Tap to copy data to clipboard via NFC

Information

  • Patent Grant
  • 10783736
  • Patent Number
    10,783,736
  • Date Filed
    Thursday, July 25, 2019
    5 years ago
  • Date Issued
    Tuesday, September 22, 2020
    4 years ago
Abstract
Various embodiments are generally directed to copying data to a clipboard of a mobile device from a contactless card using NFC. A mobile device may issue a request to read data from the contactless card. The contactless card may generate encrypted data in response to the request. The mobile device may receive the encrypted data via NFC and transmit the encrypted data to a server for verification. The server may verify the encrypted data and transmit an indication of an account number for the contactless card to the mobile device. The mobile device may then copy the account number to a clipboard of the mobile device.
Description
TECHNICAL FIELD

Embodiments herein generally relate to mobile computing platforms, and more specifically, to tap to copy data to a clipboard via near-field communication (NFC).


BACKGROUND

Account identifiers for payment cards are often long numeric and/or character strings. As such, it is difficult for a user to manually enter the account identifier correctly. Indeed, users often make mistakes and enter incorrect account numbers into computing interfaces (e.g., payment interfaces). Furthermore, even if the user enters the correct account identifier, processes have been developed that allow cameras to capture the account identifier.


SUMMARY

Embodiments disclosed herein provide systems, methods, articles of manufacture, and computer-readable media for tapping to copy data to a clipboard via NFC. According to one example, an application may receive encrypted data from a communications interface of a contactless card associated with an account, the encrypted data generated based on one or more cryptographic algorithms and a diversified key, the diversified key stored in a memory of the contactless card and generated based on a master key and a counter value stored in the memory of the contactless card. The application may then receive, from a server, verification of the encrypted data, the server to decrypt the encrypted data based on one or more cryptographic algorithms and the diversified key stored in a memory of the server to verify the encrypted data, the diversified key stored in the memory of the server generated based on a master key and a counter value stored in the memory of the server. The application may further receive, from the server, an encrypted account number associated with the account. The application may decrypt the encrypted account number to yield the account number. The application may then copy the account number to a clipboard of an operating system (OS) executing on the processor circuit.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B illustrate embodiments of a system for tapping to copy data to a clipboard via NFC.



FIG. 2 illustrates an embodiment of tapping to copy data to a clipboard via NFC.



FIGS. 3A-3C illustrate embodiments of tapping to copy data to a clipboard via NFC.



FIGS. 4A-4B illustrate an example contactless card.



FIG. 5 illustrates an embodiment of a first logic flow.



FIG. 6 illustrates an embodiment of a second logic flow.



FIG. 7 illustrates an embodiment of a third logic flow.



FIG. 8 illustrates an embodiment of a computing architecture.





DETAILED DESCRIPTION

Embodiments disclosed herein provide secure techniques for copying data (e.g., an account number) from a contactless card to the clipboard of a computing device using NFC. Generally, a user of a device may provide input to an application specifying to copy the data from the contactless card. The contactless card may then come into NFC communications range with the device, e.g., via a tapping gesture. The application may then instruct the contactless card to generate and transmit data to the application via NFC. The data generated by the contactless card may be encrypted using key diversification. The application may transmit the data received from the contactless card to a server for verification. Upon verifying the data, the server may transmit account data (e.g., an account number) to the application on the device, which may then copy the received account data to a clipboard of the operating system of the device. The account data may be maintained on the clipboard until a purchase is made, or the expiration of a time threshold, at which point the clipboard contents may be wiped, overwritten, or otherwise modified. Advantageously, doing so improves security of all devices and associated data.


With general reference to notations and nomenclature used herein, one or more portions of the detailed description which follows may be presented in terms of program procedures executed on a computer or network of computers. These procedural descriptions and representations are used by those skilled in the art to most effectively convey the substances of their work to others skilled in the art. A procedure is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. These operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic, or optical signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It proves convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. It should be noted, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to those quantities.


Further, these manipulations are often referred to in terms, such as adding or comparing, which are commonly associated with mental operations performed by a human operator. However, no such capability of a human operator is necessary, or desirable in most cases, in any of the operations described herein that form part of one or more embodiments. Rather, these operations are machine operations. Useful machines for performing operations of various embodiments include digital computers as selectively activated or configured by a computer program stored within that is written in accordance with the teachings herein, and/or include apparatus specially constructed for the required purpose or a digital computer. Various embodiments also relate to apparatus or systems for performing these operations. These apparatuses may be specially constructed for the required purpose. The required structure for a variety of these machines will be apparent from the description given.


Reference is now made to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for the purpose of explanation, numerous specific details are set forth in order to provide a thorough understanding thereof. It may be evident, however, that the novel embodiments can be practiced without these specific details. In other instances, well known structures and devices are shown in block diagram form in order to facilitate a description thereof. The intention is to cover all modification, equivalents, and alternatives within the scope of the claims.



FIG. 1A depicts a schematic of an exemplary system 100, consistent with disclosed embodiments. As shown, the system 100 includes one or more contactless cards 101, one or more mobile devices 110, and a server 120. The contactless cards 101 are representative of any type of payment card, such as a credit card, debit card, ATM card, gift card, and the like. The contactless cards 101 may comprise one or more chips (not depicted), such as a radio frequency identification (RFID) chip, configured to communicate with the mobile devices 110 via NFC, the EMV standard, or other short-range protocols in wireless communication, or using NFC Data Exchange Format (NDEF) tags. Although NFC is used as an example communications protocol, the disclosure is equally applicable to other types of wireless communications, such as the EMV standard, Bluetooth, and/or Wi-Fi. The mobile devices 110 are representative of any type of network-enabled computing devices, such as smartphones, tablet computers, wearable devices, laptops, portable gaming devices, and the like. The server 120 is representative of any type of computing device, such as a server, workstation, compute cluster, cloud computing platform, virtualized computing system, and the like.


As shown, a memory 102 of the contactless card 101 includes data 103, a counter 104, a master key 105, a diversified key 106, and a unique customer identifier 107. The data 103 generally includes any data that can be copied to the clipboard 114 such as characters, text, executable code, images, or other types of data objects. In one embodiment, the data 103 may comprise an account number, expiration date, and card verification value (CVV) associated with the contactless card 101. The account number may be any type of account number, such as a primary account number (PAN), a virtual account number, and/or a token generated based on the PAN. Other types of account numbers are contemplated, and the use of any particular type of account number as examples herein should not be considered limiting of the disclosure. The data 103 may further include names, billing addresses, shipping addresses, usernames and/or passwords, one-time use codes for multi-factor authentication, personalized uniform resource locators (URLs), gift card numbers, drivers license information, passport information, loyalty program information, loyalty points, phone numbers, email addresses, contact information, access information, and the like. Other types of data 103 are contemplated, and the use of any type of data 103 as examples herein should not be considered limiting of the disclosure.


As shown, a memory 111 of the mobile device 110 includes an instance of an operating system (OS) 112. Example operating systems 112 include the Android® OS, iOS®, Linux®, and Windows® operating systems. As shown, the OS 112 includes an account application 113, a clipboard 114, and one or more other applications 115. The account application 113 allows users to perform various account-related operations, such as viewing account balances and processing payments as described in greater detail below. Initially, a user must authenticate using authentication credentials to access the account application. For example, the authentication credentials may include a username and password, biometric credentials, and the like. The clipboard 114 stores data that can be copied and/or pasted within the OS 112. For example, as discussed in greater detail below, an account number of an account associated with a contactless card 101 (e.g., a portion of the data 103) may be programmatically copied to the clipboard 114 in a secure manner using a command and/or gesture available within the OS 112. The account number may then be pasted from the clipboard 114 to the account application 113, other applications 115, and/or other components of the OS 112 using a command and/or gesture available within the OS 112. In at least one embodiment, the clipboard 114 includes a single data field for all elements of the data 103. In other embodiments, the clipboard 114 includes multiple data fields, with at least one field for each element of the data 103 (e.g., a field for an account number, a field for an expiration date, a field for a CVV number, a field for a first name, and a field for a last name, etc.).


As shown, the server 120 includes a data store of account data 124 and a memory 122. The account data 124 includes account-related data for a plurality of users and/or accounts. The account data 124 may include at least a master key 105, counter 104, a customer ID 107, an associated contactless card 101, and biographical information for each account. The memory 122 includes a management application 123 and instances of the data 103, the counter 104, master key 105, and diversified key 106 for one or more accounts from the account data 124.


Generally, the system 100 is configured to implement key diversification to secure data. The server 120 (or another computing device) and the contactless card 101 may be provisioned with the same master key 105 (also referred to as a master symmetric key). More specifically, each contactless card 101 is programmed with a distinct master key 105 that has a corresponding pair in the server 120. For example, when a contactless card 101 is manufactured, a unique master key 105 may be programmed into the memory 102 of the contactless card 101. Similarly, the unique master key 105 may be stored in a record of a customer associated with the contactless card 101 in the account data 124 of the server 120 (or stored in a different secure location). The master key may be kept secret from all parties other than the contactless card 101 and server 120, thereby enhancing security of the system 100. Other examples of key diversification techniques are described in U.S. patent application Ser. No. 16/205,119, filed Nov. 29, 2018. The aforementioned patent application is incorporated by reference herein in its entirety.


The master keys 105 may be used in conjunction with the counters 104 to enhance security using key diversification. The counters 104 comprise values that are synchronized between the contactless card 101 and server 120. The counter value 104 may comprise a number that changes each time data is exchanged between the contactless card 101 and the server 120 (and/or the contactless card 101 and the mobile device 110). To enable NFC data transfer between the contactless card 101 and the mobile device 110, the account application 113 may communicate with the contactless card 101 when the contactless card 101 is sufficiently close to a card reader 118 of the mobile device 110. Card reader 118 may be configured to read from and/or communicate with contactless card 101 (e.g., via NFC, Bluetooth, RFID, etc.). Therefore, example card readers 118 include NFC communication modules, Bluetooth communication modules, and/or RFID communication modules.


For example, a user may tap the contactless card 101 to the mobile device 110, thereby bringing the contactless card 101 sufficiently close to the card reader 118 of the mobile device 110 to enable NFC data transfer between the contactless card 101 and the card reader 118 of the mobile device 110. After communication has been established between client device 110 and contactless card 101, the contactless card 101 generates a message authentication code (MAC) cryptogram. In some examples, this may occur when the contactless card 101 is read by the account application 113. In particular, this may occur upon a read, such as an NFC read, of a near field data exchange (NDEF) tag, which may be created in accordance with the NFC Data Exchange Format. For example, a reader, such as the account application 113 and/or the card reader 118, may transmit a message, such as an applet select message, with the applet ID of an NDEF producing applet. Upon confirmation of the selection, a sequence of select file messages followed by read file messages may be transmitted. For example, the sequence may include “Select Capabilities file”, “Read Capabilities file”, and “Select NDEF file”. At this point, the counter value 104 maintained by the contactless card 101 may be updated or incremented, which may be followed by “Read NDEF file.” At this point, the message may be generated which may include a header and a shared secret. Session keys may then be generated. The MAC cryptogram may be created from the message, which may include the header and the shared secret. The MAC cryptogram may then be concatenated with one or more blocks of random data, and the MAC cryptogram and a random number (RND) may be encrypted with the session key. Thereafter, the cryptogram and the header may be concatenated, and encoded as ASCII hex and returned in NDEF message format (responsive to the “Read NDEF file” message). In some examples, the MAC cryptogram may be transmitted as an NDEF tag, and in other examples the MAC cryptogram may be included with a uniform resource indicator (e.g., as a formatted string). The contactless card 101 may then transmit the MAC cryptogram to the mobile device 110, which may then forward the MAC cryptogram to the server 120 for verification as explained below. However, in some embodiments, the mobile device 110 may verify the MAC cryptogram.


