TAPE CASSETTE

Information

  • Patent Application
  • 20230166546
  • Publication Number
    20230166546
  • Date Filed
    November 28, 2022
    2 years ago
  • Date Published
    June 01, 2023
    a year ago
Abstract
The tape cassette includes a housing, a tape roll, a tape, an outlet, a first guide, first opening, second opening, a first rotation body, and a second rotation body. The first guide is configured to guide the tape that has been conveyed through a detection position toward the outlet. The first opening opens toward a first surface of the tape. The second opening opens toward a second surface of the tape. The first rotation body is disposed at a position adjacent to the first opening. The position adjacent to the first opening is an entrance to the detection position. The second rotation body is disposed further upstream than the first guide in a tape conveyance direction. The second rotation body is disposed at a position adjacent to the second opening. The position adjacent to the second opening is an exit from the detection position.
Description
REFERENCE TO RELATED APPLICATIONS

This application claims priority from Japanese Patent Application No. 2021-194165 filed on Nov. 30, 2021. The entire content of the priority application is incorporated herein by reference.


BACKGROUND ART

Present disclosure relates to a tape cassette.


A tape cassette is provided with a tape roll, a first rotation body, a second rotation body, a discharge port, and an opening. A tape is wound around the tape roll. The first rotation body is provided upstream of the opening in a conveyance path of the tape. The second rotation body is provided downstream of the opening in the conveyance path of the tape. The first rotation body guides the tape fed out from the tape roll toward the second rotation body. The second rotation body guides the tape conveyed by the first rotation body toward the discharge port. A sensor of a printer is inserted into the opening. The sensor detects tape information of the tape being conveyed between the first rotation body and the second rotation body.


DESCRIPTION

In the above-described tape cassette, the conveyance path on which the tape is conveyed between the first rotation body and the second rotation body is a straight line, and a distance between the first rotation body and the second rotation body is long. The rigidity of the tape changes depending on the difference of the type, such as the thickness and width, the material, and the like, and thus, depending on the type of the tape in the tape cassette, the conveyance of the tape being conveyed becomes unstable. In this case, there is a possibility that the tape cassette may not be able to detect the tape information in a stable manner using the sensor.


Various embodiments of the general principles described herein provide a tape cassette capable of detecting tape information, using a sensor, in a stable manner.


Embodiments herein provide a tape cassette configured to be mounted in a printer. The tape cassette includes a housing, a tape roll, a tape, an outlet, a first guide, a first opening, a second opening, a first rotation body, and a second rotation body. The tape roll is held inside the housing. The tape is wound around the tape roll. The outlet is configured to discharge, to outside of the housing, the tape from the tape roll that has been conveyed through a detection position provided at a position facing a sensor of the printer. The first guide is configured to guide the tape that has been conveyed through the detection position toward the outlet. The first opening opens toward a first surface of the tape conveyed through the detection position. The second opening opens toward a second surface of the tape. The second surface is opposite to the first surface of the tape. The first rotation body is disposed at a position adjacent to the first opening. The position adjacent to the first opening is an entrance to the detection position. The second rotation body is disposed further upstream than the first guide in a tape conveyance direction. The second rotation body is disposed at a position adjacent to the second opening. The position adjacent to the second opening is an exit from the detection position.





Using the first rotation body and the second rotation body, the tape cassette causes the tape to be conveyed through the detection position, and guides the tape to the first guide. In this way, the tape is conveyed in a stable manner between the first rotation body and the second rotation body. Thus, the tape cassette can perform detection of information of the tape in a stable manner.



FIG. 1 is a perspective view of a printer with a cassette cover in an open position.



FIG. 2 is a perspective view for illustrating a tape cassette and a cassette housing.



FIG. 3 is a plan view of the cassette housing in which the tape cassette is mounted.



FIG. 4 is a plan view of a lower right portion of the tape cassette.



FIG. 5 is a view showing a conveyance path.





A printer 1 and a tape cassette 30 according to the present embodiment will be described. In the following description, the lower left direction, the upper right direction, the lower right direction, the upper left direction, the upper direction, and the lower direction in FIG. 1 are, respectively, the front direction, the rear direction, the right direction, the left direction, the upper direction, and the lower direction of the printer 1. The lower right direction, the upper left direction, the upper right direction, the lower left direction, the upper direction, and the lower direction in FIG. 2 are, respectively, the front direction, the rear direction, the right direction, the left direction, the upper direction, and the lower direction of the tape cassette 30.


Hereinafter, various tapes housed in the tape cassette 30 (a print tape and a half-cut tape 57 to be described later, for example) will be generically referred to as a tape. A type of the tape housed in the tape cassette 30 (a tape width, a print format, a tape color, character color, and the like) will be generically referred to as a tape type.


The printer 1 will be described with reference to FIG. 1 to FIG. 3. The printer 1 is a general-purpose tape printer that can use, as the single printer, various types of tape cassettes, such as a thermal type, a receptor type, a laminate type, a half-cut type, and the like. The thermal type tape cassette is provided with a heat-sensitive tape. The receptor type tape cassette is provided with a print tape and an ink ribbon. The laminate type tape cassette is provided with a double-sided adhesive tape, a film tape and an ink ribbon. The half-cut type tape cassette is provided with a half-cut tape and an ink ribbon.


