The present disclosure relates to a tape cassette that can be freely inserted into and removed from a tape printer.
In related art, a tape cassette is known which is structured to be freely inserted into and removed from a cassette housing portion of a tape printer, and which includes a cassette case in which a tape as a print medium is housed. The cassette case is provided with a bottom case and a top case that is attached to an upper side of the bottom case. Via a print head, the tape printer prints characters, such as letters, on the tape that is pulled out from the cassette case. A plurality of types of tape cassette are prepared corresponding to types (a tape width, a printing format and the like, for example) of the tape that is housed in the cassette case.
A tape cassette is known that, when it is inserted in a cassette housing portion, causes a tape printer to detect a type of a tape housed in the cassette case. In more detail, a cassette detection portion, in which through holes are formed in a pattern corresponding to the type of the tape, is provided in a portion of a lower surface of the tape cassette. A plurality of detection switches that protrude upward are provided in the cassette housing portion. When the tape cassette is inserted in the cassette housing portion, the plurality of detection switches are selectively pressed in accordance with the pattern of the through holes formed in the cassette detection portion. The tape printer detects the type of the tape in accordance with a combination of pressing and non-pressing of the plurality of detection switches.
In related art, the cassette detection portion is formed on the bottom case, and it is therefore necessary to prepare a same number of the bottom cases as the number of types of the tape. In this case, when the tape cassette is manufactured, component management for the bottom cases may become complicated. In addition, since it is necessary to prepare dies that respectively correspond to the plurality of types of bottom cases, there is a possibility that manufacturing costs of the bottom cases are increased.
In addition, the pattern of the through holes and non-through portions provided in the cassette detection portion is a random pattern. Therefore, even if a person visually checks the cassette detection portion, the type of the tape cannot be recognized. For this reason, there is a risk that the type of the tape housed in the cassette case by an operator is different from the type of the tape indicated by the cassette detection portion.
Various embodiments of the broad principles derived herein provide a tape cassette that can be manufactured accurately at a low cost.
The embodiments provide a tape cassette that includes a cassette case, a tape, a tape discharge portion, a first indicator portion, a second indicator portion, an indicator member, and an attachment portion. The cassette case includes a bottom case and a top case that is attached to an upper side of the bottom case, and includes a top surface, a bottom surface, a front surface and a pair of side surfaces. The tape is housed in the cassette case. The tape is a print medium. The tape discharge portion discharges, from the cassette case, the tape that has been guided in the cassette case along a predetermined feed path, at least part of which extends in parallel with the front surface. The first indicator portion indicates a type of the tape. The second indicator portion indicates a type of the tape, which is different from that indicated by the first indicator portion. The indicator member is a member independent from the top case and the bottom case, and is provided with the second indicator portion. The attachment portion is provided on the cassette case. The indicator member is removably attached to the attachment portion.
The embodiments also provide a tape cassette that is configured to be installed in and removed from a tape printer having a printhead and a plurality of detecting switches. The tape cassette includes a cassette case, a tape, a first indicator portion, a second indicator portion, an indicator member, an attachment portion, a head insertion portion, and an arm portion. The cassette case includes a bottom case and a top case that is attached to an upper side of the bottom case, and includes a top surface, a bottom surface, a front surface and a pair of side surfaces. The tape is housed in the cassette case. The tape is a print medium. The first indicator portion includes at least one hole and indicates a type of the tape. The second indicator portion includes at least one hole and at least one surface portion and indicates a type of the tape, which is different from that indicated by the first indicator portion. The indicator member is a member independent from the top case and the bottom case, and is provided with the second indicator portion. The attachment portion is provided on the cassette case. The indicator member is removably attached to the attachment portion. The head insertion portion is a space extending through the cassette case in a vertical direction. The printhead is inserted into the head insertion portion when the tape cassette is installed in the tape printer. The arm portion includes a part of the front surface, guides feeding of the tape, and discharges the tape toward the printhead that is inserted into the head insertion portion. The first indicator portion is formed in the part of the front surface included in the arm portion. The second indicator portion is formed in the bottom surface, opposes the plurality of detecting switches that protrude toward the bottom surface when the tape cassette is installed in the tape printer, and selectively presses a part of the plurality of detecting switches that oppose to the at least one surface portion without pressing the at least one switch that opposes to the at least one hole of the second indicator portion.
Embodiments will be described below in detail with reference to the accompanying drawings in which:
Hereinafter, various embodiments of the present disclosure will be explained with reference to the drawings. Note that in the explanation that follows, a video conference system that includes conference terminal devices that transmit and receive audio data and video data will be explained as an example of a conference system, but the present disclosure can also be applied to an audio conference system that includes conference terminal devices that transmit and receive audio data only.
A tape printer 1 and a tape cassette 30 according to a first embodiment will be explained hereinafter with reference to
Note that, in
First, an outline structure of the tape printer 1 according to the first embodiment will be explained. The tape printer 1 is a general purpose tape printer, in which various types of tape cassette can be used, such as a thermal type, a receptor type, a laminated type and a heat sensitive laminated type. Hereinafter, an example will be described in which a laminated tape having a print surface that is laminated is created.