More generally, when preparing to send data (e.g., to the server 120 and/or the mobile device 110), the contactless card 101 may increment the counter value 104. The contactless card 101 may then provide the master key 105 and counter value 104 as input to a cryptographic algorithm, which produces a diversified key 106 as output. The cryptographic algorithm may include encryption algorithms, hash-based message authentication code (HMAC) algorithms, cipher-based message authentication code (CMAC) algorithms, and the like. Non-limiting examples of the cryptographic algorithm may include a symmetric encryption algorithm such as 3DES or AES128; a symmetric HMAC algorithm, such as HMAC-SHA-256; and a symmetric CMAC algorithm such as AES-CMAC. The contactless card 101 may then encrypt the data (e.g., the customer identifier 107 and any other data) using the diversified key 106. The contactless card 101 may then transmit the encrypted data to the account application 113 of the mobile device 110 (e.g., via an NFC connection, Bluetooth connection, etc.). The account application 113 of the mobile device 110 may then transmit the encrypted data to the server 120 via the network 130. In at least one embodiment, the contactless card 101 transmits the counter value 104 with the encrypted data. In such embodiments, the contactless card 101 may transmit an encrypted counter value 104, or an unencrypted counter value 104.


Upon receiving the data, the management application 123 of the server 120 may perform the same symmetric encryption using the counter value 104 as input to the encryption, and the master key 105 as the key for the encryption. As stated, the counter value 104 may be specified in the data received from the mobile device 110, or a counter value 104 maintained by the server 120 to implement key diversification for the contactless card 101. The output of the encryption may be the same diversified key value 106 that was created by the contactless card 101. The management application 123 may then decrypt the encrypted data received via the network 130 using the diversified key 106, which reveals the data transmitted by the contactless card 101 (e.g., at least the customer identifier 107). Doing so allows the management application 123 to verify the data transmitted by the contactless card 101 via the mobile device 110, e.g., by comparing the decrypted customer ID 107 to a customer ID in the account data 124 for the account.


Although the counter 104 is used as an example, other data may be used to secure communications between the contactless card 101, the mobile device 110, and/or the server 120. For example, the counter 104 may be replaced with a random nonce, generated each time a new diversified key 106 is needed, the full value of a counter value sent from the contactless card 101 and the server 120, a portion of a counter value sent from the contactless card 101 and the server 120, a counter independently maintained by the contactless card 101 and the server 120 but not sent between the two, a one-time-passcode exchanged between the contactless card 101 and the server 120, and a cryptographic hash of data. In some examples, one or more portions of the diversified key 106 may be used by the parties to create multiple diversified keys 106.


As shown, the server 120 may include one or more hardware security modules (HSM) 125. For example, one or more HSMs 125 may be configured to perform one or more cryptographic operations as disclosed herein. In some examples, one or more HSMs 125 may be configured as special purpose security devices that are configured to perform the one or more cryptographic operations. The HSMs 125 may be configured such that keys are never revealed outside the HSM 125, and instead are maintained within the HSM 125. For example, one or more HSMs 125 may be configured to perform at least one of key derivations, decryption, and MAC operations. The one or more HSMs 125 may be contained within, or may be in data communication with, server 120.


As stated, data such as the data 103 of the contactless card 101 and/or the server 120 may securely be copied to the clipboard 114. In some embodiments, one or more data elements of the data 103 are received directly from the contactless card 101 and copied to the clipboard. For example, the account number, expiration date, and CVV of the contactless card 101 may be received from the data 103 in one or more data packages from the contactless card 101. In some embodiments, the contactless card 101 may encrypt the requested elements of data 103 and transmit a data package comprising the encrypted data 103 that can be parsed by the account application 113 and copied to the clipboard 114 responsive to receiving an indication of successful authentication of encrypted data generated by the contactless card 101 (e.g., by the server 120). In other embodiments, the server 120 may authenticate encrypted data generated by the contactless card 101 and transmit data 103 stored in the server 120 in one or more data packages to the account application 113 which may copy the data 103 received from the server 120 to the clipboard 114. In embodiments where the data 103 is transmitted to the mobile device 110 in a single package (e.g., from the card 101 and/or the server 120), the single data package may include delimiters and or metadata that allow the account application 113 to parse and extract each element of data 103 (e.g., account number, expiration date, CVV, billing address, and/or shipping address).


For example, a user of the account application 113 may specify to copy data to the clipboard 114. In response, the account application 113 may instruct the user to tap the contactless card 101 to the mobile device 110. Doing so causes the account application 113 to generate and transmit an indication to the contactless card 101 to generate an encrypted data 108. In response, the contactless card 101 increments the counter value 104 and provides the master key 105 and counter value 104 as input to a cryptographic algorithm, which produces a diversified key 106 as output. The contactless card 101 may then encrypt the customer identifier 107 using the diversified key 106 to generate the encrypted data 108. As stated, in some embodiments, the contactless card 101 may further encrypt the data 103 and include the encrypted data 103 as part of the encrypted data 108. The contactless card 101 may then transmit the encrypted data 108 to the account application 113 of the mobile device 110 (e.g., via an NFC connection, Bluetooth connection, etc.). The account application 113 of the mobile device 110 may then transmit the encrypted data 108 to the server 120 via the network 130. In at least one embodiment, the contactless card 101 transmits the counter value 104 along with the encrypted data 108.


Upon receipt of the encrypted data 108, the management application 123 of the server 120 may verify the encrypted data 108 using key diversification. As stated, the management application 123 of the server 120 may perform the same symmetric encryption using the counter value 104 as input to the encryption, and the master key 105 as the key for the encryption, to generate the diversified key 106. The management application 123 may then decrypt the encrypted data 108 received via the network 130 using the diversified key 106, which reveals the data transmitted by the contactless card 101 (e.g., at least the customer identifier 107). Doing so allows the management application 123 to verify the data transmitted by the contactless card 101 via the mobile device 110, e.g., by comparing the decrypted customer ID 107 to a customer ID in the account data 124 for the account, where a match of the customer ID values verifies the encrypted data received from the contactless card 101.


If the management application 123 successfully verifies the encrypted data 108, the management application 123 may transmit an indication of the verification to the account application 113. As stated, in some embodiments, the encrypted data 108 generated by the contactless card 101 may include the data 103. Therefore, responsive to receiving the indication of verification from the management application 123, the account application 113 decrypts and parses the encrypted data 108 received from the contactless card 101 to copy the decrypted data 103 to the clipboard 114. As stated, in some embodiments, management application 123 may further transmit the requested data 103 from the server 120 to the account application 113. In such embodiments, the account application 113 may copy the data 103 received from the server 120 to the clipboard 114.


In at least one embodiment, a time threshold may be applied to a request to copy data to the clipboard 114. In such embodiments, the account application 113 may notify the server 120 that a request to copy data to the clipboard 114 has been initiated. The server 120 may then start a timer. If the timer value exceeds the time threshold, the server 120 may refrain from validating the encrypted data 108, refrain from transmitting an indication of validation of the encrypted data 108, and/or refrain from transmitting data 103 from the server 120 to the account application 113. For example, if the server 120 receives the encrypted data 108 from the contactless card 101 via the mobile device 110 15 seconds after starting the timer, and the time threshold is 30 seconds, the server 120 may validate the encrypted data 108 and transmit the data 103 from the server 120 to the mobile device 110. If, however, the server 120 receives the encrypted data 108 from the contactless card 101 via the mobile device 110 45 seconds after starting the timer, the server 120 may refrain from validating the encrypted data 108 and transmit a failure state to the account application 113, which may refrain from copying data to the clipboard 114.



FIG. 1B depicts a result of the verification process performed by the management application 123. As shown, after verifying the encrypted data 108, the management application 123 of the server 120 transmits the data 103 from the server 120 to the mobile device 110. In at least one embodiment, the management application 123 encrypts the data 103 before sending to the account application 113. As stated, the data 103 may include the account number, CVV, expiration date, and/or billing address of the contactless card 101. Furthermore, as stated, the account number may comprise a single-use virtual account number. The account application 113 may then receive the data 103 and decrypt the received data 103 if the data 103 has been encrypted. The account application 113 may then programmatically write the data 103 to the clipboard 114 without requiring user input and without exposing the data 103. For example, the OS 112 may provide an application programming interface (API) for copying data to the clipboard 114. Therefore, the account application 113 may make a call to the API which includes the data 103 to be copied to the clipboard 114. A result of the API call may copy the provided data 103 to the clipboard 114. As another example, the account application 113 may directly copy the data 103 to the clipboard using one or more code statements supported by the OS 112. Once copied to the clipboard 114, the user may easily paste the data 103 from the clipboard 114 to other targets within the OS 112 using a command and/or gesture available within the OS 112.


In some embodiments, the data 103 copied to the clipboard 114 all relevant information (e.g., the account number, expiration date, CVV, billing address, and/or shipping address) required to make a purchase using the account associated with the contactless card 101. However, in other embodiments, the individual elements of the data 103 may be incrementally copied to the clipboard 114 using one or more taps of the contactless card 101 and the mobile device 110. For example, a first tap of the contactless card 101 and the mobile device 110 may copy the account number of the data 103 to the clipboard 114, while a second tap of the contactless card 101 and the mobile device 110 may copy the expiration date to the clipboard 114, a third tap of the contactless card 101 and the mobile device 110 may copy the CVV to the clipboard 114, a fourth tap of the contactless card 101 may copy the shipping address to the clipboard 114, and a fifth tap of the contactless card 101 may copy the billing address to the clipboard 114. In one embodiment, a separate package of encrypted data 108 is generated by the contactless card 101 responsive to each tap, and the server 120 verifies each package of encrypted data 108 before copying the corresponding data 103 to the clipboard 114. In some embodiments, a single package of the encrypted data 108 is generated responsive to the initial tap and the server 120 verifies the single package of encrypted data 108. In some such embodiments, the account application 113 may receive the data 103 from the server 120 in a single package having delimiters and/or metadata that identifies each data element in the data 103 (e.g., the account number, expiration, date, CVV, billing address, and/or shipping address). The account application 113 may parse the data elements using the delimiters and/or metadata to extract each element of data from the single package of data 103 received from the server. The account application 113 may then copy the parsed data to the clipboard responsive to each tap of the contactless card 101 and the mobile device 110. In some such embodiments, the account application 113 may parse the data 103 based on the current fields displayed on the device 110. For example, if the account number field is current selected and/or displayed on the device 110, the account application 113 may parse the account number from the data 103 and copy the account number to the clipboard 114.


Furthermore, in some embodiments, the clipboard 114 may be hypertext markup language (HTML)-based. In such embodiments, the data 103 may be wrapped in HTML. For example, the account number may be wrapped in HTML indicating the presence of the account number. The expiration date, CVV, and addresses may similarly be wrapped in HTML. Therefore, when pasting from the clipboard 114, the HTML and the data 103 are pasted to the target (e.g., a form in the OS 112, account application 113, and/or the other applications 115). In at least one embodiment, the clipboard 114 and/or the OS 112 may parse the form in light of the data 103 and/or the generated HTML to associate the data 103 and/or generated HTML with the fields of the form. For example, doing so allows the account number, expiration date, CVV, billing address, and shipping address to be pasted into the correct fields of the form, even though the form may use different HTML tags for the fields.


Further still, the account application 113 and/or the OS 112 may manage the data 103 copied to the clipboard 114. For example, the data 103 may be deleted from the clipboard 114 after the data 103 has been stored in the clipboard 114 for a predefined amount of time. As another example, the data 103 may be deleted from the clipboard 114 after the data 103 has been used to make a purchase, e.g., after a threshold amount of time has elapsed since the data 103 has been used to make a purchase. In addition and/or alternatively, the clipboard 114 may be modified to remove the data 103, e.g., by copying random data to the clipboard 114.



FIG. 2 is a schematic 200 depicting an example embodiment of tapping to copy data to a clipboard via NFC. Generally, the schematic 200 depicts an embodiment where the account application 113 reads the data 103 directly from the contactless card 101 (e.g., via the card reader 118). As shown, the account application 113 on the mobile device 110 may specify to tap the contactless card 101 to the mobile device 110, e.g., responsive to receiving user input specifying to copy data from the contactless card 101 to the clipboard 114. Once the contactless card 101 is tapped to the mobile device 110, the account application 113 transmits, via the NFC card reader 118, an indication to the contactless card 101 to transmit the data 103. The contactless card 101 may then transmit the data 103 to the account application 113 via NFC. The account application 113 may then copy the received data 103 to the clipboard 114. As stated, the data 103 may include one or more of an account number, expiration date, and CVV. The data 103 may then be pasted from the clipboard 114 to any number and types of targets within the OS 112.