As shown in FIG. 1, the printer 1 is provided with a substantially cuboid-shaped main body cover 2. A keyboard 3, which includes character keys and function keys is disposed at the front of the upper surface of the main body cover 2. A display 5, which can display characters (letters, numerals, graphics) and the like input using the keyboard 3 is provided to the rear of the keyboard 3. A cassette cover 6, which is opened and closed when the tape cassette 30 (refer to FIG. 2) is replaced, is provided to the rear of the display 5.


The cassette cover 6 is a lid that has a substantially rectangular shape in a plan view. The cassette cover 6 is axially supported at both left and right ends at an upper portion of the back surface of the main body cover 2, and can rotate between a closed position (not shown in the drawings) and an open position shown in FIG. 1. A cassette housing 8 is provided inside the main body cover 2. The tape cassette 30 can be mounted in and removed from the cassette housing 8.


A discharge slit 111 is provided at the rear of the left side surface of the main body cover 2. The discharge slit 111 discharges the printed tape from the cassette housing 8. A discharge window 112 is provided at the left side surface of the cassette cover 6. When the cassette cover 6 is at the closed position, the discharge window 112 exposes the discharge slit 111 to the outside.


An internal structure of the main body cover 2 will be described with reference to FIG. 2 and FIG. 3. As shown in FIG. 2, the cassette housing 8 includes a cavity 811 and corner supports 812. The cavity 811 is a recess including a planar bottom surface. The recess of the cavity 811 corresponds to a shape of a bottom surface 302 of a cassette case 31. The corner supports 812 are planar portions that extend horizontally from outer edges of the cavity 811. When the tape cassette 30 is mounted in the cassette housing 8, the corner supports 812 support a lower surface of a peripheral edge of the tape cassette 30.


As shown in FIG. 3, a sensor 20 is provided at the right of the cassette housing 8. The sensor 20 includes sensors 201 and 202. The sensors 201 and 202 are disposed facing each other at the left and the right. The sensor 201 is positioned to the left of the sensor 202. One of the sensors 201 and 202 is a light-emitting portion and the other is a light-receiving portion. The light-emitting portion emits light. The light-receiving portion receives the light emitted from the light-emitting portion.


When the tape cassette 30 is mounted in the cassette housing 8, the sensors 201 and 202 are respectively disposed on the inside of openings 801 and 802 to be described later. The sensor 20 detects a pattern provided at a predetermined range from an end of the tape conveyed between the sensor 201 and the sensor 202. The printer 1 detects a remaining amount of the tape, from among tape information, on the basis of the detected pattern. Hereinafter, a position of the tape conveyed between the sensor 201 and the sensor 202 will be referred to as a “detection position P.” Of a conveyance path 59 of the tape, a position in the vicinity of the sensor 20 upstream of the detection position P will be referred to as an entrance to the detection position P, and a position in the vicinity of the sensor 20 downstream of the detection position P will be referred to as an exit from the detection position P.


As shown in FIG. 2, a head holder 74 is provided at the front of the cassette housing 8. A thermal head 10 is mounted in the head holder 74. A tape feed motor 23 is provided to the right of and above the cassette housing 8. The tape feed motor 23 is a stepping motor, for example. A gear 91 is affixed to the lower end of a drive shaft of the tape feed motor 23. The gear 91 meshes with a gear 93 through an opening. The gear 93 meshes with a gear 94. The gear 94 meshes with a gear 97. The gear 97 meshes with a gear 98. The gear 98 meshes with a gear 101.


A ribbon winding shaft 95 is provided in a vertical orientation on the upper surface of the gear 94. The ribbon winding shaft 95 is a shaft to which a ribbon winding spool 44 can be removably mounted. The ribbon winding shaft 95 is a shaft body that extends in the up-down direction. A tape drive shaft 100 is provided in a vertical orientation on the upper surface of the gear 101. The tape drive shaft 100 is a shaft body which can be removably mounted in a hole 461 of a tape drive roller 46.


When the tape feed motor 23 rotationally drives the gear 91 in the counterclockwise direction, the ribbon winding shaft 95 is rotationally driven in the counterclockwise direction via the gear 93 and the gear 94. The rotation of the gear 94 is transmitted to the tape drive shaft 100 via the gear 97, the gear 98, and the gear 101. In this way, the tape drive shaft 100 is rotationally driven in the clockwise direction.


An arm-shaped platen holder 12 is provided to the front of the head holder 74. The platen holder 12 is axially supported such that the platen holder 12 can rotate around a shaft support 121. A platen roller 15 and a movable feed roller 14 are axially supported at a leading end of the platen holder 12 so as to be rotatable. The platen roller 15 is able to come into contact with and separate from the thermal head 10. The movable feed roller 14 is able to come into contact with and separate from the tape drive roller 46.