As shown in
An internal structure of the main unit cover 2 that corresponds to the cassette cover 6 will be explained with reference to
The shape of the cassette support portion 8B in a plan view substantially corresponds to the shape of the tape cassette 30 in a plan view, and is a rectangular shape that is longer in a left-right direction. A rear edge portion of the cavity 8A has such a shape that two arcs are arranged side by side in the left-right direction in a plan view. A portion of the cassette support portion 8B that is located between the two arcs is referred to as a rear support portion 8C. The rear support portion 8C is a portion that faces a rear indicator portion 950 (refer to
As shown in
A detailed structure of the rear detection switches 310 will be explained with reference to
As shown in
The cassette housing portion 8 is provided with a feeding mechanism that pulls out the tape from the tape cassette 30 and feeds it, a printing mechanism that prints characters etc. on a surface of the tape, and the like. As shown in
As shown in
A release lever (not shown in the drawings), which moves in the left-right direction in response to the opening and closing of the cassette cover 6, is coupled to the platen holder 12. When the cassette cover 6 is opened, the release lever moves in the right direction, and the platen holder 12 moves toward the stand-by position shown in
When the cassette cover 6 is closed, the release lever moves in the left direction and the platen holder 12 moves toward the print position shown in
A feed path, through which a laminated tape 50 is fed, is provided from a tape discharge opening 49 of the tape cassette 30 to the discharge slit 9 (refer to
A rear side surface of the platen holder 12, namely, a surface on a side facing the thermal head 10 is provided with an arm detection portion 200 slightly to the right of a middle position in the longitudinal direction of the surface. Hereinafter, the rear side surface of the platen holder 12 is referred to as a cassette-facing surface 12B. The arm detection portion 200 includes arm detection switches 210 that are a plurality of detection switches. A switch terminal 222 of each of the arm detection switches 210 protrudes substantially horizontally from the cassette-facing surface 12B toward the cassette housing portion 8.
In other words, each of the arm detection switches 210 protrudes in a direction that is substantially orthogonal to the direction in which the tape cassette 30 is inserted into and removed from the cassette housing portion 8, and faces a front surface (more specifically, an arm front surface 35 that will be described later) of the tape cassette 30 that is in the cassette housing portion 8. When the tape cassette 30 is inserted in a proper position in the cassette housing portion 8, each of the arm detection switches 210 is provided at a height position corresponding to the arm indicator portion 800 (refer to
A detailed arrangement and structure of the arm detection switches 210 provided on the platen holder 12 will be explained with reference to
As shown in
In a case where the tape cassette 30 has been inserted in the cassette housing portion 8, when the platen holder 12 moves toward the stand-by position (refer to
As shown in
An arrangement and structure of the latch projection 225 on the platen holder 12 will be explained with reference to
As shown in
Next, an electrical configuration of the tape printer 1 will be explained with reference to
Various types of programs that are performed by the CPU 401 to control the tape printer 1 are stored in the ROM 402. A table to identify the tape type of the tape cassette 30 inserted in the cassette housing portion 8 is also stored in the ROM 402. Printing dot pattern data for printing characters is stored in the CGROM 403. A plurality of storage areas are provided in the RAM 404 for a text memory, a print buffer and the like.
The arm detection switches 210, the rear detection switches 310, the keyboard 3, a liquid crystal drive circuit (LCDC) 405, drive circuits 406,407,408, and the like are connected to the input/output interface 411. The drive circuit 406 is an electronic circuit for driving the thermal head 10. The drive circuit 407 is an electronic circuit for driving a tape feed motor 23. The drive circuit 408 is an electronic circuit for driving the cutter motor 24, which operates the movable blade 19. The liquid crystal drive circuit (LCDC) 405 includes a video RAM (not shown in the drawings) for outputting display data to the display 5.
Next, a structure of the tape cassette 30 according to the present embodiment will be explained with reference to
As shown in
As shown in
As shown in
A rear surface portion 68, which is a substantially triangular-shaped flat portion in a plan view and which corresponds to the rear support portion 8C (refer to
The right front wall 31H is extended from a front right corner portion of the bottom case 31B to the left along a front end portion of the bottom wall 31G. The lower semi-circular portion 38B, which is recessed in a substantially semi-circular shape in a plan view, is provided continuously to the left side of the right front wall 31H. The lower semi-circular portion 38B is positioned slightly to the right of the center in the left-right direction of the cassette case 31. An upper left portion of the lower semi-circular portion 38B is provided with a fixing hole 79 that is a horizontally long rectangular through hole in a front view.
When the top case 31A (refer to
As shown in
As shown in
The first tape spool 40, around which the double-sided adhesive tape 58 is wound with the release paper facing the outside, is rotatably arranged in a rear left portion inside the cassette case 31 via the above-described support hole 65. The second tape spool 41, around which the film tape 59 is wound, is rotatably arranged in a rear right portion inside the cassette case 31 via the above-described support hole 66. The ink ribbon 60 that is wound around the ribbon spool 42 is rotatably arranged in a front right portion inside the cassette case 31.