FIG. 3A is a schematic 300 depicting an example embodiment of tapping to copy data to a clipboard via NFC. Generally, FIG. 3A reflects an embodiment where a single tap is used to copy the account number of the data 103. As shown, the account application 113 on the mobile device 110 may specify to tap the contactless card 101 to the mobile device 110, e.g., responsive to receiving user input specifying to copy data 103 to the clipboard 114. Once the contactless card 101 is tapped to the mobile device 110, the account application 113 transmits, via the NFC card reader 118, an indication to the contactless card 101 to transmit data. In one embodiment, the contactless card 101 transmits the account number directly to the mobile device 110 via NFC, where the card reader 118 provides the received data to the account application 113, which then copies the account number to the clipboard 114. In such an embodiment, an applet of the contactless card 101 (e.g., an applet 440 of FIG. 4B) may maintain a counter value to determine to transmit the account number and increment the counter value responsive to each tap. In such an embodiment, at least one counter value is associated with transmitting the account number, at least one other counter value is associated with transmitting the expiration date, and at least one other counter value is associated with transmitting the CVV.


In another embodiment, the contactless card 101 may perform encryption using key diversification as described above to generate encrypted data (e.g., the encrypted data 108), and transmit the encrypted data to the account application 113. The account application 113 may then transmit the encrypted data to the server 120, where the management application 123 verifies the encrypted data using key diversification as described above. The management application 123 may then transmit the account number to the account application 113, which then copies the account number to the clipboard 114.


Regardless of the technique used to copy the account number of the contactless card 101 to the clipboard 114, the user may then paste the account number as desired. Furthermore, if desired, the user may tap the contactless card 101 to the mobile device 110 an additional time to copy the expiration date of the contactless card 101 to the clipboard 114.



FIG. 3B is a schematic 310 depicting an example embodiment where the user has tapped the contactless card 101 to the mobile device 110 to copy the expiration date of the contactless card 101 to the clipboard 114. Once the contactless card 101 is tapped to the mobile device 110, the account application 113 transmits, via the NFC card reader 118, an indication to the contactless card 101 to transmit data. In one embodiment, the contactless card 101 transmits the expiration date directly to the mobile device 110 via NFC, where the account application 113 then copies the expiration date to the clipboard 114. In such an embodiment, the applet of the contactless card 101 may increment the counter value responsive to the tap and reference the counter value to determine to transmit the expiration date.


In another embodiment, the contactless card 101 may perform encryption using key diversification as described above to generate encrypted data (e.g., the encrypted data 108), and transmit the encrypted data to the account application 113. The account application 113 may then transmit the encrypted data to the server 120, where the management application 123 verifies the encrypted data using key diversification as described above. The management application 123 may then transmit the expiration date to the account application 113, which then copies the expiration date to the clipboard 114. Doing so allows the user to paste the expiration date as desired. Furthermore, if desired, the user may tap the contactless card 101 to the mobile device 110 an additional time to copy the CVV of the contactless card 101 to the clipboard 114.



FIG. 3C is a schematic 320 depicting an example embodiment where the user has tapped the contactless card 101 to the mobile device 110 to copy the CVV of the contactless card 101 to the clipboard 114. Once the contactless card 101 is tapped to the mobile device 110, the account application 113 transmits, via the NFC card reader 118, an indication to the contactless card 101 to transmit data. In one embodiment, the contactless card 101 transmits the CVV directly to the mobile device 110 via NFC. The card reader 118 may then provide the CVV to the account application 113, which then copies the CVV to the clipboard 114. In such an embodiment, the applet of the contactless card 101 may increment the counter value responsive to the tap and reference the counter value to determine to transmit the CVV.


In another embodiment, the contactless card 101 may perform encryption using key diversification as described above to generate encrypted data (e.g., the encrypted data 108), and transmit the encrypted data to the account application 113. The account application 113 may then transmit the encrypted data to the server 120, where the management application 123 verifies the encrypted data using key diversification as described above. The management application 123 may then transmit the CVV to the account application 113, which then copies the CVV to the clipboard 114. Doing so allows the user to paste the CVV as desired.


In some embodiments, the initial tap of the contactless card 101 to the mobile device 110 (e.g., the tap depicted in FIG. 3A) causes the contactless card 101 and/or the server 120 to transfer the account number, expiration date, and the CVV to the account application 113 (e.g., in an NDEF file). In such an embodiment, the account application 113 copies the account number from the NDEF file to the clipboard 114 responsive to the first tap. Responsive to the second tap, the account application 113 copies the expiration date from the NDEF file to the clipboard 114 without having to receive any additional data from the contactless card 101 and/or the server 120. Responsive to the third tap, the account application 113 copies the CVV from the NDEF file to the clipboard 114 without having to receive any additional data from the contactless card 101 and/or the server 120.



FIG. 4A illustrates a contactless card 101, which may comprise a payment card, such as a credit card, debit card, and/or a gift card. As shown, the contactless card 101 may be issued by a service provider 405 displayed on the front or back of the card 101. In some examples, the contactless card 101 is not related to a payment card, and may comprise, without limitation, an identification card. In some examples, the payment card may comprise a dual interface contactless payment card. The contactless card 101 may comprise a substrate 410, which may include a single layer or one or more laminated layers composed of plastics, metals, and other materials. Exemplary substrate materials include polyvinyl chloride, polyvinyl chloride acetate, acrylonitrile butadiene styrene, polycarbonate, polyesters, anodized titanium, palladium, gold, carbon, paper, and biodegradable materials. In some examples, the contactless card 101 may have physical characteristics compliant with the ID-1 format of the ISO/IEC 7810 standard, and the contactless card may otherwise be compliant with the ISO/IEC 14443 standard. However, it is understood that the contactless card 101 according to the present disclosure may have different characteristics, and the present disclosure does not require a contactless card to be implemented in a payment card.


The contactless card 101 may also include identification information 415 displayed on the front and/or back of the card, and a contact pad 420. The contact pad 420 may be configured to establish contact with another communication device, such as a user device, smart phone, laptop, desktop, or tablet computer. The contactless card 101 may also include processing circuitry, antenna and other components not shown in FIG. 4A. These components may be located behind the contact pad 420 or elsewhere on the substrate 410. The contactless card 101 may also include a magnetic strip or tape, which may be located on the back of the card (not shown in FIG. 4A).


As illustrated in FIG. 4B, the contact pad 420 of FIG. 4A may include processing circuitry 425 for storing and processing information, including a microprocessor 430 and a memory 102. It is understood that the processing circuitry 425 may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anticollision algorithms, controllers, command decoders, security primitives and tamperproofing hardware, as necessary to perform the functions described herein.


The memory 102 may be a read-only memory, write-once read-multiple memory or read/write memory, e.g., RAM, ROM, and EEPROM, and the contactless card 101 may include one or more of these memories. A read-only memory may be factory programmable as read-only or one-time programmable. One-time programmability provides the opportunity to write once then read many times. A write once/read-multiple memory may be programmed at a point in time after the memory chip has left the factory. Once the memory is programmed, it may not be rewritten, but it may be read many times. A read/write memory may be programmed and re-programmed many times after leaving the factory. A read/write memory may also be read many times after leaving the factory.


The memory 102 may be configured to store one or more applets 440, one or more elements of data 103, one or more counters 104, a master key 105, a diversified key 106, and a customer identifier 107. The one or more applets 440 may comprise one or more software applications configured to execute on one or more contactless cards, such as a Java® Card applet. However, it is understood that applets 440 are not limited to Java Card applets, and instead may be any software application operable on contactless cards or other devices having limited memory. The one or more counters 104 may comprise a numeric counter sufficient to store an integer. The customer identifier 107 may comprise a unique alphanumeric identifier assigned to a user of the contactless card 101, and the identifier may distinguish the user of the contactless card from other contactless card users. In some examples, the customer identifier 107 may identify both a customer and an account assigned to that customer and may further identify the contactless card associated with the customer's account.


The processor and memory elements of the foregoing exemplary embodiments are described with reference to the contact pad, but the present disclosure is not limited thereto. It is understood that these elements may be implemented outside of the pad 420 or entirely separate from it, or as further elements in addition to processor 430 and memory 102 elements located within the contact pad 420.


In some examples, the contactless card 101 may comprise one or more antennas 455. The one or more antennas 455 may be placed within the contactless card 101 and around the processing circuitry 425 of the contact pad 420. For example, the one or more antennas 455 may be integral with the processing circuitry 425 and the one or more antennas 455 may be used with an external booster coil. As another example, the one or more antennas 455 may be external to the contact pad 420 and the processing circuitry 425.


In an embodiment, the coil of contactless card 101 may act as the secondary of an air core transformer. The terminal may communicate with the contactless card 101 by cutting power or amplitude modulation. The contactless card 101 may infer the data transmitted from the terminal using the gaps in the contactless card's power connection, which may be functionally maintained through one or more capacitors. The contactless card 101 may communicate back by switching a load on the contactless card's coil or load modulation. Load modulation may be detected in the terminal's coil through interference. More generally, using the antennas 455, processing circuitry 425, and/or the memory 102, the contactless card 101 provides a communications interface to communicate via NFC, Bluetooth, and/or Wi-Fi communications.


As explained above, contactless cards 101 may be built on a software platform operable on smart cards or other devices having limited memory, such as JavaCard, and one or more or more applications or applets may be securely executed. Applets may be added to contactless cards to provide a one-time password (OTP) for multifactor authentication (MFA) in various mobile application-based use cases. Applets may be configured to respond to one or more requests, such as near field data exchange requests, from a reader, such as a mobile NFC reader (e.g., of the mobile device 110), and produce an NDEF message that comprises a cryptographically secure OTP encoded as an NDEF text tag.



FIG. 5 illustrates an embodiment of a logic flow 500. The logic flow 500 may be representative of some or all of the operations executed by one or more embodiments described herein. For example, the logic flow 500 may include some or all of the operations to securely copy data associated with a contactless card 101 using key diversification. Embodiments are not limited in this context.


As shown, the logic flow 500 begins at block 505, where the contactless card 101 and the server 120 are provisioned with the same master key 105. At block 510, a user taps the contactless card 101 to the mobile device to cause the contactless card 101 to generate and transmit encrypted data (e.g., the encrypted data 108). The user may tap the contactless card 101 responsive to providing input to the account application 113 specifying to copy the data 103 to the clipboard. The account application 113 may transmit an indication to the contactless card 101 via the NFC card reader 118 specifying to generate and transmit encrypted data. The contactless card 101 may increment the counter value 104 in the memory 102 responsive to receiving the indication to generate encrypted data. At block 515, the contactless card 101 generates the diversified key 106 using the counter value 104 and the master key 105 in the memory 102 and a cryptographic algorithm. At block 520, the contactless card 101 encrypts data (e.g., the customer identifier 107) using the diversified key 106 and the cryptographic algorithm, generating encrypted data (e.g., the encrypted data 108).


At block 525, the contactless card 101 may transmit the encrypted data to the account application 113 of the mobile device 110 using NFC. In at least one embodiment, the contactless card 101 further includes an indication of the counter value 104 along with the encrypted data. At block 530, the account application 113 of the mobile device 110 may transmit the data received from the contactless card 101 to the management application 123 of the server 120. At block 535, the management application 123 of the server 120 may generate a diversified key 106 using the master key 105 and the counter value 104 as input to a cryptographic algorithm. In one embodiment, the management application 123 uses the counter value 104 provided by the contactless card 101. In another embodiment, the management application 123 increments the counter value 104 in the memory 122 to synchronize the state of the counter value 104 in the memory 122 with the counter value 104 in the memory 102 of the contactless card 101.


At block 540, the management application 123 decrypts the encrypted data received from the contactless card 101 via the mobile device 110 using the diversified key 106 and a cryptographic algorithm. Doing so may yield at least the customer identifier 107. By yielding the customer identifier 107, the management application 123 may validate the data received from the contactless card 101 at block 545. For example, the management application 123 may compare the customer identifier 107 to a customer identifier for the associated account in the account data 124, and validate the data based on a match.