When the half-cut type tape cassette 30 is mounted in the cassette housing 8, the platen roller 15 presses the thermal head 10 via the half-cut tape 57 and an ink ribbon 60. At the same time, the movable feed roller 14 presses the tape drive roller 46 via the half-cut tape 57. In this case, the printer 1 can perform printing on the half-cut tape 57.


A cutting mechanism 17 that cuts a printed tape 50 at a predetermined position is provided to the right of the discharge slit 111 (refer to FIG. 1). The cutting mechanism 17 includes a fixed blade 18 and a moving blade 19. The moving blade 19 is able to move in the front-rear direction with respect to the fixed blade 18.


An external appearance of the tape cassette 30 will be described with reference to FIG. 2. The tape cassette 30 can change the type of the tape housed internally as appropriate. For example, the half-cut tape and the like can be mounted in the tape cassette 30. In the following description, the tape cassette 30 will be described in which the half-cut tape 57 is mounted, for example. Note that the rigidity of the half-cut tape 57 is equal to or greater than 3 N·mm2, for example.


The tape cassette 30 is provided with the cassette case 31 that is a housing. The cassette case 31 has a rectangular shape and includes corners that are rounded in a plan view. The cassette case 31 includes a top case 311 and a bottom case 312. The bottom case 312 includes a bottom plate 306 that includes the bottom surface 302 of the cassette case 31. The top case 311 is affixed to the upper portion of the bottom case 312. The top case 311 includes a top plate 305. The top plate 305 includes a top surface 301 of the cassette case 31.


In the cassette case 31, side surfaces are formed by the top plate 305 and the bottom plate 306. The side surfaces of the cassette case 31 include four corners 321 to 324. When the tape cassette 30 is mounted in the cassette housing 8, bottom surfaces of the corners 321 to 324 are supported by the corner supports 812. A discharge guide portion 49 is provided at the corner 324.


Three support holes 65, 67, and 68 are provided in the cassette case 31. Holes provided at the rear left and the front right of the cassette case 31 will be respectively referred to as the first tape support hole 65 and the ribbon support hole 67. A hole that is provided between the first tape support hole 65 and the ribbon support hole 67 in a plan view will be referred to as the winding spool support hole 68.


The first tape support hole 65 supports a tape spool 40 (refer to FIG. 3) such that the tape spool 40 can rotate. The ribbon support hole 67 supports a ribbon spool 42 (refer to FIG. 3) such that the ribbon spool 42 can rotate. The winding spool support hole 68 supports the ribbon winding spool 44 (refer to FIG. 3) such that the ribbon winding spool 44 can rotate.


An opening 80 is provided at the right end of the cassette case 31 and at the center of the cassette case 31 in the front-rear direction. The opening 80 includes a pair of openings 801 and 802. The openings 801 and 802 are aligned so as to be separated from each other to the left and right. The opening 802 is positioned to the right of the opening 801. The openings 801 and 802 have a rectangular shape that is long in the front-rear direction in a plan view. The openings 801 and 802 are openings passing through the bottom plate 306 and the top plate 305 in the up-down direction. Note that the openings 801 and 802 are respectively defined by a first regulating portion 75 and a second regulating portion 76.


A front surface wall 32, an arm front surface wall 35, and an arm rear surface wall 37 are provided at the front end of the cassette case 31. The front surface wall 32 is provided on the right at the front end of the cassette case 31. The arm front surface wall 35 is provided on the left of the front surface wall 32. The arm rear surface wall 37 is provided at a position separated, to the rear, from the arm front surface wall 35.


An arm 34 is defined by the arm front surface wall 35, the arm rear surface wall 37, and the like. The arm 34 extends to the left from the front right of the tape cassette 30. The arm 34 includes a discharge outlet 341, at the left end of the arm 34. The discharge outlet 341 is a gap that extends in the up-down direction between the left end of the arm front surface wall 35 and the left end of the arm rear surface wall 37.


A head insertion portion 39 is disposed to the rear of and adjacent to the arm 34. The head insertion portion 39 is defined by the arm rear surface wall 37, a head peripheral wall 36, and the like. The head peripheral wall 36 extends to the rear from the right end of the arm rear surface wall 37, and extends in parallel to the arm rear surface wall 37. The head insertion portion 39 passes through the tape cassette 30 in the up-down direction. The head insertion portion 39 is a space that has a substantially rectangular shape in a plan view.


The head insertion portion 39 is connected to the outside at a front surface of the tape cassette 30, via an exposure portion 77. When the tape cassette 30 is mounted in the cassette housing 8, the head holder 74 supporting the thermal head 10 is inserted into the head insertion portion 39. A separator portion 61 and the discharge guide portion 49 will be described later.


The interior of the cassette case 31 will be described with reference to FIG. 3 and FIG. 4. As shown in FIG. 3, a tape area 400 and a pin arrangement area 410 are provided inside the cassette case 31. The tape area 400 is an area adjacent to the corner 321 at the rear left of the cassette case 31. The tape area 400 has a substantially circular shape in a plan view and occupies roughly the left half of the cassette case 31. The pin arrangement area 410 is an area adjacent to the corner 322 at the rear right of the cassette case 31. The pin arrangement area 410 is an area occupying the upper right of the interior of the cassette case 31.