The rear indicator portion 950 is provided between the double-sided adhesive tape 58 that is wound around the first tape spool 40 and the film tape 59 that is wound around the second tape spool 41. The rear indicator portion 950 is provided in a position that corresponds to the rear detection portion 300 (refer to
The arrangement pattern of the non-pressing portions 951 and the pressing portions 952 is determined in accordance with information (color information) indicating a tape color and a character color of the tape cassette 30. Note that a data table, in which the combinations of the on and off states of the five rear detection switches 310 are associated with the color information of the tape cassette 30, is stored in the ROM 402 (refer to
A ribbon take-up spool 44 is rotatably arranged via the above-described support hole 67 between the first tape spool 40 and the ribbon spool 42 inside the cassette case 31. When the ribbon take-up spool 44 is rotatably driven by the ribbon take-up shaft 95 that is fitted into its interior by insertion, the ribbon take-up spool 44 pulls out the ink ribbon 60 from the ribbon spool 42 and takes up the ink ribbon 60 that has been used for printing characters etc.
As shown in
Of the front surface of the cassette case 31, the section that extends to the left from the semi-circular groove 38 is referred to as the arm front surface 35. A part that extends from the right portion of the tape cassette 30 in the left direction and that is defined by the arm front surface 35, and an arm back surface 37 that is positioned separately to the arm front surface 35 in the rearward direction and extending in the height direction, is referred to as an arm portion 34.
As shown in
A space that is defined by the arm back surface 37 and by a peripheral wall surface which is provided continuously from the arm back surface 37, that is a generally rectangular shape in a plan view and that penetrates the tape cassette 30 in the up-down direction, is a head insertion portion 39. The head insertion portion 39 is connected to the outside at the front surface of the tape cassette 30 through the exposure portion 77 that is an opening provided in the front surface of the tape cassette 30. The head holder 74 that supports the thermal head 10 of the tape printer 1 is inserted into the head insertion portion 39. At the exposure portion 77, one of the surfaces of the film tape 59 discharged from the discharge opening 34A of the arm portion 34 is exposed to the front, and the other surface of the film tape 59 faces the thermal head 10 positioned to the rear. In the present embodiment, the other surface of the film tape 59 faces the thermal head 10 with the ink ribbon 60 interposed therebetween. At the exposure portion 77, printing is performed on the film tape 59 by the thermal head 10 using the ink ribbon 60.
The tape drive roller 46 is rotatably and axially supported on a downstream side of the head insertion portion 39, in a feed direction of the film tape 59 and the ink ribbon 60 from the discharge opening 34A of the arm portion 34 to the tape discharge opening 49. When the tape drive roller 46 is rotatably driven by the tape drive shaft 100 that is fitted into its interior by insertion, it pulls out the print tape 59 from the second tape spool 41 by moving in concert with the movable feed roller 14 of the platen holder 12 that faces the tape drive roller 46. At the same time, the double-sided adhesive tape 58 is pulled out from the first tape spool 40 and guided so that it adheres to the print surface of the film tape 59.
As shown in
A guide wall 47 is provided in a standing manner in the vicinity of the regulating members 36. The guide wall 47 separates the used ink ribbon 60, which has been fed via the head insertion portion 39, from the film tape 59 and guides it toward the ribbon take-up spool 44. A second separating wall 48 is provided in a standing manner between the guide wall 47 and the ribbon take-up spool 44. The second separating wall 48 inhibits mutual contact between the used ink ribbon 60 that is guided along the guide wall 47 and the double-sided adhesive tape 58 that is wound on and supported by the first tape spool 40.
As shown in
Structures of the open portion 30D and the first indicator member 900 will be explained with reference to
A groove portion 30E is provided from the left end to the right end of the lower edge surface 34G. The right edge surface 34H is the left end face of the lower semi-circular portion 38B. A notch portion 31L, which is notched from a front edge portion of the bottom wall 31G (refer to
The first indicator member 900 is formed in a flat plate shape and has a horizontally long rectangular shape in a front view. A groove portion 901 is formed from the left end to the right end of the upper end face of the first indicator member 900. A convex portion 907 is formed that continuously protrudes downward from the left end to the right end of the lower end face of the first indicator member 900.
A hook arm 904 that protrudes to the right is provided on a right end portion of the first indicator member 900. The hook arm 904 is a hook-shaped body that extends to the right using a right rear end portion of the first indicator member 900 as a base portion, and is provided with an extending portion 905 and a hook portion 906. The extending portion 905 is a plate-shaped portion having a thickness thinner than that of the first indictor member 900. The hook portion 906 is a projecting portion which protrudes from a leading end portion of the extending portion 905 toward the front, and which has a substantially triangular shape in a plan view. When the extending portion 905 receives a force from the front to the rear, it deflects to the rear.
A method for attaching and removing the first indicator member 900 to and from the open portion 30D will be explained with reference to
When the leading end (the right end) of the hook arm 904 reaches the right edge surface 34H and enters the rear side of the semi-circular groove 38, the hook portion 906 comes into contact with a rear surface of the semi-circular groove 38 and is pressed rearward. The extending portion 905 deflects to the rear, with the base portion serving as a base point, because its leading end portion receives a rearward force. When the first indicator member 900 moves further to the right and the hook portion 906 reaches the through hole 30G, the hook portion 906, which is impelled by the extending portion 905, enters the through hole 30G. The position of the hook portion 906 is fixed and the first indicator member 900 is attached to the open portion 30D.