At block 550, the management application 123 may transmit data 103 associated with the contactless card 101 to the account application 113 of the mobile device 110. For example, the management application 123 may transmit the account number, expiration date, and CVV. In one embodiment, the management application 123 generates a virtual account number that is sent to the account application 113 of the mobile device 110. At block 555, the account application 113 of the mobile device 110 copies the data 103 received from the server 120 to the clipboard 114 of the OS 112. At block 560, the data 103 that has been copied to the clipboard 114 may be pasted to a form. The form may be a component of the account application 113, the other applications 115, and/or the OS 112.



FIG. 6 illustrates an embodiment of a logic flow 600. The logic flow 600 may be representative of some or all of the operations executed by one or more embodiments described herein. For example, the logic flow 600 may include some or all of the operations to paste data from the clipboard 114 to an application form. Embodiments are not limited in this context.


As shown, the logic flow 600 begins at block 610, where the account application 113 and/or the OS 112 identifies a form comprising form fields in an application. The application may be the account application 113 and/or one or more of the other applications 115. For example, the account application 113 and/or the OS 112 may parse the source code of the form to identify the fields of the form. At block 620, the account application 113 and/or the OS 112 may map the elements of data 103 copied to the clipboard 114 (e.g., the account number, expiration date, and/or CVV) to a corresponding form field. For example, the account application 113 and/or the OS 112 may use fuzzy matching and/or rules to map the account number, expiration date, and CVV to the appropriate fields of the form.


At block 630, the account application 113 and/or the OS 112 may optionally generate HTML for the data 103 stored in the clipboard 114, thereby adding the HTML to the data 103 in the clipboard 114. Doing so may allow the account application 113 and/or the OS 112 to inject the data 103 into the form. At block 640, the account application 113 and/or the OS 112 copies the data 103 to the mapped form fields. At block 650, the account application 113 and/or the OS 112 may modify and/or delete the contents of the clipboard 114 subsequent to a purchase being made with the data 103 of the contactless card 101. At block 660, the account application 113 and/or the OS 112 may modify and/or delete the contents of the clipboard 114 subsequent to the expiration of a time limit for storing the data 103 in the clipboard 114. Doing so enhances the security of the data 103, such as account numbers, identification information, account information, etc.



FIG. 7 illustrates an embodiment of a logic flow 700. The logic flow 700 may be representative of some or all of the operations executed by one or more embodiments described herein. For example, the logic flow 700 may include some or all of the operations to copy data 103 to a clipboard 114 using multiple taps of a contactless card 101 to a mobile device 110. Embodiments are not limited in this context.


As shown, the logic flow 700 begins at block 710, where the user taps the contactless card 101 to the mobile device 110. Doing so causes the account application 113 to transmit an indication to the contactless card 101 to generate encrypted data using key diversification. The account application 113 may further increment a tap counter responsive to the tap. At block 720, the contactless card 101 increments the counter value 104 and generate the encrypted data 108 as described above. At block 730, the account application 113 receives the encrypted data 108 from the contactless card 101 via NFC and transmits the encrypted data 108 to the server 120. The server 120 may then verify the encrypted data 108 using key diversification as described above. At block 740, the account application 113 receives the data 103 from the server 120 after the server 120 verifies the encrypted data 108. The data 103 may include one or more of the account number, expiration date, and CVV associated with the contactless card 101.


At block 750, the account application 113 may copy the data 103 to the clipboard 114. As stated, the account application 113 may paste one element of data based on the current value of the tap counter. For example, a counter value associated with a first tap of the contactless card 101 to the mobile device 110 may be associated with copying the account number to the clipboard 114. Similarly, a counter value associated with a second tap may be associated with copying the expiration date to the clipboard 114, while a counter value associated with a third tap may be associated with copying the CVV to the clipboard 114. At block 760, the account application 113 determines whether more data 103 remains. For example, if the tap counter indicates that the account number has been copied to the clipboard 114, the account application 113 may determine that the expiration date and/or the CVV remain to be copied to the clipboard 114. As such, the logic flow 700 returns to block 710. Otherwise, the logic flow 700 ends.


In some examples, the contactless card 101 may be tapped to a device, such as one or more computer kiosks or terminals, to verify identity so as to receive a transactional item responsive to a purchase, such as a coffee. By using the contactless card 101, a secure method of proving identity in a loyalty program may be established. Securely proving the identity, for example, to obtain a reward, coupon, offer, or the like or receipt of a benefit is established in a manner that is different than merely scanning a bar card. For example, an encrypted transaction may occur between the contactless card 101 and the device, which may configured to process one or more tap gestures. As explained above, the one or more applications may be configured to validate identity of the user and then cause the user to act or respond to it, for example, via one or more tap gestures. In some examples, data for example, bonus points, loyalty points, reward points, healthcare information, etc., may be written back to the contactless card.


In some examples, the contactless card 101 may be tapped to a device, such as the mobile device 110. As explained above, identity of the user may be verified by the one or more applications which would then grant the user a desired benefit based on verification of the identity.


In some embodiments, an example authentication communication protocol may mimic an offline dynamic data authentication protocol of the EMV standard that is commonly performed between a transaction card and a point-of-sale device, with some modifications. For example, because the example authentication protocol is not used to complete a payment transaction with a card issuer/payment processor per se, some data values are not needed, and authentication may be performed without involving real-time online connectivity to the card issuer/payment processor. Some point of sale (POS) systems submit transactions including a transaction value to a card issuer. Whether the issuer approves or denies the transaction may be based on if the card issuer recognizes the transaction value. Meanwhile, in certain embodiments of the present disclosure, transactions originating from a mobile device lack the transaction value associated with the POS systems. Therefore, in some embodiments, a dummy transaction value (i.e., a value recognizable to the card issuer and sufficient to allow activation to occur) may be passed as part of the example authentication communication protocol. POS based transactions may also decline transactions based on the number of transaction attempts (e.g., transaction counter). A number of attempts beyond a buffer value may result in a soft decline; the soft decline requiring further verification before accepting the transaction. In some implementations, a buffer value for the transaction counter may be modified to avoid declining legitimate transactions.


In some examples, the contactless card 101 can selectively communicate information depending upon the recipient device. Once tapped, the contactless card 101 can recognize the device to which the tap is directed, and based on this recognition the contactless card can provide appropriate data for that device. This advantageously allows the contactless card to transmit only the information required to complete the instant action or transaction, such as a payment or card authentication. By limiting the transmission of data and avoiding the transmission of unnecessary data, both efficiency and data security can be improved. The recognition and selective communication of information can be applied to a various scenarios, including card activation, balance transfers, account access attempts, commercial transactions, and step-up fraud reduction.


If the tap of the contactless card 101 is directed to a device running Apple's iOS® operating system, e.g., an iPhone, iPod, or iPad, the contactless card can recognize the iOS® operating system and transmit data appropriate data to communicate with this device. For example, the contactless card 101 can provide the encrypted identity information necessary to authenticate the card using NDEF tags via, e.g., NFC. Similarly, if the contactless card tap is directed to a device running the Android® operating system, e.g., an Android® smartphone or tablet, the contactless card can recognize the Android® operating system and transmit appropriate and data to communicate with this device (such as the encrypted identity information necessary for authentication by the methods described herein).


As another example, the contactless card tap can be directed to a POS device, including without limitation a kiosk, a checkout register, a payment station, or other terminal. Upon performance of the tap, the contactless card 101 can recognize the POS device and transmit only the information necessary for the action or transaction. For example, upon recognition of a POS device used to complete a commercial transaction, the contactless card 101 can communicate payment information necessary to complete the transaction under the EMV standard.


In some examples, the POS devices participating in the transaction can require or specify additional information, e.g., device-specific information, location-specific information, and transaction-specific information, that is to be provided by the contactless card. For example, once the POS device receives a data communication from the contactless card, the POS device can recognize the contactless card and request the additional information necessary to complete an action or transaction.


In some examples the POS device can be affiliated with an authorized merchant or other entity familiar with certain contactless cards or accustomed to performing certain contactless card transactions. However, it is understood such an affiliation is not required for the performance of the described methods.


In some examples, such as a shopping store, grocery store, convenience store, or the like, the contactless card 101 may be tapped to a mobile device without having to open an application, to indicate a desire or intent to utilize one or more of reward points, loyalty points, coupons, offers, or the like to cover one or more purchases. Thus, an intention behind the purchase is provided.


In some examples, the one or more applications may be configured to determine that it was launched via one or more tap gestures of the contactless card 101, such that a launch occurred at 3:51 pm, that a transaction was processed or took place at 3:56 pm, in order to verify identity of the user.


In some examples, the one or more applications may be configured to control one or more actions responsive to the one or more tap gestures. For example, the one or more actions may comprise collecting rewards, collecting points, determine the most important purchase, determine the least costly purchase, and/or reconfigure, in real-time, to another action.


In some examples, data may be collected on tap behaviors as biometric/gestural authentication. For example, a unique identifier that is cryptographically secure and not susceptible to interception may be transmitted to one or more backend services. The unique identifier may be configured to look up secondary information about individual. The secondary information may comprise personally identifiable information about the user. In some examples, the secondary information may be stored within the contactless card.


In some examples, the device may comprise an application that splits bills or check for payment amongst a plurality of individuals. For example, each individual may possess a contactless card, and may be customers of the same issuing financial institution, but it is not necessary. Each of these individuals may receive a push notification on their device, via the application, to split the purchase. Rather than accepting only one card tap to indicate payment, other contactless cards may be used. In some examples, individuals who have different financial institutions may possess contactless cards 101 to provide information to initiate one or more payment requests from the card-tapping individual.


In some examples, the present disclosure refers to a tap of the contactless card. However, it is understood that the present disclosure is not limited to a tap, and that the present disclosure includes other gestures (e.g., a wave or other movement of the card).



FIG. 8 illustrates an embodiment of an exemplary computing architecture 800 comprising a computing system 802 that may be suitable for implementing various embodiments as previously described. In various embodiments, the computing architecture 800 may comprise or be implemented as part of an electronic device. In some embodiments, the computing architecture 800 may be representative, for example, of a system that implements one or more components of the system 100. In some embodiments, computing system 802 may be representative, for example, of the mobile devices 110 and server 120 of the system 100. The embodiments are not limited in this context. More generally, the computing architecture 800 is configured to implement all logic, applications, systems, methods, apparatuses, and functionality described herein with reference to FIGS. 1-6.


As used in this application, the terms “system” and “component” and “module” are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution, examples of which are provided by the exemplary computing architecture 800. For example, a component can be, but is not limited to being, a process running on a computer processor, a computer processor, a hard disk drive, multiple storage drives (of optical and/or magnetic storage medium), an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a component. One or more components can reside within a process and/or thread of execution, and a component can be localized on one computer and/or distributed between two or more computers. Further, components may be communicatively coupled to each other by various types of communications media to coordinate operations. The coordination may involve the uni-directional or bi-directional exchange of information. For instance, the components may communicate information in the form of signals communicated over the communications media. The information can be implemented as signals allocated to various signal lines. In such allocations, each message is a signal. Further embodiments, however, may alternatively employ data messages. Such data messages may be sent across various connections. Exemplary connections include parallel interfaces, serial interfaces, and bus interfaces.


The computing system 802 includes various common computing elements, such as one or more processors, multi-core processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O) components, power supplies, and so forth. The embodiments, however, are not limited to implementation by the computing system 802.


As shown in FIG. 8, the computing system 802 comprises a processor 804, a system memory 806 and a system bus 808. The processor 804 can be any of various commercially available computer processors, including without limitation an AMD® Athlon®, Duron® and Opteron® processors; ARM® application, embedded and secure processors; IBM® and Motorola® DragonBall® and PowerPC® processors; IBM and Sony® Cell processors; Intel® Celeron®, Core®, Core (2) Duo®, Itanium®, Pentium®, Xeon®, and XScale® processors; and similar processors. Dual microprocessors, multi-core processors, and other multi processor architectures may also be employed as the processor 804.