A tape roll 571 around which the half-cut tape 57 is wound is housed in the tape area 400. A plurality of pins 21 is provided in the pin arrangement area 410. In other words, the plurality of pins 21 is provided to the right of the tape spool 40. The plurality of pins 21 can cause the conveyance path 59 of the half-cut tape 57 fed out from the tape roll 571 toward the first rotation body 71 to be curved. The plurality of pins 21 includes a first pin 21A to a fourth pin 21D. An adjustment pin 16 is provided between the tape area 400 and the pin arrangement area 410. The adjustment pin 16 can cause the conveyance path 59 to be curved. Hereinafter, in the present embodiment, a detailed description of the plurality of pins 21 and the adjustment pin 16 will be omitted.


As shown in FIG. 4, the first rotation body 71 is provided further to the right and to the front than a winding center 572 of the tape roll 571. The first rotation body 71, which is the entrance to the detection position P, is disposed to the rear of the opening 801. The first rotation body 71 faces the opening 801 in the front-rear direction. In the front-rear direction, a distance between the first rotation body 71 and the opening 801 is shorter than a diameter of the first rotation body 71.


The first rotation body 71 has a circular cylindrical shape. The first rotation body 71 is provided with a support shaft 712 and a through hole 711 (refer to FIG. 3). The through hole 711 extends in the up-down direction. The support shaft 712 is inserted into the through hole 711. The length in the up-down direction of the first rotation body 71 is longer than an length in the up-down direction of the half-cut tape 57. A material of the first rotation body 71 is ABS resin, for example.


The first rotation body 71 forms the conveyance path 59 of the half-cut tape 57 pulled out from the tape roll 571. The first rotation body 71 can be driven to rotate in the clockwise direction in a plan view, in accordance with the conveyance of the half-cut tape 57. The first rotation body 71 guides the tape fed out from the tape roll 571 toward a second rotation body 82 to be described later, via the detection position P.


The first regulating portion 75 is provided to the front of the first rotation body 71. The first regulating portion 75 includes walls 751, 752, 753, and 78, and an extension wall 85. The wall 751 is disposed to the front of the first rotation body 71. In the front-rear direction, the wall 751 is disposed at a central portion of the ribbon winding spool 44. In the left-right direction, the wall 751 is disposed at a position of the first rotation body 71. The wall 751 extends in the left-right direction.


The wall 752 extends to the rear from the right end of the wall 751. The rear end of the wall 752 is further to the front than the center, in the front-rear direction, of the opening 801. The wall 752 is disposed to a left surface side of the tape at the detection position P, and extends along a tape conveyance direction.


The wall 753 extends upward from the left end of the wall 751. The upper end of the wall 753 is substantially at the same position, in the front-rear direction, as the position of the front end of the first rotation body 71. The wall 78 extends to the right from the rear end of the wall 753. The length of the wall 78 in the left-right direction is substantially half the length of the wall 751 in the left-right direction. The extension wall 85 extends to the rear from the right end of the wall 78. In this case, the extension wall 85 extends along the first rotation body 71 at the left of the first rotation body 71. In other words, the extension wall 85 is curved along the first rotation body 71. The first rotation body 71 is prevented by the extension wall 85 from being pressed by the tape and falling over.


A first opening 87 is defined by the first regulating portion 75 and the first rotation body 71. The first opening 87 opens toward the left surface of the tape conveyed through the detection position P. Further, the opening 801 is defined by the first regulating portion 75 and the first rotation body 71.


The second regulating portion 76 is provided to the right of the first regulating portion 75, via the conveyance path 59 of the tape. The second regulating portion 76 faces the first regulating portion 75 in the left-right direction. The second regulating portion 76 includes walls 761, 762, 763, and 79, and an extension wall 86. The wall 761 is disposed at the same position as the position of the wall 78 in the front-rear direction. The wall 761 extends in the left-right direction.


The wall 762 extends to the front from the left end of the wall 761. The front end of the wall 762 is disposed further to the rear than the center, in the front-rear direction, of the opening 802. The wall 762 is disposed to the right surface side of the tape at the detection position P, and extends along the tape conveyance direction.


The wall 763 extends to the front from the right end of the wall 761. The length of the wall 763 in the front-rear direction is the same as the length of the wall 753 in the front-rear direction. The wall 79 extends to the left from the front end of the wall 763. The length of the wall 79 in the left-right direction is substantially half the length of the wall 761 in the left-right direction. The extension wall 86 extends to the front from the left end of the wall 79. In this case, the extension wall 86 extends along the second rotation body 82 at the right of the second rotation body 82 to be described later. The extension wall 86 is curved along the second rotation body 82. The second rotation body 82 is prevented by the extension wall 86 from being pressed by the tape and falling over.


A second opening 88 is configured by the second regulating portion 76 and the second rotation body 82. The second opening 88 opens toward the right surface of the tape that is opposite to the left surface of the tape. Further, the opening 802 is defined by the second regulating portion 76 and the second rotation body 82.


