The present invention relates to a tape cassette that is detachably installed in a tape printer.
A tape cassette has been known that, when installed in a housing portion of a tape printer, selectively presses down a plurality of detecting switches provided on the cassette housing portion to cause the tape printer to detect the type of a tape stored inside a cassette case (a tape width, a print mode, etc.). More specifically, a cassette detection portion is provided on a section of the bottom surface of the tape cassette, where through-holes are formed in a pattern corresponding to the type of the tape. When the tape cassette is installed m the cassette housing portion, the plurality of detecting switches, which are constantly urged in an upward direction, are selectively pressed in accordance with the pattern of the through-holes formed in the cassette detection portion. The tape printer detects the type of tape in the tape cassette installed in the cassette housing portion based on a combination of the pressed and non-pressed switches among the plurality of detecting switches.
The pattern of through-holes formed in the cassette detection portion is basically only designed to allow the tape printer to detect the type of the tape. Accordingly, different patterns are allocated randomly in accordance with the type of the tape. In other words, the patterns of through-holes do are not formed in a pattern in accordance with rules to allow them to be identified from the outward appearance. Therefore, it is difficult for a person to visually identify the type of the tape. For that reason, for example, in a tape cassette manufacturing process, it may be difficult for a worker to visually identify the type of the tape that should be mounted inside the cassette case from the external appearance of the tape cassette.
An object of the present invention is to provide a tape cassette that allows a type of a tape to be identified by visually checking an external appearance of the tape cassette.
Exemplary embodiments of the present disclosure provide a tape cassette that includes a housing having a top surface, a bottom surface, a rear wall, a front wall, and a tape feed exit located on the front wall, a tape included at least partially within the housing and configured to be fed along a tape feed path extending to the tape feed exit, and a first indicator aperture positioned on the front wall and a second indicator aperture position on a rear portion of the bottom surface. A position of the first indicator aperture on the front wall indicates a type of the tape included within the housing. A position of the second indicator aperture indicates a color of characters. Other features are described in further detail below.
Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings in which:
Exemplary embodiments of the present invention will be explained below with reference to the figures. The configurations of the apparatus, the flowcharts of various processing and the like shown in the drawings are merely exemplary and do not intend to limit the present invention.
A tape printer 1 and a tape cassette 30 according to the present embodiment will be explained hereinafter with reference to
In actuality, a group of gears, including gears 91, 93, 94, 97, 98 and 101 shown in
First, an outline configuration of the tape printer 1 according to the present embodiment will be explained. Hereinafter, the tape printer 1 configured a as a general purpose device will be explained as an example. As the general purpose device, the tape printer 1 may commonly use a plurality of types of tape cassettes 30 with various types of tapes. The types of the tape cassettes 30 may include a thermal type tape cassette 30 that includes only a heat-sensitive paper tape, a receptor type tape cassette 30 that includes a print tape and an ink ribbon, and a laminated type tape cassette 30 that includes a double-sided adhesive tape, a film tape and an ink ribbon.
As shown in
Next, an internal configuration within the main unit cover 2 below the cassette cover 6 will be explained with reference to
The shape of the cassette support portion 8B in a plan view generally corresponds to the shape of the tape cassette 30 in a plan view, that is, a rectangle that is longer in the right-and-left direction. The rear edge of the cavity 8A has a shape in a plan view such that two arcs are lined up next to each other in the right-and-left direction. A part of the cassette support portion 8B that is positioned between the two arcs is referred to as a rear support portion 8C. The rear support portion 8C is a portion corresponding to a rear indentation 68C of the tape cassette 30 when the tape cassette 30 is installed in the cassette housing portion 8 (refer to
A rear support pin 301 and a rear detection portion 300 are provided on the rear support portion 8C. The rear support pin 301 is a cylindrical shaped member that protrudes in an upward direction from the rear support portion 8C in the vicinity of a position where the two arcs are joined at the rear edge of the cavity 8A. When the tape cassette 30 is installed in the cassette housing portion 8, the rear support pin 301 supports from below a rear reception portion 910 of the tape cassette 30.