When the first indicator member 900 is removed from the open portion 30D, the operator pushes the hook portion 906 that has entered the through hole 30G toward the rear and releases the fixation of the hook portion 906. In this state, the operator slidingly moves the first indicator member 900 to the left from the inside of the open portion 30D, and thereby pulls out the first indicator member 900 to the discharge opening 34A side. At this time, the groove portion 901 is guided along the convex portion 30F and the convex portion 907 is guided along the groove portion 30E. Thus, the first indicator member 900 is removed from the open portion 30D.
The arm indicator portion 800 that is provided on the first indicator member 900 will be explained with reference to
An arrangement pattern of the non-pressing portions 801 and the pressing portions 802 is determined in accordance with the tape type (in the present embodiment, printing information that indicates the tape width and the printing format) of the tape cassette 30. Note that a data table, in which the combinations of the on and off states of the five arm detection switches 210 are associated with the printing information of the tape cassette 30, is stored in the ROM 402 (refer to
Hereinafter, the arrangement pattern of the non-pressing portions 801 and the pressing portions 802 will be explained with reference to
The indicator portion 800A and the indicator portion 800D are provided side by side along the left-right direction, slightly below the center in the vertical direction of the first indicator member 900. The indicator portion 800B and the indicator portion 800C are provided side by side along the left-right direction, slightly above the center in the vertical direction of the first indicator member 900. The indicator portion 800E is provided in a right portion of a lower end portion of the first indicator member 900. In the present embodiment, the positions of the indicator portions 800A to 800E in the left-right direction are different from each other. In other words, the indicator portions 800A to 800E are not mutually arranged in rows in the up-down direction, and the respective indicator portions 800A to 800E are arranged in a zigzag pattern.
In the present embodiment, the indicator portions 800A, 800B and 800E indicate the width (seven types from 3.5 mm to 36 mm, for example) of the tape that is housed in the tape cassette 30, by a combination of each of the non-pressing portions 801 and the pressing portions 802. A printing format (normal image printing or mirror image printing, for example) of the tape that is housed in the tape cassette 30 is indicated by whether the indicator portion 800C is the non-pressing portion 801 or the pressing portion 802. Other information (whether a tape color is white or a color other than white, for example) relating to the tape that is housed in the tape cassette 30 is indicated by whether the indicator portion 800D is the non-pressing portion 801 or the pressing portion 802.
In the first indicator member 900, the latch hole 804, which is a through hole having a substantially rectangular shape in a front view and which is longer in the left-right direction, is provided in the upper right of the arm indicator portion 800. The latch hole 804 is a hole portion into which the latch projection 225 is inserted when the platen holder 12 moves to the print position (refer to
When the tape cassette 30 having the above-described structure is assembled, first, as shown in
When the length in the up-down direction of the first indicator member 900 is smaller than a predetermined width, the length in the up-down direction of the indicator portion 800E, which is provided in the lowest position among the plurality of indicator portions 800A to 800E, may become smaller than that of the other indicator portions 800A to 800D. In this case, regardless of the fact that the indicator portion 800E is the non-pressing portion 801, there is a possibility that the switch terminal 222 of the arm detection switch 210 that faces the indicator portion 800E comes into contact with the bottom wall 31G of the bottom case 31B and the on state is established erroneously.
In the present embodiment, in a case where the indicator portion 800E is the non-pressing portion 801, when the first indicator member 900 is attached to the open portion 30D, the non-pressing portion 801 is communicatively connected to the notch portion 31L in the up-down direction (refer to
On the other hand, when the length in the up-down direction of the first indicator member 900 is larger than the predetermined width, the length in the up-down direction of the indicator portion 800E is the same as that of the other indicator portions 800A to 800D. Therefore, in a case where the indicator portion 800E is the non-pressing portion 801, in a similar way to a case in which the other indicator portions 800A to 800D are the non-pressing portions 801, it can be a hole portion that is open only in the front surface of the tape cassette 30.
A method for identifying the tape type based on the arm indicator portion 800 and the rear indicator portion 950 will be explained below.
Detection of the tape type by the arm detection portion 200 will be explained with reference to
Each of the switch terminals 222 (refer to
As described above, the data table in which the combinations of the on and off states of the arm detection switches 210 are associated with the printing information is stored in the ROM 402 (refer to
The way in which the tape type is detected by the rear detection portion 300 will be explained with reference to
The rear detection portion 300 (refer to
As described above, the data table, in which the combinations of the on and off states of the rear detection switches 310 are associated with the color information, is stored in the ROM 402 (refer to
The tape cassette 30 of the present embodiment is structured such that not only the tape printer 1 can recognize the printing information by detecting the arm indicator portion 800, but also a person can recognize the printing information by visually checking the arm indicator portion 800. A method for recognizing the printing information by visually checking the arm indicator portion 800 will be explained with reference to
As described above, whether each of the indicator portions 800A, 800B and 800E is the non-pressing portion 801 or the pressing portion 802 is determined in advance in accordance with the tape width. The operator can ascertain the tape width by visually checking the arm indicator portion 800 and simply confirming whether each of the indicator portions 800A, 800B and 800E is the non-pressing portion 801 or the pressing portion 802.