The second rotation body 82 is disposed to the front of the opening 802, and to the left of the extension wall 86, which is a position adjacent to the exit from the detection position P. The second rotation body 82 is supported by the extension wall 86 at the left of the extension wall 86. The second rotation body 82 has a circular cylindrical shape. The second rotation body 82 is provided with a support shaft 822 and a through hole 821. The through hole 821 extends in the up-down direction. The support shaft 822 is inserted into the through hole 821. The length of the second rotation body 82 in the up-down direction is longer than the length of the half-cut tape 57 in the up-down direction. The diameter of the second rotation body 82 is the same as the diameter of the first rotation body 71. A material of the second rotation body 82 is ABS resin, for example.


The second rotation body 82 forms the conveyance path 59 of the half-cut tape 57 pulled out from the tape roll 571. The second rotation body 82 is in contact with the half-cut tape 57 from the right. The second rotation body 82 can be driven to rotate in the counter-clockwise direction in a plan view in accordance with the conveyance of the half-cut tape 57. In this way, the second rotation body 82 causes the conveyance path 59 of the tape to be curved, and guides the tape to a third rotation body 81.


The third rotation body 81 is disposed at a position of the rear end of the ribbon spool 42 in the front-rear direction. The third rotation body 81 is disposed at the position of the opening 802 in the left-right direction. In other words, in the tape conveyance direction, the third rotation body 81 is disposed downstream of the second rotation body 82 and upstream of a fourth rotation body 72. The third rotation body 81 has a circular cylindrical shape.


The third rotation body 81 is provided with a support shaft 813 and a through hole 814. The through hole 814 extends in the up-down direction. The support shaft 813 is inserted into the through hole 814. The length in the up-down direction of the third rotation body 81 is shorter than the length of the half-cut tape 57 in the up-down direction. The diameter of the third rotation body 81 is larger than the diameters of the first rotation body 71 and the second rotation body 82. A material of the third rotation body 81 is ABS resin, for example.


The third rotation body 81 forms the conveyance path 59 of the half-cut tape 57 pulled out from the tape roll 571. The third rotation body 81 is contact, from the left, with the tape that has been conveyed through the detection position P. The third rotation body 81 can be driven to rotate in the clockwise direction in a plan view in accordance with the conveyance of the half-cut tape 57. In this way, the third rotation body 81 causes the conveyance path 59 of the tape to be curved, and guides the tape to the fourth rotation body 72.


The fourth rotation body 72 is disposed to the left of the third rotation body 81 and to the rear of the front surface wall 32. The fourth rotation body 72 has a circular cylindrical shape. The fourth rotation body 72 is provided with a support shaft 722 and a through hole 721. The through hole 721 extends in the up-down direction. The support shaft 722 is inserted into the through hole 721. The length of the fourth rotation body 72 in the up-down direction is shorter than the length of the half-cut tape 57 in the up-down direction. The diameter of the fourth rotation body 72 is the same as the diameter of the third rotation body 81. A material of the fourth rotation body 72 is ABS resin, for example.


The fourth rotation body 72 forms the conveyance path 59 of the half-cut tape 57 pulled out from the tape roll 571. The fourth rotation body 72 is contact with the half-cut tape 57 from the rear left. The fourth rotation body 72 can be driven to rotate in the clockwise direction in a plan view in accordance with the conveyance of the half-cut tape 57. In this way, the fourth rotation body 72 causes the conveyance path 59 of the tape to be curved, and guides the half-cut tape 57 to the arm 34.


A guide portion 33 is provided at a left end of the arm 34. The guide portion 33 extends in the up-down direction. Protrusions 331 that protrude to the front are provided at ends of the guide portion 33 in the up-down direction. The half-cut tape 57 is disposed between the upper and lower protrusions 331. The half-cut tape 57 comes into contact with the guide portion 33 and is guided. The guide portion 33 guides the half-cut tape 57 to the discharge outlet 341.


The ribbon spool 42 is positioned to the right of the head insertion portion 39. The ink ribbon 60 is wound around the ribbon spool 42. The unused ink ribbon 60 is wound around the ribbon spool 42. The ink ribbon 60 is used for printing on the half-cut tape 57. The ink ribbon 60 faces the opening 801 in the front-rear direction.


The ribbon winding spool 44 is provided further to the rear and to the left than the ribbon spool 42. The ribbon winding spool 44 is provided between the tape area 400 and the ribbon spool 42. The ribbon winding spool 44 winds the ink ribbon 60 after the ink ribbon 60 has been used for the printing.


The separator portion 61 is provided to the left of the head insertion portion 39. The separator portion 61 separates the half-cut tape 57 and the ink ribbon 60 used for the printing at a position downstream of the exposure portion 77 in the tape conveyance direction. The separator portion 61 includes regulating members 361 and 362 (refer to FIG. 2), a ribbon guide wall 38, and the like.


The tape drive roller 46 is axially supported so as to be able to rotate (refer to FIG. 2) at the left of the separator portion 61. The front surface of the tape drive roller 46 is exposed to the outside of the cassette case 31, and is in contact with the half-cut tape 57.