The rear detection portion 300 includes a plurality of detecting switches 310. Switch terminals 322 of the detecting switches 310 respectively protrude in the upward direction from through-holes 8D provided in the rear support portion 8C. In the present embodiment, the rear detection portion 300 includes five detecting switches 310A to 310E. Among the detecting switches 310A to 310E, four (the detecting switches 310A to 310D) are arranged in a single row from the right side (the left side in
The structure of the rear detecting switches 310 will be explained in more detail with reference to
In addition, on the one end of the main units 321, the switch terminals 322 can extend and retract through the through-holes 8D formed in the rear support portion 8C. Each of the switch terminals 322 is constantly maintained in a state in which the switch terminal 322 extends from the main unit 321 due to a spring member provided inside the main unit 321 (not shown in the figures). When the switch terminal 322 is not pressed, the switch terminal 322 remains extended from the main unit 321 to be in an off state. On the other hand, when the switch terminal 322 is pressed, the switch terminal 322 is pushed back into the main unit 321 to be in an on state.
As shown in
As shown in
The cassette housing portion 8 is equipped with a feed mechanism, a print mechanism, and the like. The feed mechanism pulls out the tape from the tape cassette 30 and feeds the tape. The print mechanism prints characters on a surface of the tape. As shown in
A tape feed motor 23 that is a stepping motor is provided outside of the cassette housing portion 8 (the upper right side in
If the tape feed motor 23 is driven to rotate in the counterclockwise direction in a state where the tape cassette 30 is installed in the cassette housing portion 8, the ribbon take-up shaft 95 is driven to rotate in the counterclockwise direction via the drive gear 91, the gear 93 and the gear 94. The ribbon take-up shaft 95 causes the ribbon take-up spool 44, which is fitted with the ribbon take-up shaft 95, to rotate. Furthermore, the rotation of the gear 94 is transmitted to the tape drive shaft 100 via the gear 97, the gear 98 and the gear 101, to thereby drive the tape drive shaft 100 to rotate in the clockwise direction. The tape drive shaft 100 causes the tape drive roller 46, which is fitted with the tape drive shaft 100 by insertion, to rotate.
As shown in
A release lever (not shown in the figures), which moves in the right-and-left direction in response to the opening and closing of the cassette cover 6, is coupled to the platen holder 12. When the cassette cover 6 is opened, the release lever moves in the right direction, and the platen holder 12 moves toward the stand-by position shown in
On the other hand, when the cassette cover 6 is closed, the release lever moves in the left direction and the platen holder 12 moves toward the print position shown in
In a similar way, as shown in
As described above, at the print position shown in
As shown in
As shown in
When the tape cassette 30 is installed in the cassette housing portion 8 at a proper position, the detecting switches 210 are respectively positioned at a height facing an arm indicator portion 800. Hereinafter, the detecting switches 210 of the arm detection portion 200 will be referred to as arm detecting switches 210.
The arrangement and structure of the arm detecting switches 210 in the platen holder 12 will be explained in more detail with reference to
Positions of the through-holes 12C are different from each other in the right-and-left direction. Specifically, the five through-holes 12C are arranged in a zigzag pattern from the right side of the cassette-facing surface 12B (the left side in
As shown in
In addition, on the one end of the main units 221, the switch terminals 222 can extend and retract through the through-holes 12C formed in the cassette-facing surface 12B of the platen holder 12. Each of the switch terminals 222 is constantly maintained in a state in which the switch terminal 222 extends from the main unit 221 due to a spring member provided inside the main unit 221 (not shown in the figures). When the switch terminal 222 is not pressed, the switch terminal 222 remains extended from the main unit 221 to be in an off state. On the other hand, when the switch terminal 222 is pressed, the switch terminal 222 is pushed back into the main unit 221 to be in an on state.
If the platen holder 12 moves toward the stand-by position (refer to
Further, as shown in
The position and structure of the latching piece 225 on the platen holder 12 will be explained in more detail with reference to
As shown in
Next, the electrical configuration of the tape printer 1 will be explained with reference to
ROM 402 stores various programs to control the tape printer 1, including a display drive control program, a print drive control program, a pulse number determination program, a cutting drive control program, and so on. The display drive control program controls a liquid crystal drive circuit (LCDC) 405 in association with code data of characters, such as letters, symbols, numerals and so on input from the keyboard 3. The print drive control program drives the thermal head 10 and the tape feed motor 23. The pulse number determination program determines the number of pulses to be applied corresponding to the amount of formation energy for each print dot. The cutting drive control program drives the cutting motor 24 to cut the printed tape 50 at the predetermined cutting position. The CPU 401 performs a variety of computations in accordance with each type of program.
The ROM 402 also stores various tables that are used to identify the tape type of the tape cassette 30 installed in the tape printer 1. The tables will be explained in more detail later.
The CGROM 403 stores print dot pattern data to be used to print, various characters. The print dot pattern data is associated with corresponding code data for the characters. The print dot pattern data is categorized by font (Gothic, Mincho, and so on), and the stored data for each font includes six print character sizes (dot sizes of 16, 24, 32, 48, 64 and 96, for example).