Whether the indicator portion 800C is the non-pressing portion 801 or the pressing portion 802 is determined in advance in accordance with the printing format. By simply confirming the indicator portion 800C, the operator can ascertain whether normal image printing or mirror image printing is to be performed. Whether the indicator portion 800D is the non-pressing portion 801 or the pressing portion 802 is determined in advance in accordance with the other information (whether the tape color is white or not, for example). The operator can ascertain whether the tape color is white or not by simply confirming the indicator portion 800D.
In this manner, in the tape cassette 30 of the present embodiment, the arrangement pattern of the non-pressing portions 801 and the pressing portions 802 is determined based on predetermined rules depending on the tape type. Therefore, the tape type (the printing information in the present embodiment) of the tape cassette 30 can be recognized by the person visually checking the arm indicator portion 800.
Printing operations of the tape printer 1 in which the tape cassette 30 is inserted will be simply explained with reference to
When printing is performed in the tape printer 1, the tape drive roller 46 that is rotatably driven via the tape drive shaft 100 pulls out the film tape 59 from the second tape spool 41 by moving in concert with the movable feed roller 14. The ribbon take-up spool 44 that is rotatably driven via the ribbon take-up shaft 95 pulls out the unused ink ribbon 60 from the ribbon spool 42 in synchronization with the print speed. The film tape 59 that has been pulled out from the second tape spool 41 is fed along a feed path within the arm portion 34 while passing outside of the ribbon spool 42. Then, the film tape 59 is supplied from the discharge opening 34A to the head insertion portion 39 in a state in which the ink ribbon 60 is joined to the print surface of the film tape 59, and is fed between the thermal head 10 and the platen roller 15 of the tape printer 1.
Then, characters, graphics and symbols etc. are printed onto the print surface of the film tape 59 by the thermal head 10. Following that, the used ink ribbon 60 is separated from the printed film tape 59 at the guide wall 47 and is taken up by the ribbon take-up spool 44. Meanwhile, the double-sided adhesive tape 58 is pulled out from the first tape spool 40 by the tape drive roller 46 moving in concert with the movable feed roller 14. While being guided and caught between the tape drive roller 46 and the movable feed roller 14, the double-sided adhesive tape 58 is laminated and affixed to the print surface of the printed film tape 59. The printed film tape 59 to which the double-sided adhesive tape 58 has been affixed (namely, the laminated tape 50) is fed toward the tape discharge opening 49, and then cut by the cutting mechanism 17. Thus, the printing operations of the tape printer 1 are completed.
Note that, in the present embodiment, the laminated type tape cassette 30 formed from a general purpose cassette is used in the tape printer 1 that is a general purpose machine. Therefore, the single tape printer 1 can be adapted to be used for tape cassettes of various types, such as the heat-sensitive type, the receptor type, the heat-sensitive laminated type and the like.
As explained above, in the tape cassette 30 of the first embodiment, the arm indicator portion 800 to identify the type of the tape housed in the cassette case 31 is provided on the first indicator member 900 that is independent from the top case 31A and the bottom case 31B. Therefore, the common top case 31A and the common bottom case 31B can be used regardless of the type of the tape housed in the cassette case 31. As compared to a case in which the bottom cases 31B and the top cases 31A that are different depending on each tape type are prepared, it is possible to reduce the types of the bottom case 31B and the top case 31A. Thus, component management of the bottom case 31B and the top case 31A during manufacture is simplified. It is possible to reduce dies for manufacturing the bottom case 31B and the top case 31A, and to reduce manufacturing costs of the tape cassette 30.
The arrangement pattern of the non-pressing portions 801 and the pressing portions 802 formed in the first indicator member 900 is determined in advance so that a person can recognize the tape type by visual check. The first indicator member 900 is provided on the upstream side, in the tape feed direction, of the discharge opening 34A in the arm portion 34. Therefore, the person can visually check the arm indicator portion 800 as well as the tape in the arm portion 34 from the front of the tape cassette 30. Accordingly, the operator can verify the type of the tape to be housed in the cassette case 31 against the tape type indicated by the arm indicator portion 800, and it is therefore possible to accurately manufacture the tape cassette 30.
The operator can visually check the film tape 59 housed in the tape cassette 30, at the open portion 30D to which the first indicator member 900 is attached. The operator can attach the first indicator member 900 to the open portion 30D while confirming the film tape 59 from the open portion 30D.
Since the first indicator member 900 is slidingly attached to the open portion 30D, it can be easily attached. The operator also can remove the first indicator member 900 from the open portion 30D. Therefore, even in case of a combination error of the tape type and the first indicator member 900, it is sufficient to replace only the first indicator member 900. Therefore, even if there is an assembly error of the tape or the first indicator member 900, it is possible to omit a useless process, such as disassembling the cassette case 31.