The discharge guide portion 49 is provided downstream of the tape drive roller 46 in the conveyance direction. The discharge guide portion 49 is provided slightly separated, to the front, from the front end of the left surface of the tape cassette 30. The discharge guide portion 49 is a plate-shaped member extending between the top surface 301 and the bottom surface 302 of the cassette case 31. The discharge guide portion 49 discharges the printed tape 50 conveyed via the tape drive roller 46, to the outside of the tape cassette 30.


The conveyance path 59 will be described with reference to FIG. 4. The conveyance path 59 is defined by the first rotation body 71, the second rotation body 82, the third rotation body 81, the fourth rotation body 72, the guide portion 33, and the discharge outlet 341. The half-cut tape 57 fed out from the tape roll 571 is conveyed to the outside of the tape cassette 30 via the conveyance path 59. Note that the conveyance path 59 is an ideal path through which the undeflected half-cut tape 57 is conveyed.


The conveyance path 59 is configured by conveyance paths 591 to 595. The conveyance path 591 is a path further to the right than the tape roll 571 and further to the rear than the first rotation body 71. The conveyance path 592 is a path further to the front than the first rotation body 71 and further to the rear than the second rotation body 82. The conveyance path 593 is a path further to the front than the second rotation body 82 and further to the rear than the third rotation body 81. The conveyance path 594 is a path further to the front than the third rotation body 81 and further to the rear than the fourth rotation body 72. The conveyance path 595 is a path further to the left than the fourth rotation body 72, and further to the right than the guide portion 33.


Here, of the conveyance path 59, a virtual line that connects the tape roll 571 with an end 701 of the first rotation body 71 will be referred to as a start straight line 731. A virtual line that connects the end 701 of the first rotation body 71 with an end 702 of the second rotation body 82 will be referred to as a first straight line 732. A virtual line that connects the end 702 of the second rotation body 82 with an end 703 of the third rotation body 81 will be referred to as a second straight line 733. A virtual line that connects an end 704 of the third rotation body 81 with an end 705 of the fourth rotation body 72 will be referred to as a third straight line 734. A virtual line that connects an end 706 of the fourth rotation body 72 with the guide portion 33 will be referred to as a fourth straight line 735.


The conveyance path 591 is on the same straight line as the start straight line 731. The conveyance path 592 is on the same straight line as the first straight line 732. The conveyance path 593 is on the same straight line as the second straight line 733. The conveyance path 594 is on the same straight line as the third straight line 734. The conveyance path 595 is on the same straight line as the fourth straight line 735.


Angles at which the conveyance path 59 curves will be described with reference to FIG. 5. An angle θ1 between the start straight line 731 and the first straight line 732 is equal to or greater than 90 degrees. In other words, the conveyance path 591 and the conveyance path 592 are curved at an obtuse angle. An angle θ2 between the first straight line 732 and the second straight line 733 is equal to or greater than 90 degrees. In other words, the conveyance path 592 and the conveyance path 593 are curved at an obtuse angle. An angle θ3 between the second straight line 733 and the third straight line 734 is equal to or greater than 90 degrees. In other words, the conveyance path 593 and the conveyance path 594 are curved at an obtuse angle. An angle θ4 between the third straight line 734 and the fourth straight line 735 is equal to or greater than 90 degrees. In other words, the conveyance path 594 and the conveyance path 595 are curved at an obtuse angle.


A case will be described in which the printing is performed on the half-cut tape 57 by the printer 1. As shown in FIG. 2 to FIG. 4, the half-cut type tape cassette 30 is mounted in the cassette housing 8. In this case, the sensors 201 and 202 are disposed on the inside of the openings 801 and 802. The tape drive roller 46 mounted to the tape drive shaft 100 is rotationally driven by the rotation of the tape drive shaft 100 of the printer 1. The half-cut tape 57 is pulled out from the tape roll 571 by the tape drive roller 46 and the movable feed roller 14 moving in concert with each other. In accordance with the pulling out of the half-cut tape 57, the tape roll 571 rotates in the clockwise direction in a plan view.


The half-cut tape 57 pulled out from the tape roll 571 is conveyed along the conveyance path 591 and is conveyed toward the first rotation body 71. In this case, the first rotation body 71 comes into contact with the half-cut tape 57 regardless of a storage amount of the tape roll 571 in the tape area 400. The half-cut tape 57 is conveyed along the conveyance path 592 and is conveyed toward the second rotation body 82. The half-cut tape 57 is conveyed along the conveyance path 593 and is conveyed toward the third rotation body 81. The half-cut tape 57 is conveyed along the conveyance path 594 and is conveyed toward the fourth rotation body 72. The half-cut tape 57 is conveyed along the conveyance path 595 and is conveyed toward the arm 34.


On the other hand, the ribbon winding shaft 95 of the printer 1 rotationally drives the ribbon winding spool 44 mounted to the ribbon winding shaft 95. The ribbon winding spool 44 rotates in the counter-clockwise direction in a plan view in accordance with the driving of the ribbon winding shaft 95, and pulls out the ink ribbon 60 from the ribbon spool 42. The ribbon spool 42 rotates in the counter-clockwise direction in a plan view in accordance with the pulling out of the ink ribbon 60. The ink ribbon 60 pulled out from the ribbon spool 42 is conveyed toward the arm 34.