The system bus 808 provides an interface for system components including, but not limited to, the system memory 806 to the processor 804. The system bus 808 can be any of several types of bus structure that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. Interface adapters may connect to the system bus 808 via a slot architecture. Example slot architectures may include without limitation Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), and the like.


The system memory 806 may include various types of computer-readable storage media in the form of one or more higher speed memory units, such as read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., one or more flash arrays), polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices (e.g., USB memory, solid state drives (SSD) and any other type of storage media suitable for storing information. In the illustrated embodiment shown in FIG. 8, the system memory 806 can include non-volatile memory 810 and/or volatile memory 812. A basic input/output system (BIOS) can be stored in the non-volatile memory 810.


The computing system 802 may include various types of computer-readable storage media in the form of one or more lower speed memory units, including an internal (or external) hard disk drive (HDD) 814, a magnetic floppy disk drive (FDD) 816 to read from or write to a removable magnetic disk 818, and an optical disk drive 820 to read from or write to a removable optical disk 822 (e.g., a CD-ROM or DVD). The HDD 814, FDD 816 and optical disk drive 820 can be connected to the system bus 808 by a HDD interface 824, an FDD interface 826 and an optical drive interface 828, respectively. The HDD interface 824 for external drive implementations can include at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies. The computing system 802 is generally is configured to implement all logic, systems, methods, apparatuses, and functionality described herein with reference to FIGS. 1-7.


The drives and associated computer-readable media provide volatile and/or nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For example, a number of program modules can be stored in the drives and memory units 810, 812, including an operating system 830, one or more application programs 832, other program modules 834, and program data 836. In one embodiment, the one or more application programs 832, other program modules 834, and program data 836 can include, for example, the various applications and/or components of the system 100, e.g., the operating system 112, account application 113, clipboard 114, other applications 115, and the management application 123.


A user can enter commands and information into the computing system 802 through one or more wire/wireless input devices, for example, a keyboard 838 and a pointing device, such as a mouse 840. Other input devices may include microphones, infra-red (IR) remote controls, radio-frequency (RF) remote controls, game pads, stylus pens, card readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, retina readers, touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, sensors, styluses, and the like. These and other input devices are often connected to the processor 804 through an input device interface 842 that is coupled to the system bus 808, but can be connected by other interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port, an IR interface, and so forth.


A monitor 844 or other type of display device is also connected to the system bus 808 via an interface, such as a video adaptor 846. The monitor 844 may be internal or external to the computing system 802. In addition to the monitor 844, a computer typically includes other peripheral output devices, such as speakers, printers, and so forth.


The computing system 802 may operate in a networked environment using logical connections via wire and/or wireless communications to one or more remote computers, such as a remote computer 848. The remote computer 848 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all of the elements described relative to the computing system 802, although, for purposes of brevity, only a memory/storage device 850 is illustrated. The logical connections depicted include wire/wireless connectivity to a local area network (LAN) 852 and/or larger networks, for example, a wide area network (WAN) 854. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communications network, for example, the Internet. In embodiments, the network 130 of FIG. 1 is one or more of the LAN 852 and the WAN 854.


When used in a LAN networking environment, the computing system 802 is connected to the LAN 852 through a wire and/or wireless communication network interface or adaptor 856. The adaptor 856 can facilitate wire and/or wireless communications to the LAN 852, which may also include a wireless access point disposed thereon for communicating with the wireless functionality of the adaptor 856.


When used in a WAN networking environment, the computing system 802 can include a modem 858, or is connected to a communications server on the WAN 854, or has other means for establishing communications over the WAN 854, such as by way of the Internet. The modem 858, which can be internal or external and a wire and/or wireless device, connects to the system bus 808 via the input device interface 842. In a networked environment, program modules depicted relative to the computing system 802, or portions thereof, can be stored in the remote memory/storage device 850. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used.


The computing system 802 is operable to communicate with wired and wireless devices or entities using the IEEE 802 family of standards, such as wireless devices operatively disposed in wireless communication (e.g., IEEE 802.16 over-the-air modulation techniques). This includes at least Wi-Fi (or Wireless Fidelity), WiMax, and Bluetooth™ wireless technologies, among others. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices. Wi-Fi networks use radio technologies called IEEE 802.11x (a, b, g, n, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wire networks (which use IEEE 802.3-related media and functions).


Various embodiments may be implemented using hardware elements, software elements, or a combination of both. Examples of hardware elements may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth. Examples of software may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints.


One or more aspects of at least one embodiment may be implemented by representative instructions stored on a machine-readable medium which represents various logic within the processor, which when read by a machine causes the machine to fabricate logic to perform the techniques described herein. Such representations, known as “IP cores” may be stored on a tangible, machine readable medium and supplied to various customers or manufacturing facilities to load into the fabrication machines that make the logic or processor. Some embodiments may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with the embodiments. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, encrypted code, and the like, implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language.


The foregoing description of example embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the present disclosure to the precise forms disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the present disclosure be limited not by this detailed description, but rather by the claims appended hereto. Future filed applications claiming priority to this application may claim the disclosed subject matter in a different manner, and may generally include any set of one or more limitations as variously disclosed or otherwise demonstrated herein.

Claims
  • 1. A system, comprising: a mobile device comprising a processor and a memory;contactless card comprising a processor and a memory; anda server communicatively coupled to the mobile device;wherein the contactless card processor encrypts data associated with an account in the memory of the contactless card, wherein the contactless card generates the encrypted data using a diversified key obtained by providing a master key and a counter value stored in the memory of the contactless card as input to a cryptographic algorithm, and wherein the contactless card sends the encrypted data to the mobile device responsive to a first tap of the contactless card to the mobile device;wherein the server receives the counter value and encrypted data sent from the mobile device, decrypts the encrypted data using the diversified key, and sends an indication to the mobile device that the encrypted data was decrypted;wherein the server encrypts an account number associated with the account and sends the encrypted account number to the mobile device after the decrypting;wherein an application executing on the mobile device decrypts the encrypted account number to yield the account number;wherein the contactless card sends an expiration date associated with the account number to the mobile device responsive to a second tap of the contactless card to the mobile device;wherein the contactless card sends a card verification value (CVV) associated with the account number to the mobile device responsive to a third tap of the contactless card to the mobile device, wherein a tap counter counts a number of taps of the card to the mobile device, and wherein the encrypted data, expiration date, and CVV are sent by the contactless card based on the number of taps counted by the tap counter;wherein the application copies the decrypted account number, expiration date, and CVV as information to a clipboard on an operating system (OS) executing on the mobile device; andwherein the mobile device removes the clipboard information after the mobile device makes a purchase using the clipboard information or after a time threshold expires.
  • 2. The system of claim 1, wherein the mobile device: identifies a form comprising a plurality of fields including a first field, a second field, and a third field; anddetermines that the first field is associated with the account number, the second field is associated with the expiration date, and the third field is associated with the CVV.
  • 3. The system of claim 2, wherein the mobile device pastes, from the clipboard: (i) the account number to the first field, (ii) the expiration date to the second field, and (iii) the CVV to the third field.
  • 4. The system of claim 1, wherein the mobile device removes the clipboard information by erasing all data stored in the clipboard.
  • 5. The system of claim 1, wherein the mobile device removes the clipboard information by copying other data to the clipboard.
  • 6. The system of claim 1, wherein the account number comprises a virtual account number.
  • 7. The system of claim 1, wherein the data associated with the account in the memory of the contactless card comprises at least a customer identification value.
  • 8. A method, comprising: encrypting, by a processor of a contactless card, data associated with an account in a memory of the contactless card, wherein the contactless card encrypts the data using a diversified key obtained by providing a master key and a counter value stored in the memory of the contactless card as input to a cryptographic algorithm, and wherein the contactless card sends the encrypted data to a mobile device comprising a processor and a memory responsive to a first tap of the contactless card to the mobile device;receiving, by a server, the counter value and encrypted data from the mobile device;decrypting, by the server, the encrypted data using the diversified key;transmitting, by the server, an indication to the mobile device that the encrypted data was decrypted;encrypting, by the server, an account number associated with the account;sending, by the server, the encrypted account number to the mobile device after the decrypting;decrypting, by an application executing on the mobile device, the encrypted account number to yield the account number;sending, by the contactless card, an expiration date associated with the account number to the mobile device responsive to a second tap of the contactless card to the mobile device;sending, by the contactless card, a card verification value ((NV) associated with the account number to the mobile device responsive to a third tap of the contactless card to the mobile device, wherein a tap counter counts a number of taps of the card to the mobile device, and wherein the encrypted data, expiration date, and CVV are sent by the contactless card based on the number of taps counted by the tap counter;copying, by the application, the decrypted account number, expiration date, and CVV as information to a clipboard on an operating system (OS) executing on the mobile device; andremoving, by the mobile device, the clipboard information after the mobile device makes a purchase using the clipboard information or after a time threshold expires.
  • 9. The method of claim 8, further comprising: identifying, by the mobile device, a form comprising a plurality of fields including a first field, a second field, and a third field; anddetermining, by the mobile device, that the first field is associated with the account number, the second field is associated with the expiration date, and the third field is associated with the CVV.
  • 10. The method of claim 9, further comprising: pasting, by the mobile device from the clipboard: (i) the account number to the first field, (ii) the expiration date to the second field, and (iii) the CVV to the third field.
  • 11. The method of claim 8, wherein the mobile device removes the clipboard information by erasing all data stored in the clipboard.
  • 12. The method of claim 8, wherein the mobile device removes the clipboard information by copying other data to the clipboard.
  • 13. The method of claim 8, wherein the account number comprises a virtual account number.
  • 14. The method of claim 8, wherein the data associated with the account in the memory of the contactless card comprises at least a customer identification value.
  • 15. A non-transitory computer-readable storage medium storing computer-readable instructions executable by a system to cause the system to perform the steps of: encrypting, by a processor of a contactless card of the system, data associated with an account in a memory of the contactless card, wherein the contactless card encrypts the data using a diversified key obtained by providing a master key and a counter value stored in the memory of the contactless card as input to a cryptographic algorithm, and wherein the contactless card sends the encrypted data to a mobile device of the system responsive to a first tap of the contactless card to the mobile device, the mobile device comprising a processor and a memory;receiving, by a server of the system, the counter value and encrypted data from the mobile device;decrypting, by the server, the encrypted data using the diversified key;transmitting, by the server, an indication to the mobile device that the encrypted data was decrypted;encrypting, by the server, an account number associated with the account;sending, by the server, the encrypted account number to the mobile device after the decrypting;decrypting, by an application executing on the mobile device, the encrypted account number to yield the account number;sending, by the contactless card, an expiration date associated with the account number to the mobile device responsive to a second tap of the contactless card to the mobile device;sending, by the contactless card, a card verification value (CVV) associated with the account number to the mobile device responsive to a third tap of the contactless card to the mobile device, wherein a tap counter counts a number of taps of the card to the mobile device, and wherein the encrypted data, expiration date, and CVV are sent by the contactless card based on the number of taps counted by the tap counter;copying, by the application, the decrypted account number, expiration date, and CVV as information to a clipboard on an operating system (OS) executing on the mobile device; andremoving, by the mobile device, the clipboard information after the mobile device makes a purchase using the clipboard information or after a time threshold expires.
  • 16. The computer-readable storage medium of claim 15, storing computer-readable instructions executable by the system to cause the system to perform the steps of: identifying, by the mobile device, a form comprising a plurality of fields including a first field, a second field, and a third field; anddetermining, by the mobile device, that the first field is associated with the account number, the second field is associated with the expiration date, and the third field is associated with the CVV.
  • 17. The computer-readable storage medium of claim 16, storing computer-readable instructions executable by the system to cause the system to perform the step of: pasting, by the mobile device from the clipboard: (i) the account number to the first field, (ii) the expiration date to the second field, and (iii) the CVV to the third field.
  • 18. The computer-readable storage medium of claim 15, Wherein the mobile device removes the clipboard information by erasing all data stored in the clipboard.
  • 19. The computer-readable storage medium of claim 15, wherein the mobile device removes the clipboard information by copying other data to the clipboard.
  • 20. The computer-readable storage medium of claim 15, wherein the account number comprises a virtual account number, wherein the data associated with the account in the memory of the contactless card comprises at least a customer identification value.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/359,966, entitled “TAP TO COPY DATA TO CLIPBOARD VIA NFC” filed on Mar. 20, 2019. The contents of the aforementioned application are incorporated herein by reference.