A tape cassette 230 of a second embodiment will be explained with reference to
The tape cassette 230 includes a cassette case 231 that is provided with a top case 231A and a bottom case 231B. The semi-circular groove 38 is formed in a front surface of the cassette case 231, in a similar way to the cassette case 31 of the first embodiment. The tape cassette 230 is provided with the wall portion 235 which extends from a left end portion of the semi-circular groove 38 to the discharge opening 34A and which blocks the front portion of the arm portion 34. The wall portion 235 is provided with five detection holes 236.
In the present embodiment, four of the five detection holes 236 are through holes whose opening shape is a vertically long rectangular shape, and one of them is open continuously from a right portion of a lower end portion of the wall portion 235 to the bottom wall 31G. In a state in which the tape cassette 230 is inserted in the cassette housing portion 8 of the tape printer 1, the detection holes 236 are arranged respectively at positions facing the switch terminals 222 of the arm detection switches 210. The first indicator member 920 in the form of a film is adhered to a front surface of the wall portion 235.
The first indicator member 920 will be explained with reference to
The plurality of communication holes 821 have an opening width that is slightly larger than that of the detection holes 236. In the present embodiment, among the plurality of communication holes 821, the communication hole 821 that is formed in a position corresponding to one of the indicator portions 800A to 800D (refer to
When the first indicator member 920 is affixed to the wall portion 235, the detection holes 236 that face the communication holes 821 are exposed via the communication holes 821. Therefore, the switch terminals 222 of the arm detection switches 210 can be inserted. In other words, the arm detection switches 210 that face the detection holes 236 that are exposed via the communication holes 821 are in the off state because the switch terminals 222 are inserted into the detection holes 236.
The blocking portions 822 are surface portions where the communication holes 821 are not formed. When the first indicator member 920 is affixed to the wall portion 235, the detection holes 236 that face the blocking portions 822 are covered by the blocking portions 822. Therefore, the switch terminals 222 of the arm detection switches 210 cannot be inserted. In other words, the arm detection switches 210 that face the detection holes 236 covered by the blocking portions 822 are in the on state because the switch terminals 222 come into contact with the blocking portions 822.
An arrangement pattern of the communication holes 821 and the blocking portions 822 that are formed in the first indicator member 920 is determined in advance based on predetermined rules depending on the tape type, in a similar way to the non-pressing portions 801 and the pressing portions 802 in the first embodiment. Therefore, not only the tape printer 1 can recognize the tape type by detecting the first indicator member 920, but also a person can recognize the tape type by visually checking the first indicator member 920.
As explained above, in the tape cassette 230 of the second embodiment, since the first indicator member 920 is affixed to the wall portion 235, it is possible to change the arm indicator portion 820 that is formed on the wall portion 235. Therefore, the common top case 231A and the common bottom case 231B can be used regardless of the type of the tape housed in the cassette case 231. Further, since the first indicator member 920 is a member in the form of a film, it can be formed by press working at a low cost. It is therefore possible to reduce manufacturing costs of the tape cassette 230. Note that the first indicator member 920 may be a member in the form of a sheet.
A tape cassette 330 of a third embodiment will be explained with reference to
As shown in
As shown in
A second indicator plate portion 955, which extends in a direction orthogonal to a surface of the protruding plate portion 342A, is formed on the lower end of the protruding plate portion 342A, the second indicator plate portion 955 being a flat surface portion that has a substantially triangular shape in a plan view and that corresponds to the rear support portion 8C (refer to
As shown in
A cutout portion 931, which is cut out in a vertically long rectangular shape in a front view, is formed in a lower left corner portion of the first indicator plate portion 930. A convex portion 335A that continuously protrudes to the right is provided from an upper end portion to a lower end portion of the right end face of the first indicator plate portion 930. A convex portion 336A that continuously protrudes to the left is provided from a central portion in the up-down direction to a lower end portion of the left end face of the first indicator plate portion 930. A convex portion 337A that continuously protrudes downward is provided from a left end portion to a right end portion of the lower end face of the first indicator plate portion 930. A height dimension (a dimension in the up-down direction) of the first indicator plate portion 930 is the same as the height dimension of the tape cassette 330. The first indicator plate portion 930 is provided with the arm indicator portion 830. The arm indicator portion 830 is similar to the arm indicator portion 800 of the first embodiment and an explanation thereof is thus omitted.
Note that the pin portions 33A are provided protruding downward from a lower surface of the top wall 331E, in a similar way to the first embodiment. A height dimension of the pin portions 33A is smaller than the height dimension of the first indicator plate portion 930 and the height dimension of the protruding plate portion 342A.
The bottom case 331B will be explained with reference to
A right guide wall 348B, which is a wall portion provided continuously to the lower semi-circular portion 38B, is provided on the left side of the lower semi-circular portion 38B. A groove portion 345B that is continuous from the upper end to the lower end is formed in the left end face of the right guide wall 348B. The right guide wall 348B is a portion of the front surface of the arm portion 34 that is provided on the upstream side, in the tape feed direction, of the discharge opening 34A in the bottom case 331B.