In the arm 34, the half-cut tape 57 is conveyed along the conveyance path 595 that extends substantially in parallel with the arm front surface wall 35. The half-cut tape 57 is bent diagonally to the left and to the rear by the guide portion 33, and is discharged to the exposure portion 77 from the discharge outlet 341. The ink ribbon 60 is conveyed further to the rear than a circular pillar 333, a wall 332, and the guide portion 33 in the arm 34, and is discharged to the exposure portion 77 from the discharge outlet 341 while being overlaid with the half-cut tape 57.


At the exposure portion 77, a release paper of the half-cut tape 57 discharged from the discharge outlet 341 is exposed to the front, and a print surface of the half-cut tape 57 faces the thermal head 10. The thermal head 10 performs the printing on the half-cut tape 57 positioned at the exposure portion 77, using the ink ribbon 60.


The ink ribbon 60 after the printing has been performed is separated from the half-cut tape 57 by the separator portion 61, moves along the ribbon guide wall 38, and is wound by the ribbon winding spool 44. The half-cut tape 57 after the printing has been performed, namely, the printed tape 50, is guided downstream in the tape conveyance direction by the regulating members 361 and 362, and is conveyed toward the discharge guide portion 49 after being conveyed between the tape drive roller 46 and the movable feed roller 14. The printed tape 50 is discharged to the outside from the discharge guide portion 49. In this way, the printer 1 creates the printed tape 50.


As described above, the first rotation body 71, which is the entrance to the detection position P of the tape fed out from the tape roll 571, is disposed adjacent to the opening 801. The second rotation body 82, which is the exit from the detection position P, is disposed upstream of the fourth rotation body 72 in the tape conveyance direction and disposed adjacent to the second opening 802.


Using the second rotation body 82, the tape cassette 30 causes the conveyance path 59 of the tape conveyed between the fourth rotation body 72 and the first rotation body 71 to be curved, and guides the tape toward the fourth rotation body 72. In this way, the tape is conveyed in a stable manner between the fourth rotation body 72 and the first rotation body 71, regardless of the type of the tape. Thus, the tape cassette 30 can perform detection of information of the tape, using the sensor 20, in a stable manner.


The wall 752 has the first opening 87. The first opening 87 opens toward the left surface of the tape conveyed through the detection position P. The wall 762 faces the first wall. The wall 762 has the second opening 88. The second opening 88 opens toward the right surface of the tape, which is the surface opposite to the left surface of the tape. For example, when a transmission type optical sensor is used, the optical sensor is inserted into the tape cassette 30 via the first opening 87 and the second opening 88. In this case, the optical sensor can detect the tape information of the tape conveyed through the detection position P. Furthermore, in the tape cassette 30, the first rotation body 71 is disposed above the sensor 201, and the second rotation body 82 is disposed below the sensor 202. In this way, the tape cassette 30 can further reduce an impact of ambient light.


The angles θ1, θ2, θ3, and θ4 are equal to or greater than 90 degrees. Thus, the conveyance path 59 of the tape does not curve at an acute angle less than 90 degrees. As a result, the tape cassette 30 can reduce a pulling load for pulling the tape when the tape is conveyed.


The extension wall 85 is disposed opposite to the surface of the first rotation body, with respect to the first rotation body 71, where the first rotation body 71 and the tape are in contact, and inhibits the first rotation body 71 from falling over. The extension wall 86 is disposed opposite to the surface of the second rotation body, with respect to the second rotation body 82 where the second rotation body 82 and the tape are in contact, and inhibits the second rotation body 82 from falling over. In this case, the tape cassette 30 can improve ease of assembly using the extension walls 85 and 86.


The rigidity of the tape is equal to or greater than 3 N·mm2. In this case, with the tape having the rigidity equal to or greater than 3 N·mm2, the tape cassette 30 can convey the tape in a stable manner while reducing the pulling load.


While the invention has been described in conjunction with various example structures outlined above and illustrated in the figures, various alternatives, modifications, variations, improvements, and/or substantial equivalents, whether known or that may be presently unforeseen, may become apparent to those having at least ordinary skill in the art. Accordingly, the example embodiments of the disclosure, as set forth above, are intended to be illustrative of the invention, and not limiting the invention. Various changes may be made without departing from the spirit and scope of the disclosure. Therefore, the disclosure is intended to embrace all known or later developed alternatives, modifications, variations, improvements, and/or substantial equivalents. Some specific examples of potential alternatives, modifications, or variations in the described invention are provided below:


Various changes can be further made to the above-described embodiment, as described below. In the tape cassette 30 of the above-described embodiment, the half-cut tape 57 is conveyed, but the tape cassette 30 is not limited to this configuration. The tape cassette 30 may be a thermal type cassette or the like. For example, the tape may have a tube shape. In this case, the tape may be contracted using heat. The tape cassette 30 can convey the tape in a stable manner while reducing the pulling load of the tape having the tube shape.