US Referenced Citations (545)
Number Name Date Kind
4827113 Rikuna May 1989 A
4910773 Hazard et al. Mar 1990 A
5036461 Elliott et al. Jul 1991 A
5363448 Koopman, Jr. et al. Nov 1994 A
5377270 Koopman, Jr. et al. Dec 1994 A
5533126 Hazard Jul 1996 A
5537314 Kanter Jul 1996 A
5592553 Guski et al. Jan 1997 A
5616901 Crandall Apr 1997 A
5666415 Kaufman Sep 1997 A
5763373 Robinson et al. Jun 1998 A
5764789 Pare, Jr. et al. Jun 1998 A
5768373 Lohstroh et al. Jun 1998 A
5796827 Coppersmith et al. Aug 1998 A
5832090 Raspotnik Nov 1998 A
5883810 Franklin et al. Mar 1999 A
5901874 Deters May 1999 A
5960411 Hartman et al. Sep 1999 A
6021203 Douceur et al. Feb 2000 A
6049328 Vanderheiden Apr 2000 A
6058373 Blinn et al. May 2000 A
6061666 Do et al. May 2000 A
6105013 Curry et al. Aug 2000 A
6199114 White et al. Mar 2001 B1
6199762 Hohle Mar 2001 B1
6216227 Goldstein et al. Apr 2001 B1
6227447 Campisano May 2001 B1
6282522 Davis et al. Aug 2001 B1
6324271 Sawyer et al. Nov 2001 B1
6342844 Rozin Jan 2002 B1
6367011 Lee et al. Apr 2002 B1
6402028 Graham, Jr. et al. Jun 2002 B1
6438550 Doyle et al. Aug 2002 B1
6501847 Helot et al. Dec 2002 B2
6631197 Taenzer Oct 2003 B1
6641050 Kelley et al. Nov 2003 B2
6655585 Shinn Dec 2003 B2
6662020 Aaro et al. Dec 2003 B1
6721706 Strubbe et al. Apr 2004 B1
6779115 Naim Aug 2004 B1
6792533 Jablon Sep 2004 B2
6829711 Kwok et al. Dec 2004 B1
6834271 Hodgson et al. Dec 2004 B1
6834795 Rasmussen et al. Dec 2004 B1
6852031 Rowe Feb 2005 B1
6865547 Brake, Jr. et al. Mar 2005 B1
6873260 Lancos et al. Mar 2005 B2
6877656 Jaros et al. Apr 2005 B1
6889198 Kawan May 2005 B2
6905411 Nguyen et al. Jun 2005 B2
6910627 Simpson-Young et al. Jun 2005 B1
6971031 Haala Nov 2005 B2
6990588 Yasukura Jan 2006 B1
7006986 Sines et al. Feb 2006 B1
7085931 Smith et al. Aug 2006 B1
7128274 Kelley et al. Oct 2006 B2
7140550 Ramachandran Nov 2006 B2
7152045 Hoffman Dec 2006 B2
7165727 de Jong Jan 2007 B2
7175076 Block et al. Feb 2007 B1
7202773 Oba et al. Apr 2007 B1
7206806 Pineau Apr 2007 B2
7232073 de Jong Jun 2007 B1
7246752 Brown Jul 2007 B2
7254569 Goodman et al. Aug 2007 B2
7263507 Brake, Jr. et al. Aug 2007 B1
7270276 Vayssiere Sep 2007 B2
7278025 Saito et al. Oct 2007 B2
7287692 Patel et al. Oct 2007 B1
7290709 Tsai et al. Nov 2007 B2
7306143 Bonneau, Jr. et al. Dec 2007 B2
7319986 Praisner et al. Jan 2008 B2
7325132 Takayama et al. Jan 2008 B2
7373515 Owen et al. May 2008 B2
7374099 de Jong May 2008 B2
7375616 Rowse et al. May 2008 B2
7380710 Brown Jun 2008 B2
7424977 Smets et al. Sep 2008 B2
7453439 Kushler et al. Nov 2008 B1
7472829 Brown Jan 2009 B2
7487357 Smith et al. Feb 2009 B2
7568631 Gibbs et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7597250 Finn Oct 2009 B2
7628322 Holtmanns et al. Dec 2009 B2
7652578 Braun et al. Jan 2010 B2
7689832 Talmor et al. Mar 2010 B2
7748617 Gray Jul 2010 B2
7748636 Finn Jul 2010 B2
7762457 Bonalle et al. Jul 2010 B2
7789302 Tame Sep 2010 B2
7793851 Mullen Sep 2010 B2
7796013 Murakami et al. Sep 2010 B2
7801799 Brake, Jr. et al. Sep 2010 B1
7801829 Gray et al. Sep 2010 B2
7809643 Phillips et al. Oct 2010 B2
7827115 Weller et al. Nov 2010 B2
7828214 Narendra et al. Nov 2010 B2
7848746 Juels Dec 2010 B2
7882553 Tuliani Feb 2011 B2
7908216 Davis et al. Mar 2011 B1
7922082 Muscato Apr 2011 B2
7933589 Mamdani et al. Apr 2011 B1
7949559 Freiberg May 2011 B2
7954716 Narendra et al. Jun 2011 B2
7954723 Charrat Jun 2011 B2
7962369 Rosenberg Jun 2011 B2
7993197 Kaminkow Aug 2011 B2
8005426 Huomo et al. Aug 2011 B2
8010405 Bortolin et al. Aug 2011 B1
8041954 Plesman Oct 2011 B2
8060012 Sklovsky et al. Nov 2011 B2
8074877 Mullen et al. Dec 2011 B2
8082450 Frey et al. Dec 2011 B2
8095113 Kean et al. Jan 2012 B2
8099332 Lemay et al. Jan 2012 B2
8103249 Markison Jan 2012 B2
8127143 Abdallah et al. Feb 2012 B2
8135648 Oram et al. Mar 2012 B2
8140010 Symons et al. Mar 2012 B2
8141136 Lee et al. Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150767 Wankmueller Apr 2012 B2
8186602 Itay et al. May 2012 B2
8196131 von Behren et al. Jun 2012 B1
8224753 Atef et al. Jul 2012 B2
8232879 Davis Jul 2012 B2
8233841 Griffin et al. Jul 2012 B2
8245292 Buer Aug 2012 B2
8249654 Zhu Aug 2012 B1
8266451 Leydier et al. Sep 2012 B2
8285329 Zhu Oct 2012 B1
8302872 Mullen Nov 2012 B2
8312519 Bailey et al. Nov 2012 B1
8316237 Felsher et al. Nov 2012 B1
8332272 Fisher Dec 2012 B2
8365988 Medina, III et al. Feb 2013 B1
8369960 Tran et al. Feb 2013 B2
8371501 Hopkins Feb 2013 B1
8391719 Alameh et al. Mar 2013 B2
8417231 Sanding et al. Apr 2013 B2
8439271 Smets et al. May 2013 B2
8475367 Yuen et al. Jul 2013 B1
8489112 Roeding et al. Jul 2013 B2
8559872 Butler Oct 2013 B2
8566916 Bailey et al. Oct 2013 B1
8567670 Stanfield et al. Oct 2013 B2
8577810 Dalit et al. Nov 2013 B1
8583454 Beraja et al. Nov 2013 B2
8589335 Smith et al. Nov 2013 B2
8594730 Bona et al. Nov 2013 B2
8615468 Varadarajan Dec 2013 B2
8620218 Awad Dec 2013 B2
8667285 Coulier et al. Mar 2014 B2
8723941 Shirbabadi et al. May 2014 B1
8726405 Bailey et al. May 2014 B1
8740073 Vijayshankar et al. Jun 2014 B2
8750514 Gallo et al. Jun 2014 B2
8794509 Bishop et al. Aug 2014 B2
8799668 Cheng Aug 2014 B2
8806592 Ganesan Aug 2014 B2
8807440 von Behren et al. Aug 2014 B1
8811892 Khan et al. Aug 2014 B2
8814039 Bishop et al. Aug 2014 B2
8814052 Bona et al. Aug 2014 B2
8818867 Baldwin et al. Aug 2014 B2
8850538 Vernon et al. Sep 2014 B1
8861733 Benteo et al. Oct 2014 B2
8880027 Darringer Nov 2014 B1
8888002 Marshall Chesney et al. Nov 2014 B2
8898088 Springer et al. Nov 2014 B2
8934837 Zhu et al. Jan 2015 B2
8977569 Rao Mar 2015 B2
8994498 Agrafioti et al. Mar 2015 B2
9004365 Bona et al. Apr 2015 B2
9038894 Khalid May 2015 B2
9042814 Royston et al. May 2015 B2
9047531 Showering et al. Jun 2015 B2
9069976 Toole et al. Jun 2015 B2
9081948 Magne Jul 2015 B2
9104853 Venkataramani et al. Aug 2015 B2
9111193 Poole Aug 2015 B2
9118663 Bailey et al. Aug 2015 B1
9122964 Krawczewicz Sep 2015 B2
9129280 Bona et al. Sep 2015 B2
9152832 Royston et al. Oct 2015 B2
9203800 Izu et al. Dec 2015 B2
9209867 Royston Dec 2015 B2
9251330 Boivie et al. Feb 2016 B2
9251518 Levin et al. Feb 2016 B2
9258715 Borghei Feb 2016 B2
9270337 Zhu et al. Feb 2016 B2
9306626 Hall et al. Apr 2016 B2
9306942 Bailey et al. Apr 2016 B1
9324066 Archer et al. Apr 2016 B2
9324067 Van Os et al. Apr 2016 B2
9332587 Salahshoor May 2016 B2
9338622 Bjontegard May 2016 B2
9373141 Shakkarwar Jun 2016 B1
9379841 Fine et al. Jun 2016 B2
9413430 Royston et al. Aug 2016 B2
9413768 Gregg et al. Aug 2016 B1
9420496 Indurkar Aug 2016 B1
9426132 Alikhani Aug 2016 B1
9432339 Bowness Aug 2016 B1
9455968 Machani et al. Sep 2016 B1
9473509 Arsanjani et al. Oct 2016 B2
9491626 Sharma et al. Nov 2016 B2
9553637 Yang et al. Jan 2017 B2
9619952 Zhao et al. Apr 2017 B1
9635000 Muftic Apr 2017 B1
9674705 Rose et al. Jun 2017 B2
9679286 Colnot et al. Jun 2017 B2
9680942 Dimmick Jun 2017 B2
9710804 Zhou et al. Jul 2017 B2
9740342 Paulsen et al. Aug 2017 B2
9740988 Levin et al. Aug 2017 B1
9743643 Kaplan Aug 2017 B1
9763097 Robinson et al. Sep 2017 B2
9767329 Forster Sep 2017 B2
9769662 Queru Sep 2017 B1
9773151 Mil'shtein et al. Sep 2017 B2
9780953 Gaddam et al. Oct 2017 B2
9940571 Herrington Apr 2018 B1
9953323 Candelore et al. Apr 2018 B2
9961194 Wiechman et al. May 2018 B1
9965756 Davis et al. May 2018 B2
9965911 Wishne May 2018 B2
9978058 Wurmfeld et al. May 2018 B2
10009177 Hammad Jun 2018 B2
10043164 Dogin et al. Aug 2018 B2
10070310 Powell Sep 2018 B2
10075437 Costigan et al. Sep 2018 B1
10129648 Hernandez et al. Nov 2018 B1
10133979 Eidam et al. Nov 2018 B1
10217105 Sangi et al. Feb 2019 B1
10270587 Wu Apr 2019 B1
10438437 Herrington Oct 2019 B1
10467622 Rule Nov 2019 B1
10489781 Osborn Nov 2019 B1
10528944 Khan Jan 2020 B2
10535062 Rule Jan 2020 B1
10636241 Rule Apr 2020 B1
20010010723 Pinkas Aug 2001 A1
20010029485 Brody et al. Oct 2001 A1
20010034702 Mockett et al. Oct 2001 A1
20010054003 Chien et al. Dec 2001 A1
20020078345 Sandhu et al. Jun 2002 A1
20020093530 Krothapalli et al. Jul 2002 A1
20020100808 Norwood et al. Aug 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20020152116 Yan et al. Oct 2002 A1
20020153424 Li Oct 2002 A1
20030034873 Chase et al. Feb 2003 A1
20030055727 Walker et al. Mar 2003 A1
20030078882 Sukeda et al. Apr 2003 A1
20030208449 Diao Nov 2003 A1
20040039919 Takayama et al. Feb 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040215674 Odinak et al. Oct 2004 A1
20040215963 Kaplan Oct 2004 A1
20040230799 Davis Nov 2004 A1
20050075985 Cartmell Apr 2005 A1
20050081038 Arditti Modiano et al. Apr 2005 A1
20050156026 Ghosh et al. Jul 2005 A1
20050195975 Kawakita Sep 2005 A1
20050247797 Ramachandran Nov 2005 A1
20060006230 Bear et al. Jan 2006 A1
20060040726 Szrek et al. Feb 2006 A1
20060041402 Baker Feb 2006 A1
20060044153 Dawidowsky Mar 2006 A1
20060085848 Aissi et al. Apr 2006 A1
20060136334 Atkinson et al. Jun 2006 A1
20060173985 Moore Aug 2006 A1
20060174331 Schuetz Aug 2006 A1
20060242698 Inskeep et al. Oct 2006 A1
20060280338 Rabb Dec 2006 A1
20070033642 Ganesan et al. Feb 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070116292 Kurita et al. May 2007 A1
20070118745 Buer May 2007 A1