On the left side of the right guide wall 348B, a left guide wall 344B, which is a wall portion formed in a vertically long rectangular plate shape in a front view, is provided in a standing manner on the bottom wall 331G away from the right guide wall 348B. The left guide wall 344B is a portion of the front surface of the arm portion 34 that is provided in the vicinity of the discharge opening 34A in the bottom case 331B. A groove portion 346B that is continuous from the upper end to the lower end is formed in the right end face of the left guide wall 344B.
A cutout space that opens upwardly and that is surrounded by the right guide wall 348B, the left guide wall 344B and the bottom wall 331G is an indicator plate attachment portion 350B to which the above-described first indicator plate portion 930 is attached. In a portion of the bottom wall 331G between the right guide wall 348B and the left guide wall 344B, a groove portion 347B is formed along the left-right direction of the indicator plate attachment portion 350B.
A method for assembling the tape cassette 330 having the above-described structure will be explained with reference to
When the operator presses the top case 331A downward onto the bottom case 331B, the first indicator plate portion 930 slidingly moves downward in the indicator plate attachment portion 350B while being guided between the right guide wall 348B and the left guide wall 344B. Specifically, the convex portion 336A slidingly moves along the groove portion 346B, and the convex portion 335A slidingly moves along the groove portion 345B. At the same time, the second indicator plate portion 955 slidingly moves downward in the recessed portion 343B while being guided by the back wall 331M.
The plurality of pin portions 33A that are provided on the top case 331A are respectively fitted into the cylindrical holes of the plurality of boss portions 33B that are provided in the bottom case 331B. When the top case 331A is moved further downward, the fixing portion 38D of the top case 331A is fitted into the fixing hole 79 of the bottom case 331B. When the first indicator plate portion 930 is fitted into the indicator plate attachment portion 350B and the second indicator plate portion 955 is fitted into the recessed portion 343B, the convex portion 337A of the top case 331A is joined to the groove portion 347B of the bottom case 331B. This completes the attachment of the top case 331A to the bottom case 331B.
When the top case 331A is attached to the bottom case 331B, the second indicator plate portion 955 is included in a portion of the bottom wall 331G in a similar way to the above-described rear surface portion 68 (refer to
As explained above, according to the tape cassette 330 of the third embodiment, the arm indicator portion 830 and the rear indicator portion 953 are formed on the top case 331A. Therefore, the common bottom case 331B can be used regardless of the type of the tape housed in the tape cassette 330, and it is thus possible to reduce manufacturing costs of the tape cassette 330. Further, the operator can attach the top case 331A provided with the arm indicator portion 830 to the bottom case 331B while confirming the tape housed in the bottom case 331B. Therefore, assembly errors of the cassette case 331 are reduced.
The operator can mount the arm indicator portion 830 and the rear indicator portion 953 on the tape cassette 330 by simply attaching the top case 331A to the bottom case 331B. Therefore, the workability of the tape cassette 330 in a manufacturing process is improved. Further, when the top case 331A is attached to the bottom case 331B, the first indicator plate portion 930 on which the arm indicator portion 830 is formed is guided downward by the right guide wall 348B and the left guide wall 344B. The second indicator plate portion 955 that is provided with the rear indicator portion 953 is guided downward by the back wall 331M. Therefore, the operator can accurately inserts the first indicator plate portion 930 into the indicator plate attachment portion 350B, and thus the workability of the tape cassette 330 in the manufacturing process is further improved.
Note that it is needless to mention that the present disclosure is not limited to the above-described embodiments and various modifications are possible. For example, in the first embodiment, the first indicator member 900 is attached to the open portion 30D that is formed in a state in which the top case 31A is attached to the bottom case 31B. However, as shown in
Hereinafter, a tape cassette 430 of a first modified example, in which the bottom case 431B is provided with the attachment portion 430D to which the first indicator member 940 is attached, will be explained with reference to
As shown in
The bottom case 431B will be explained with reference to
A structure of the first indicator member 940 will be explained with reference to
A method for assembling the tape cassette 430 will be explained with reference to
According to the tape cassette 430 of the first modified example, the tape housed in the bottom case 431B can be visually checked through the attachment portion 430D. While confirming the tape housed in the bottom case 431B, the operator can attach the first indicator member 940 that indicates the correct tape type to the bottom case 431B, and it is thus possible to suppress assembly errors of the tape cassette 430.
As a modified example of the third embodiment, at least one of the arm indicator portion 830 and the rear indicator portion 953 may be provided on a member that can be attached to and removed from a top case 531A. Hereinafter, a tape cassette 530 of a second modified example, in which the arm indicator portion 830 and the rear indicator portion 953 are respectively provided on members that can be attached to and removed from the top case 531A, will be explained with reference to
The top case 531A will be explained with reference to
The first indicator member 935 will be explained with reference to
A method for attaching the first indicator member 935 to the attachment portion 530D will be explained with reference to
As shown in
As shown in
When the tape cassette 530 of the second modified example is assembled, the top case 531A, to which the first indicator member 935 and the second indicator member 956 have been attached, is attached to the bottom case 331B which is the same as that of the third embodiment. In a state in which the top case 531A is attached to the bottom case 331B, the second indicator member 956 is included in a portion of the bottom wall 331G (refer to
According to the tape cassette 530 of the second modified example, the first indicator member 935 and the second indicator member 956 are provided independently from the top case 531A and the bottom case 331B. Therefore, the common top case 531A and the common bottom case 331B can be respectively used regardless of the type of the tape housed in the tape cassette.
