 A1
20130084080 Shibutani Apr 2013 A1
20130209089 Harley et al. Aug 2013 A1
20130230311 Bai Sep 2013 A1
20130243127 Chmelar et al. Sep 2013 A1
20130251082 Abe Sep 2013 A1
20130259490 Malouin et al. Oct 2013 A1
20130336647 Le Taillandier De Gabory et al. Dec 2013 A1
20130343490 Wertz et al. Dec 2013 A1
20140161470 Zelensky et al. Jun 2014 A1
20140254644 Gotman et al. Sep 2014 A1
20150171972 Xie Jun 2015 A1
20150280853 Sun Oct 2015 A1
20160182182 Schmogrow Jun 2016 A1
Non-Patent Literature Citations (18)
Entry
Un-Ku Moon et al., “Timing Recovery in CMOS using Nonlinear Spectral-line Method”, IEEE 1996 Custom Integrated Circuits Conference, 1996, pp. 13-16, IEEE.
Oscar E. Agazzi et al., “Maximum-Likelihood Sequence Estimation in Dispersive Optical Channels”, Journal of Lightwave Technology, Feb. 2005, pp. 749-763, vol. 23, No. 2, IEEE.
Oscar Agazzi et al., “Timing Recovery in Digital Subscriber Loops,” IEEE Transactions on Communications, Jun. 1985, p. 558-569, vol. COM-33, No. 6, IEEE.
Diego E. Crivelli et al., “Adaptive Digital Equalization in the Presence of Chromatic Dispersion, PMD, and Phase Noise in Coherent Fiber Optic Systems”, IEEE 2004 Global Telecommunications Conference, Nov. 29-Dec. 3, 2004, p. 2545-2551, vol. 4, IEEE.
M. Kuschnerov et al., “DSP for Coherent Single-Carrier Receivers”, Journal of Lightwave Technology, Aug. 15, 2009, p. 3614-3622, vol. 27, No. 16, IEEE.
David G. Messerschmitt, “Frequency Detectors for PLL Acquisition in Timing and Carrier Recovery”, IEEE Transactions on Communications, Sep. 1979, p. 1288-1295, vol. COM-27, No. 9, IEEE.
Timo Pfau et al., “Hardware-Efficient Coherent Digital Receiver Concept with Feedforward Carrier Recovery for M-QAM Constellations”, Journal of Lightwave Technology, Apr. 15, 2009, pp. 989-999, vol. 27, No. 8, IEEE.
Xiaofu Wu et al., “Iterative Carrier Recovery in Turbo Receivers with Distributed Pilots”, IEEE International Conference on Consumer Electronics, Communications and Networks (CECNet), Apr. 2011, pp. 5024-5026, IEEE.
H. Zhang et al., “Cycle Slip Mitigation in POLMUX-QPSK Modulation”, Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, Mar. 2011, pp. 1-3, Optical Society of America.
Shaoliang Zhang et al., “Pilot-Assisted Decision-Aided Maximum-Likelihood Phase Estimation in Coherent Optical Phase-Modulated Systems with Nonlinear Phase Noise”, IEEE Photonics Technology Letters, Mar. 15, 2010, pp. 380-382, vol. 22, No. 6, IEEE.
Manar El-Chammas et al., “A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With Background Timing Skew Calibration”, IEEE Journal Solid-State Circuits, Apr. 2011, pp. 838-847, vol. 46, No. 4, IEEE.
J. C. Geyer et al., “Optical Performance Monitoring using a 43Gb/s Realtime Coherent Receiver (Invited)”, 2009, pp. 93-94, IEEE.
J.C. Geyer et al., “Performance Monitoring Using Coherent Receivers”, 2009, pp. 1-3, IEEE.
Yuriy M Greshishchev et al., “A 40GS/s 6b ADC in 65nm CMOS”, IEEE International Solid-State Circuits Conference, Feb. 10, 2010, pp. 390-392, IEEE.
Fabian N. Hauske et al., “Optical Performance Monitoring in Digital Coherent Receivers”, Journal of Lightwave Technology, Aug. 15, 2009, pp. 3623-3631, vol. 27, No. 16, IEEE.
Andreas Leven et al., “Real-Time Implementation of Digital Signal Processing for Coherent Optical Digital Communication Systems”, IEEE Journal of Selected Topics in Quantum Electronics, Sep./Oct. 2010, pp. 1227-1234, vol. 16, No. 5, IEEE.
L. E. Nelson et al., “Performance of 46-Gbps Dual-Polarization QPSK Transceiver With Real-Time Coherent Equalization Over High PMD Fiber”, Journal of Lightwave Technology, Feb. 1, 2009, p. 158-167, vol. 27, No. 3, IEEE.
Andrew J. Viterbi et al., “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission”, IEEE Transactions on Information Theory, Jul. 1983, pp. 543-551, vol. 29, No. 4, IEEE.
Provisional Applications (7)
Number Date Country
62412033 Oct 2016 US
62412052 Oct 2016 US
62412071 Oct 2016 US
62412047 Oct 2016 US
62412015 Oct 2016 US
62412002 Oct 2016 US
62412039 Oct 2016 US