20070197261 Humbel Aug 2007 A1
20070224969 Rao Sep 2007 A1
20070241182 Buer Oct 2007 A1
20070258594 Sandhu et al. Nov 2007 A1
20070276765 Hazel Nov 2007 A1
20070278291 Rans et al. Dec 2007 A1
20080008315 Fontana et al. Jan 2008 A1
20080011831 Bonalle et al. Jan 2008 A1
20080014867 Finn Jan 2008 A1
20080035738 Mullen Feb 2008 A1
20080071681 Khalid Mar 2008 A1
20080072303 Syed Mar 2008 A1
20080086767 Kulkarni et al. Apr 2008 A1
20080103968 Bies et al. May 2008 A1
20080109309 Landau et al. May 2008 A1
20080110983 Ashfield May 2008 A1
20080120711 Dispensa May 2008 A1
20080156873 Wilhelm et al. Jul 2008 A1
20080162312 Sklovsky et al. Jul 2008 A1
20080164308 Aaron et al. Jul 2008 A1
20080189214 Mueller Aug 2008 A1
20080207307 Cunningham, II et al. Aug 2008 A1
20080209543 Aaron Aug 2008 A1
20080223918 Williams et al. Sep 2008 A1
20080285746 Landrock et al. Nov 2008 A1
20080308641 Finn Dec 2008 A1
20090037275 Pollio Feb 2009 A1
20090048026 French Feb 2009 A1
20090132417 Scipioni et al. May 2009 A1
20090143104 Loh et al. Jun 2009 A1
20090170559 Phillips Jul 2009 A1
20090171682 Dixon et al. Jul 2009 A1
20090172581 Burling Jul 2009 A1
20090210308 Toomer et al. Aug 2009 A1
20090235339 Mennes et al. Sep 2009 A1
20090249077 Gargaro et al. Oct 2009 A1
20090282264 Ameil et al. Nov 2009 A1
20100023449 Skowronek et al. Jan 2010 A1
20100023455 Dispensa et al. Jan 2010 A1
20100029202 Jolivet et al. Feb 2010 A1
20100033310 Narendra et al. Feb 2010 A1
20100036769 Winters et al. Feb 2010 A1
20100078471 Lin et al. Apr 2010 A1
20100094754 Bertran et al. Apr 2010 A1
20100095130 Bertran et al. Apr 2010 A1
20100100480 Altman et al. Apr 2010 A1
20100114731 Kingston et al. May 2010 A1
20100192230 Steeves et al. Jul 2010 A1
20100207742 Buhot et al. Aug 2010 A1
20100211797 Westerveld et al. Aug 2010 A1
20100240413 He et al. Sep 2010 A1
20100257357 McClain Oct 2010 A1
20100312634 Cervenka Dec 2010 A1
20100312635 Cervenka Dec 2010 A1
20100317420 Hoffberg Dec 2010 A1
20110028160 Roeding et al. Feb 2011 A1
20110035604 Habraken Feb 2011 A1
20110060631 Grossman et al. Mar 2011 A1
20110068170 Lehman Mar 2011 A1
20110084132 Tofighbakhsh Apr 2011 A1
20110101093 Ehrensvard May 2011 A1
20110113245 Varadarajan May 2011 A1
20110125638 Davis et al. May 2011 A1
20110131415 Schneider Jun 2011 A1
20110153437 Archer et al. Jun 2011 A1
20110153496 Royyuru Jun 2011 A1
20110208658 Makhotin Aug 2011 A1
20110208965 Machani Aug 2011 A1
20110211219 Bradley et al. Sep 2011 A1
20110218911 Spodak Sep 2011 A1
20110238564 Lim et al. Sep 2011 A1
20110246780 Yeap et al. Oct 2011 A1
20110258452 Coulier et al. Oct 2011 A1
20110280406 Ma et al. Nov 2011 A1
20110282785 Chin Nov 2011 A1
20110294418 Chen Dec 2011 A1
20110307710 McGuire et al. Dec 2011 A1
20110312271 Ma et al. Dec 2011 A1
20120024947 Naelon Feb 2012 A1
20120030047 Fuentes et al. Feb 2012 A1
20120030121 Grellier Feb 2012 A1
20120047071 Mullen et al. Feb 2012 A1
20120079281 Lowenstein et al. Mar 2012 A1
20120109735 Krawczewicz et al. May 2012 A1
20120109764 Martin et al. May 2012 A1
20120143754 Patel Jun 2012 A1
20120150737 Rottink et al. Jun 2012 A1
20120178366 Levy et al. Jul 2012 A1
20120196583 Kindo Aug 2012 A1
20120207305 Gallo et al. Aug 2012 A1
20120209773 Ranganathan Aug 2012 A1
20120238206 Singh et al. Sep 2012 A1
20120239560 Pourfallah et al. Sep 2012 A1
20120252350 Steinmetz et al. Oct 2012 A1
20120284194 Liu et al. Nov 2012 A1
20120290472 Mullen Nov 2012 A1
20120296818 Nuzzi et al. Nov 2012 A1
20120316992 Oborne Dec 2012 A1
20120317035 Royyuru et al. Dec 2012 A1
20120317628 Yeager Dec 2012 A1
20130005245 Royston Jan 2013 A1
20130008956 Ashfield Jan 2013 A1
20130018738 Faires Jan 2013 A1
20130026229 Jarman et al. Jan 2013 A1
20130041746 Hollander Feb 2013 A1
20130054474 Yeager Feb 2013 A1
20130065564 Conner et al. Mar 2013 A1
20130080228 Fisher Mar 2013 A1
20130080229 Fisher Mar 2013 A1
20130091351 Manges Apr 2013 A1
20130099587 Lou et al. Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130106576 Hinman et al. May 2013 A1
20130119130 Braams May 2013 A1
20130130614 Busch-Sorensen May 2013 A1
20130144793 Royston Jun 2013 A1
20130152185 Singh Jun 2013 A1
20130159008 Mills Jun 2013 A1
20130171929 Adams et al. Jul 2013 A1
20130179351 Wallner Jul 2013 A1
20130185772 Jaudon et al. Jul 2013 A1
20130191279 Calman et al. Jul 2013 A1
20130200999 Spodak et al. Aug 2013 A1
20130214042 Kingston Aug 2013 A1
20130216108 Hwang et al. Aug 2013 A1
20130226791 Springer et al. Aug 2013 A1
20130226796 Jiang et al. Aug 2013 A1
20130232082 Krawczewicz et al. Sep 2013 A1
20130238894 Ferg et al. Sep 2013 A1
20130303085 Boucher et al. Nov 2013 A1
20130304651 Smith Nov 2013 A1
20130312082 Izu et al. Nov 2013 A1
20130314593 Reznik et al. Nov 2013 A1
20130344857 Berionne et al. Dec 2013 A1
20140002238 Taveau et al. Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140027506 Heo et al. Jan 2014 A1
20140032409 Rosano Jan 2014 A1
20140032410 Georgiev et al. Jan 2014 A1
20140040120 Cho et al. Feb 2014 A1
20140040139 Brudnicki et al. Feb 2014 A1
20140040147 Varadarakan et al. Feb 2014 A1
20140074637 Hammad Mar 2014 A1
20140074655 Lim et al. Mar 2014 A1
20140081720 Wu Mar 2014 A1
20140138435 Khalid May 2014 A1
20140165607 Alexander Jun 2014 A1
20140171034 Aleksin et al. Jun 2014 A1
20140171039 Bjontegard Jun 2014 A1
20140172700 Teuwen et al. Jun 2014 A1
20140180851 Fisher Jun 2014 A1
20140208112 McDonald et al. Jul 2014 A1
20140214674 Narula Jul 2014 A1
20140229375 Zaytzsev et al. Aug 2014 A1
20140245391 Adenuga Aug 2014 A1
20140256251 Caceres et al. Sep 2014 A1
20140258099 Rosano Sep 2014 A1
20140258113 Gauthier et al. Sep 2014 A1
20140258125 Gerber et al. Sep 2014 A1
20140274179 Zhu et al. Sep 2014 A1
20140279479 Maniar et al. Sep 2014 A1
20140337235 Van Heerden et al. Nov 2014 A1
20140339315 Ko Nov 2014 A1
20140345534 Rhee Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140358777 Gueh Dec 2014 A1
20140365780 Movassaghi Dec 2014 A1
20140372371 McCann Dec 2014 A1
20140379361 Mahadkar et al. Dec 2014 A1
20150012444 Brown et al. Jan 2015 A1
20150019442 Hird et al. Jan 2015 A1
20150032635 Guise Jan 2015 A1
20150089586 Ballesteros Mar 2015 A1
20150112868 Swamy Apr 2015 A1
20150134452 Williams May 2015 A1
20150134536 Li May 2015 A1
20150170138 Rao Jun 2015 A1
20150178724 Ngo et al. Jun 2015 A1
20150205379 Mag et al. Jul 2015 A1
20150235256 Barsoum Aug 2015 A1
20150302409 Malek et al. Oct 2015 A1
20150317626 Ran et al. Nov 2015 A1
20150332266 Friedlander et al. Nov 2015 A1
20150339474 Paz et al. Nov 2015 A1
20150356560 Shastry Dec 2015 A1
20150371234 Huang et al. Dec 2015 A1
20160012465 Sharp Jan 2016 A1
20160019536 Ortiz Jan 2016 A1
20160026997 Tsui et al. Jan 2016 A1
20160048913 Rausaria et al. Feb 2016 A1
20160055480 Shah Feb 2016 A1
20160057619 Lopez Feb 2016 A1
20160087957 Shah et al. Mar 2016 A1
20160092696 Guglani et al. Mar 2016 A1
20160148193 Kelley et al. May 2016 A1
20160232523 Venot et al. Aug 2016 A1
20160232600 Purves Aug 2016 A1
20160239672 Khan et al. Aug 2016 A1
20160253651 Park et al. Sep 2016 A1
20160255072 Liu Sep 2016 A1
20160267486 Mitra et al. Sep 2016 A1
20160267511 Bartholomew Sep 2016 A1
20160277383 Guyomarc'h et al. Sep 2016 A1
20160277388 Lowe et al. Sep 2016 A1
20160283933 Orlando Sep 2016 A1
20160307187 Guo et al. Oct 2016 A1
20160307189 Zarakas et al. Oct 2016 A1
20160308371 Locke Oct 2016 A1
20160314472 Ashfield Oct 2016 A1
20160314501 Bartholomew Oct 2016 A1
20160321653 Jacobs et al. Nov 2016 A1
20160330027 Ebrahimi Nov 2016 A1
20160335531 Mullen et al. Nov 2016 A1
20160379217 Hammad Dec 2016 A1
20170004502 Quentin et al. Jan 2017 A1
20170011395 Pillai et al. Jan 2017 A1
20170011406 Tunnell et al. Jan 2017 A1
20170017957 Radu Jan 2017 A1
20170017964 Janefalkar et al. Jan 2017 A1
20170024716 Jiam et al. Jan 2017 A1
20170039566 Schipperheijn Feb 2017 A1
20170064554 Li Mar 2017 A1
20170068950 Kwon Mar 2017 A1
20170103388 Pillai et al. Apr 2017 A1
20170104739 Lansler et al. Apr 2017 A1
20170109509 Baghdasaryan Apr 2017 A1
20170109730 Locke et al. Apr 2017 A1
20170116447 Cimino et al. Apr 2017 A1
20170118201 Hoyer Apr 2017 A1
20170124568 Moghadam May 2017 A1
20170140379 Deck May 2017 A1
20170154328 Zarakas et al. Jun 2017 A1
20170154333 Gleeson et al. Jun 2017 A1
20170180134 King Jun 2017 A1
20170230189 Toll et al. Aug 2017 A1
20170237301 Elad et al. Aug 2017 A1
20170289127 Hendrick Oct 2017 A1
20170316696 Bartel Nov 2017 A1
20170317834 Smith et al. Nov 2017 A1
20170330173 Woo et al. Nov 2017 A1
20170374070 Shah et al. Dec 2017 A1
20180034507 Wobak et al. Feb 2018 A1
20180039986 Essebag et al. Feb 2018 A1
20180068316 Essebag et al. Mar 2018 A1
20180129945 Saxena et al. May 2018 A1
20180160255 Park Jun 2018 A1
20180191501 Lindemann Jul 2018 A1
20180205712 Versteeg et al. Jul 2018 A1
20180240106 Garrett et al. Aug 2018 A1
20180254909 Hancock Sep 2018 A1
20180268132 Buer et al. Sep 2018 A1
20180270214 Caterino Sep 2018 A1
20180294959 Traynor et al. Oct 2018 A1
20180300716 Carlson Oct 2018 A1
20180302396 Camenisch et al. Oct 2018 A1
20180315050 Hammad Nov 2018 A1
20180316666 Koved et al. Nov 2018 A1
20180322486 Deliwala et al. Nov 2018 A1
20180359100 Gaddam et al. Dec 2018 A1
20190014107 George Jan 2019 A1
20190019375 Foley Jan 2019 A1