As shown in
The tape cassette 630 of the third modified example is provided with the bottom case 631B that has a substantially box shape. A wall portion 635 that is continuously provided from the lower semi-circular portion 38B to the left is formed in the bottom case 631B along a front end portion of the bottom wall 31G. Detection holes 266 are formed in the wall portion 635 in a similar way to the second embodiment. The first indicator member 925 in the form of a film is adhered to a front surface of the wall portion 635. The first indicator member 925 is provided with the arm indicator portion 820 in a similar way to the second embodiment.
Also in the tape cassette 630 of the third modified example, it is possible to attach the first indicator member 925 to the bottom case 631B while visually checking a surface of the tape housed in the bottom case 631B. The operator can attach the first indicator member 925 that indicates the correct tape type while confirming the type of the tape housed in the bottom case 631B, and it is thus possible to suppress assembly errors of the tape cassette 630.
In the above-described embodiments and modified examples, the arm indicator portions 800, 820 and 830 include the plurality of indicator portions. However, it is sufficient if each indicator portion includes at least one indicator hole (the non-pressing portion 801 in the present embodiment) and indicates the tape type. Although the non-pressing portion 801 is a through hole having a vertically long rectangular shape, the non-pressing portion 801 may have another shape. For example, the non-pressing portion 801 may have any opening shape, such as a square shape, a circular shape or the like, as long as the arm detection switch 210 can be inserted.
Further, although the rear indicator portions 950 and 953 include the plurality of indicator portions, it is sufficient if each indicator portion includes at least one indicator hole (the non-pressing portion 951 in the present embodiment) and indicates the tape type. The non-pressing portion 951 need not necessarily be a circular hole, and it may have a square shape, a rectangular shape or the like as long as the rear detection switch 310 can be inserted.
Although in the first embodiment, the latch hole 804 provided in the arm front surface 35 is provided in the first indicator member 900, it may be provided in the top case 31A. In this case, the first indicator member 900 need not be provided with the latch hole 804. Further, the latch hole 804 may be provided in a boundary portion between the first indicator member 900 and the top case 31A. Further, an upper end position of the indicator portions 800B and 800C may be used as a boundary between the first indicator member 900 and the top case 31A.
In the above-described embodiments and modified examples, the non-pressing portions 801 and the latch hole 804 are independent hole portions. In place of these, the plurality of non-pressing portions 801 may be included in a single continuous hole portion, or the non-pressing portions 801 and the latch hole 804 may be included in a single continuous hole portion.
In the first embodiment, the groove portion 901 is formed on the upper end face of the first indicator member 900, and the convex portion 907 is formed on the lower end face of the first indicator member 900. In the open portion 30D, the convex portion 30F is formed corresponding to the groove portion 901 and the groove portion 30E is formed corresponding to the convex portion 907. In place of these, a convex portion may be formed on the upper end face of the first indicator member 900, and a groove portion corresponding to this convex portion may be provided in the open portion 30D. A groove portion may be formed in the lower end face of the first indicator member 900, and a convex portion corresponding to this groove portion may be provided on the open portion 30D.
In the second embodiment, the first indicator member 920 is provided with the hole portion that corresponds to the latch hole 804. In place of this, the first indicator member 920 may have a size that covers the arm indicator portion 820 only.
The apparatus and methods described above with reference to the various embodiments are merely examples. It goes without saying that they are not confined to the depicted embodiments. While various features have been described in conjunction with the examples outlined above, various alternatives, modifications, variations, and/or improvements of those features and/or examples may be possible. Accordingly, the examples, as set forth above, are intended to be illustrative. Various changes may be made without departing from the broad spirit and scope of the underlying principles.
This application is a continuation application of U.S. Ser. No. 17/464,761 filed on Sep. 2, 2021, which is a continuation application of U.S. Ser. No. 16/293,984 filed on Mar. 6, 2019 now U.S. Pat. No. 11,135,862, which is a continuation application of U.S. Ser. No. 14/742,077 filed on Jun. 17, 2015, now U.S. Pat. No. 10,265,982 granted on Apr. 23, 2019, which is a continuation application of U.S. Ser. No. 13/430,033, filed on Mar. 26, 2012, now U.S. Pat. No. 9,656,495 granted on May 23, 2017, which is a continuation-in-part of International Application No. PCT/JP2009/071812, filed Dec. 28, 2009. The disclosures of the foregoing applications are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 17464761 | Sep 2021 | US |
Child | 18882741 | US | |
Parent | 16293984 | Mar 2019 | US |
Child | 17464761 | US | |
Parent | 14742077 | Jun 2015 | US |
Child | 16293984 | US | |
Parent | 13430033 | Mar 2012 | US |
Child | 14742077 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2009/071812 | Dec 2009 | WO |
Child | 13430033 | US |