1. Field of Technology
The present disclosure relates to the preparation of a bone tunnel for receipt of a fixation device during ligament reconstruction surgery, and more specifically, a tap guide for use in such preparation.
2. Related Art
A ligament, such as an anterior cruciate ligament (ACL), that has ruptured and is non-repairable, is generally replaced arthroscopically by a soft tissue graft. The soft tissue graft can be harvested from a portion of a patellar tendon having so called “bone blocks” at each end, and from the semitendonosis and gracilis. Alternatively, the soft tissue graft can be formed from synthetic materials or from a combination of synthetic and natural materials.
The replacement soft tissue graft is implanted by securing one end of the soft tissue graft in a bone tunnel within the femur, and passing the other end of the graft through a tunnel formed in the tibia. The graft may be secured in the tunnels via the use of a fixation member, such as a screw, that is positioned between the wall of the tunnel and the tissue graft. While the fixation screw is being advanced through the tunnel, it is important that there be enough of a pathway to substantially reduce the possibility of screw breakage and graft rotation, yet allow enough contact for adequate screw fixation. Therefore, adequate preparation of the bone tunnel is required to achieve this goal.
In one aspect, the present disclosure relates to a tap guide including a shaft having a proximal portion and a distal portion, a handle coupled to the proximal portion of the shaft, and a tip coupled to the distal portion of the shaft. In an embodiment, the tip includes a groove having a tapered depth along a length of the groove. The groove is between about 40% to about 65% deeper at a second end of the groove relative to a first end of the groove. In another embodiment, the tip is located at an angle α; between about 2° to about 4°, relative to a longitudinal axis of the shaft. In yet another embodiment, the tip includes a diameter of between about 4 mm and about 12 mm. In a further embodiment, the shaft includes a through hole and a groove extending a length of the shaft. In yet a further embodiment, the proximal portion of the shaft includes a circular shape. In an embodiment, the handle includes a proximal portion and a distal portion wherein the distal portion is located at an angle relative to the proximal portion and the proximal portion is positioned substantially perpendicular to the proximal portion of the shaft.
In another aspect, the present disclosure relates to a method of preparing a bone tunnel for receipt of an anchor. The method includes providing a tap guide including a shaft having a proximal portion and a distal portion, a handle coupled to the proximal portion of the shaft, and a tip coupled to the distal portion of the shaft; providing a tap; inserting the tip into the bone tunnel; inserting the tap into a through hole of the shaft and into the bone tunnel to create a notch in a wall of the bone tunnel; and removing the tip from the bone tunnel. In an embodiment, the method further includes inserting an end of a tissue graft into the bone tunnel and inserting a fixation device into the bone tunnel via the notch, wherein the fixation device is located between the tissue graft and a wall of the notch. In another embodiment, the tip includes a groove having a tapered depth along a length of the groove such that during creation of the notch the tap cuts deeper in a first area of the notch than in a second area of the notch. In yet another embodiment, the diameter of the tip is substantially equal to the diameter of the bone tunnel. In a further embodiment, the notch is configured such that rotation of the tissue graft does not occur during insertion of the anchor into the bone tunnel.
In yet another aspect, the present disclosure relates to a system for preparing a bone tunnel for receipt of a fixation device. The system includes a tap; and a tap guide including a shaft having a proximal portion and a distal portion, a handle coupled to the proximal portion of the shaft, and a tip coupled to the distal portion of the shaft. In an embodiment, the tip includes a groove having a tapered depth along a length of the groove. In another embodiment, the groove is between about 40% to about 65% deeper at a second end of the groove relative to a first end of the groove. In yet another embodiment, the tip is located at an angle α, between about 2° to about 4°, relative to a longitudinal axis of the shaft. In a further embodiment, the tip includes a diameter of between about 4 mm and about 12 mm. In yet a farther embodiment, the shaft includes a through hole and a groove extending a length of the shaft. In an embodiment, the proximal portion of the shaft includes a circular shape.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the disclosure, are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present disclosure and together with the written description serve to explain the principles, characteristics, and features of the disclosure. In the drawings:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses.
As shown in
As shown in
As mentioned above, during ligament reconstruction surgery, the damaged ligament is removed and bone tunnels are created in the tibia and in the femur. A soft tissue graft, such as a patellar tendon or other soft tissue graft, is placed within the tunnels with one end of the graft being placed in the tibial tunnel and the other end of the graft being placed in the femoral tunnel. The ends may be fixated in the tunnels by a fixation device, such as a bone screw or other fixation device, by inserting the fixation device between walls of the tunnels and the soft tissue grafts. However, for appropriate insertion of the fixation device, the insertion sight must be properly prepared. Otherwise, cracking of the screws and/or twisting of the soft tissue graft may occur.
After creation of the notch 40, the tip 13 of the tap guide 10 and the tap 20 are removed from the bone tunnel 31. As shown in
The shaft 11, handle 12, and tip 13 of the tap guide 10 are each made via a machining process, such as grinding, milling, reaming, ram, or wire EDM and include a biocompatible metal material, such as stainless steel or titanium alloy. However, other processes or materials may be used. The handle 12 and tip 13 are coupled to the shaft 11 via a soldering or welding process such as silver soldering, tig welding, laser welding, or any other type of soldering or welding process. In addition, a process other than soldering or welding may be used to couple the handle 12 and tip 13 to the shaft 11. The groove 14 in the tip 13 is made via a machining process, such as grinding, milling, reaming, ram, or wire EDM. However, other processes may be used.
The shaft 21 and handle 22 of the tap 20 are each made via a machining or sheet metal stamping process, such as grinding, milling, reaming, ram, or wire EDM and include a biocompatible metal material, such as stainless steel or titanium alloy. However, other processes or materials may be used. The threads 21b′ on the distal portion 21b of the shaft 21 are created via a machining process, such as grinding, milling, reaming, ram, or wire EDM. However, other processes may be used. The handle 22 of the tap 20 is coupled to the shaft 21 via a soldering or welding process such as silver soldering, tig welding, laser welding, or any other type of soldering or welding process. In addition, a process other than soldering or welding may be used to couple the handle 22 to the shaft 21.
As various modifications could be made to the exemplary embodiments, as described above with reference to the corresponding illustrations, without departing from the scope of the disclosure, it is intended that all matter contained in the foregoing description and shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.
This application claims priority to United States Patent Application No. 61/033,106 filed on Mar. 3, 2008, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61033106 | Mar 2008 | US |