20190036678 Ahmed Jan 2019 A1
20190392666 Osborn Dec 2019 A1
Foreign Referenced Citations (39)
Number Date Country
3010336 Jul 2017 CA
101192295 Jun 2008 CN
103023643 Apr 2013 CN
103417202 Dec 2013 CN
1085424 Mar 2001 EP
1223565 Jul 2002 EP
1265186 Dec 2002 EP
1783919 May 2007 EP
2139196 Dec 2009 EP
1469419 Aug 2012 EP
2852070 Mar 2015 EP
2457221 Aug 2009 GB
2516861 Feb 2015 GB
2551907 Jan 2018 GB
101508320 Apr 2015 KR
0049586 Aug 2000 WO
2006070189 Jul 2006 WO
2008055170 May 2008 WO
2009025605 Feb 2009 WO
2010049252 May 2010 WO
2010089458 Aug 2010 WO
2011112158 Sep 2011 WO
2012001624 Jan 2012 WO
2013039395 Mar 2013 WO
2013155562 Oct 2013 WO
2013192358 Dec 2013 WO
2014043278 Mar 2014 WO
2014170741 Oct 2014 WO
2015179649 Nov 2015 WO
2015183818 Dec 2015 WO
2016097718 Jun 2016 WO
2016160816 Oct 2016 WO
2016168394 Oct 2016 WO
2017042375 Mar 2017 WO
2017042400 Mar 2017 WO
2017157859 Sep 2017 WO
2017208063 Dec 2017 WO
2018063809 Apr 2018 WO
2018137888 Aug 2018 WO
Non-Patent Literature Citations (42)
Entry
Batina, L. and Poll, E., “SmartCards and RFID”, Course PowerPoint Presentation for IPA Security Course, Digital Security at University of Nijmegen, Netherlands (date unknown) 75 pages.
Haykin, M. and Warnar, R., “Smart Card Technology: New Methods for Computer Access Control”, Computer Science and Technology NIST Special Publication 500-157:1-60 (1988).
Lehpamer, H., “Component of the RFID System”, RFID Design Principles, 2nd edition pp. 133-201 (2012).
Author Unknown, “CardrefresherSM from American Express®”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://merchant-channel.americanexpress.com/merchant/en_US/cardrefresher, 2 pages.
Author Unknown, “Add Account Updater to your recurring payment tool”, [online] 2018-19 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.authorize.net/our-features/account-updater/, 5 pages.
Author Unknown, “Visa® Account Updater for Merchants”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://usa.visa.com/dam/VCOM/download/merchants/visa-account-updater-product-information-fact-sheet-for-merchants.pdf, 2 pages.
Author Unknown, “Manage the cards that you use with Apple Pay”, Apple Support [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/en-us/HT205583, 5 pages.
Author Unknown, “Contactless Specifications for Payment Systems”, EMV Book B—Entry Point Specification [online] 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/BookB_Entry_Point_Specification_v2_6_20160809023257319.pdf, 52 pages.
Author Unknown, “EMV Integrated Circuit Card Specifcations for Payment Systems, Book 2, Security and Key Management,” Version 3.4, [online] 2011 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf, 174 pages.
Author Unknown, “NFC Guide: All You Need to Know About Near Field Communication”, Square Guide [online] 2018 [retrieved on Nov. 13, 2018]. Retrieved from Internet URL: https://squareup.com/guides/nfc, 8 pages.
Profis, S., “Everything you need to know about NFC and mobile payments” CNET Directory [online], 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/how-nfc-works-and-mobile-payments/, 6 pages.
Cozma, N., “Copy data from other devices in Android 5.0 Lollipop setup”, CNET Directory [online] 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/copy-data-from-other-devices-in-android-5-0-lollipop-setup/, 5 pages.
Levin, Android Enthusiast, “How to copy text string from nfc tag”, StackExchange [online] 2013 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://android.stackexchange.com/questions/55689/how-to-copy-text-string-from-nfc-tag, 11 pages.
Author Unknown, “Tap & Go Device Setup”, Samsung [online] date unknown [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.samsung.com/us/switch-me/switch-to-the-galaxy-s-5/app/partial/setup-device/tap-go.html, 1 page.
Author Unknown, “Multiple encryption”, Wikipedia [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Multiple_encryption, 4 pages.
Krawczyk, et al., “HMAC: Keyed-Hashing for Message Authentication”, Network Working Group RFC:2104 memo [online] 1997 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc2104, 12 pages.
Song, et al., “The AES-CMAC Algorithm”, Network Working Group RFC: 4493 memo [online] 2006 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc4493, 21 pages.
Katz, J. and Lindell, Y., “Aggregate Message Authentication Codes”, Topics in Cryptology [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.umd.edu/˜jkatz/papers/aggregateMAC.pdf, 11 pages.
Adams, D., and Maier, A-K., “Goldbug Big Seven open source crypto-messengers to be compared—or: Comprehensive Confidentiality Review & Audit of GoldBug Encrypting E-Mail-Client & Secure Instant Messenger”, Big Seven Study 2016 [online] [retrieved on Mar. 25, 2018]. Retrieved from Internet URL: https://sf.net/projects/goldbug/files/bigseven-crypto-audit.pdf, 309 pages.
Author Unknown, “Triple DES”, Wikipedia [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://simple.wikipedia.org/wiki/Triple_DES, 2 pages.
Song F., and Yun, A.I., “Quantum Security of NMAC and Related Constructions—PRF domain extension against quantum attacks”, IACR Cryptology ePrint Archive [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://eprint.iacr.org/2017/509.pdf, 41 pages.
Saxena, N., “Lecture 10: NMAC, HMAC and Number Theory”, CS 6903 Modern Cryptography [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: http://isis.poly.edu/courses/cs6903/Lectures/lecture10.pdf, 8 pages.
Berg, G., “Fundamentals of EMV”, Smart Card Alliance [online] date unknown [retrieved on Mar. 27, 2019]. Retrieveed from Internet URL: https://www.securetechalliance.org/resources/media/scap13_preconference/02.pdf, 37 pages.
Pierce, K., “Is the amazon echo nfc compatible?”, Amazon.com Customer Q&A [online] 2016 [retrieved on Mar. 26, 2019]. Retrieved from Internet URL: https://www.amazon.com/ask/questions/Tx1RJXYSPE6XLJD?_encodi . . . , 2 pages.
Author Unknown, “Multi-Factor Authentication”, idaptive [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.centrify.com/products/application-services/adaptive-multi-factor-authentication/risk-based-mfa, 10 pages.
Author Unknown, “Adaptive Authentication”, SecureAuth [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.secureauth.com/products/access-management/adaptive-authentication, 7 pages.
van den Breekel, J., et al., “EMV in a nutshell”, Technical Report, 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.ru.nl/E.Poll/papers/EMVtechreport.pdf, 37 pages.
Author Unknown, “Autofill”, Computer Hope [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.computerhope.com/jargon/a/autofill.htm, 2 pages.
Author Unknown, “Fill out forms automatically”, Google Chrome Help [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.google.com/chrome/answer/142893?co=GENIE.Platform%3DDesktop&hl=en, 3 pages.
Author Unknown, “Autofill credit cards, contacts, and passwords in Safari on Mac”, Apple Safari User Guide [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/guide/safari/use-autofill-ibrw1103/mac, 3 pages.
Menghin, M.J., “Power Optimization Techniques for Near Field Communication Systems”, 2014 Dissertation at Technical University of Graz [online]. Retrieved from Internet URL: https://diglib.tugraz.at/download.php?id=576a7b910d2d6&location=browse, 135 pages.
Mareli, M., et al., “Experimental evaluation of NFC reliability between an RFID tag and a smartphone”, Conference paper (2013) IEEE AFRICON at Mauritius [online] [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://core.ac.uk/download/pdf/54204839.pdf, 5 pages.
Davison, A., et al., “MonoSLAM: Real-Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052-1067 (2007).
Barba, R., “Sharing your location with your bank sounds creepy, but it's also useful”, Bankrate, LLC [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.bankrate.com/banking/banking-app-location-sharing/, 6 pages.
Author Unknown: “onetappayment™”, [online] Jan. 24, 2019, [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.payubiz.in/onetap, 4 pages.
Vu, et al., “Distinguishing users with capacitive touch communication”, Proceedings of the Annual International Conference on Mobile Computing and Networking, 2012, MOBICOM. 10.1145/2348543.2348569.
Pourghomi, P., et al., “A Proposed NFC Payment Application,” International Journal of Advanced Computer Science and Applications, 4(8):173-181 (2013).
Author unknown, “EMV Card Personalization Specification”, EMVCo., LLC., specification version 1.0, (2003) 81 pages.
Ullmann et al., “On-Card User Authentication for Contactless Smart Cards based on Gesture Recognition”, paper presentation LNI proceedings, (2012) 12 pages.
Faraj, S.T., et al., “Investigation of Java Smart Card Technology for Multi-Task Applications”, J of Al-Anbar University for Pure Science, 2(1):23 pages (2008).
Dhamdhere, P., “Key Benefits of a Unified Platform for Loyalty, Referral Marketing, and UGC” Annex Cloud [online] May 19, 2017 [retrieved on Jul. 3, 2019]. Retrieved from Internet URL: https://www.annexcloude.com/blog/benefits-unified-platform/, 13 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/022593 dated May 15, 2020, 12 pages.
Continuations (1)
Number Date Country
Parent 16359966 Mar 2019 US
Child 16522380 US