In the above-described embodiment, in the tape cassette 30, the plurality of pins 21 is arranged in the pin arrangement area 410, but the tape cassette 30 is not limited to this configuration. For example, the plurality of pins 21 may be omitted. For example, when the tape cassette 30 is the laminate-type cassette, the tape cassette 30 may be configured such that the film tape that is the print medium can be housed in the pin arrangement area 410. The adjustment pin 16 may be omitted.


The positions of the first rotation body 71, the second rotation body 82, the third rotation body 81, and the fourth rotation body 72 may be changed as appropriate. It is sufficient that the positions be determined by the arrangement of the first rotation body 71 and the second rotation body 82. In this case, it is sufficient that the angles θ1 to 04 be the obtuse angles.


In the above-described embodiment, the conveyance path 59 is caused to be curved by the first rotation body 71, the second rotation body 82, the third rotation body 81, and the fourth rotation body 72, but the configuration is not limited to this example. For example, the third rotation body 81 may be omitted. In this case, the conveyance path 59 may be caused to be curved using the first rotation body 71, the second rotation body 82, and the fourth rotation body 72.


The first rotation body 71 and the second rotation body 82 are substantially the same member, but the configuration is not limited to this example. For example, dimensions, a shape, and the like of the first rotation body 71 and the second rotation body 82 may be changed as appropriate. The first rotation body 71 and the second rotation body 82 may be the same members as the third rotation body 81 and the fourth rotation body 72.


The fourth rotation body 72 and the third rotation body 81 are substantially the same member, but the configuration is not limited to this example. For example, dimensions, a shape, and the like of the fourth rotation body 72 and the third rotation body 81 may be changed as appropriate. The fourth rotation body 72 and the third rotation body 81 may be the same members as the first rotation body 71 and the second rotation body 82.


In the above-described embodiment, the lengths in the up-down direction of the first rotation body 71 and the second rotation body 82 are longer than the length of the half-cut tape 57 in the up-down direction, but the configuration is not limited to this example. For example, the lengths in the up-down direction of the first rotation body 71 and the second rotation body 82 may be the same as, or shorter than the length of the half-cut tape 57 in the up-down direction.


The lengths in the up-down direction of the third rotation body 81 and the fourth rotation body 72 are shorter than the length of the half-cut tape 57 in the up-down direction, but the configuration is not limited to this example. For example, the lengths in the up-down direction of the third rotation body 81 and the fourth rotation body 72 may be the same as, or longer than the length of the half-cut tape 57 in the up-down direction.


The first rotation body 71, and the fourth rotation body 72, the third rotation body 81, the second rotation body 82 are rotated by coming into contact with the tape, but the configuration is not limited to this example. For example, at least one of the first rotation body 71, the fourth rotation body 72, the third rotation body 81, and the second rotation body 82 may be a pin.

Claims
  • 1. A tape cassette configured to be mounted in a printer, the tape cassette comprising: a housing;a tape roll held inside the housing;a tape wound around the tape roll;an outlet configured to discharge, to outside of the housing, the tape from the tape roll that has been conveyed through a detection position provided at a position facing a sensor of the printer;a first guide configured to guide the tape that has been conveyed through the detection position toward the outlet;a first opening that is open toward a first surface of the tape conveyed through the detection position;a second opening that is open toward a second surface of the tape, the second surface being opposite to the first surface of the tape;a first rotation body disposed at a position adjacent to the first opening, the position adjacent to the first opening being an entrance to the detection position; anda second rotation body disposed further upstream than the first guide in a tape conveyance direction, and disposed at a position adjacent to the second opening, the position adjacent to the second opening being an exit from the detection position.
  • 2. The tape cassette according to claim 1, wherein the housing includes a first wall having the first opening, anda second wall facing the first wall, the second wall having the second opening.
  • 3. The tape cassette according to claim 1, further comprising: a second guide disposed, in the tape conveyance direction, further downstream than the second rotation body and further upstream than the first guide,whereinan angle between a first straight line and a second straight line is 90 degrees or more, where the first straight line connects the first rotation body with the second rotation body, and the second straight line connects the second rotation body with the second guide,an angle between the second straight line and a third straight line is 90 degrees or more, where the third straight line connects the second guide with the first guide, andan angle between the third straight line and a fourth straight line is 90 degrees or more, where the fourth straight line connects the first guide with the outlet.
  • 4. The tape cassette according to claim 1, further comprising: a third wall disposed opposite to a surface of the first rotation body, with respect to the first rotation body, where the first rotation body and the tape are in contact, the third wall being configured to support the first rotation body; anda fourth wall disposed opposite to a surface of the second rotation body, with respect to the second rotation body, where the second rotation body and the tape are in contact, the fourth wall being configured to support the second rotation body.
  • 5. The tape cassette according to claim 1, wherein a rigidity of the tape is 3 N·mm2 or more.
  • 6. The tape cassette according to claim 1, wherein the tape has a tube shape.
Priority Claims (1)
Number Date Country Kind
2021-194165 Nov 2021 JP national