The RAM 404 includes a plurality of storage areas, including a text memory, a print buffer and so on. The text memory stores text data input from the keyboard 3. The print buffer stores dot pattern data, including the printing dot patterns for characters and the number of pulses to be applied that is the amount of formation energy for each dot, and so on. The thermal head 10 performs dot printing in accordance with the dot pattern data stored in the print buffer. Other storage areas store data obtained in various computations and so on.
The input/output interface 411 is connected, respectively, to the arm detecting switches 210A to 210E, the rear detecting switches 310A to 310E, the keyboard 3, the liquid crystal drive circuit (LCDC) 405 that has a video RAM (not shown in the figures) to output display data to the display (LCD) 5, a drive circuit 406 that drives the thermal head 10, a drive circuit 407 that drives the tape feed motor 23, a drive circuit 408 that drives the cutter motor 24, and so on.
The configuration of the tape cassette 30 according to the present embodiment will be explained below with reference to
As shown in
When the top case 31A and the bottom case 31B are joined, a side surface 30C of a predetermined height is formed. The side surface 30C extends between the top surface 30A and the bottom surface 30B along the peripheries of the top surface 30A and the bottom surface 30B. In other words, the cassette case 31 is a box-shaped case that has the top surface 30A and the bottom surface 30B, which are a pair of rectangular flat surfaces opposing each other in a vertical direction, and the side surface 30C (in the present embodiment, formed by four surfaces of a front surface, a rear surface, a left side surface and a right side surface) that has a predetermined height and extends along the peripheries of the top surface 30A and the bottom surface 30B.
In the cassette case 31, the peripheries of the top surface 30A and the bottom surface 30B may not have to be completely surrounded by the side surface 30C. A part of the side surface 30C (the rear surface, for example) may include an aperture that exposes the interior of the cassette case 31 to the outside. Further, a boss that connects the top surface 30A and the bottom surface 30B may be provided in a position facing the aperture. In the explanation below, the distance from the bottom surface 30B to the top surface 30A (the length in the vertical direction) is referred to as the height of the tape cassette 30 or the height of the cassette case 31. In the present embodiment, the vertical direction of the cassette case 31 (namely, the direction in which the top surface 30A and the bottom surface 30B oppose each other) generally corresponds to the direction of insertion and removal of the tape cassette 30.
As shown in
The cassette case 31 includes a portion is called the common portion 32. The common portion 32 includes the corner portions 32A and encircles the cassette case 31 along the side surface 30C at the same position as the corner portions 32A in the vertical (height) direction of the cassette case 31 and also has the same width as the corner portions 32A. More specifically, the common portion 32 is a portion that has a symmetrical shape in the vertical direction with respect to a center line in the vertical (height) direction of the cassette case 31. The height of the tape cassette 30 differs depending on the width of the tape (the heat-sensitive paper tape 55, the print tape 57, the double-sided adhesive tape 58, the film tape 59 and so on) mounted in the cassette case 31. The height of the common portion 32 (a width T), however, is set to be the same, regardless of the width of the tape of the tape cassette
For example, when the width T of the common portion 32 is 12 mm, as the width of the tape of the tape cassette 30 is larger (18 mm, 24 mm, 36 mm, for example), the height of the cassette case 31 becomes accordingly larger, but the width T of the common portion 32 remains constant. If the width of the tape of the tape cassette 30 is equal to or less than the width T of the common portion 32 (6 mm, 12 mm, for example), the height of the cassette case 31 is the width T of the common portion 32 (12 mm) plus a predetermined width. The height of the cassette case 31 is at its smallest in this case.
As shown in
In the case of the laminated type tape cassette 30 shown in
The first tape spool 40, on which the double-sided adhesive tape 58 is wound with its release paper facing outward, is rotatably supported by the support holes 65A and 65B. When the cassette case 31 is divided into a left-side area and a right-side area along a center line C in the right-and-left direction (refer to
The second tape spool 41, on which the film tape 59 is wound, is rotatably supported by the support holes 66A and 66B. When the cassette case 31 is divided into the left-side area and the right-side area along the center line C in the right-and-left direction, the support holes 66A and 66B are situated nearer to the rear than to the front of the cassette case 31 within the right-side area. Therefore, the center of rotation, namely, the barycenter, of the film tape 59 wound on the second tape spool 41 is positioned within the right-side area. Also, in a similar way to the double-sided adhesive tape 58, the barycenter of the film tape 59 is situated nearer to the rear of the cassette case 31.
The ink ribbon 60 that is wound on a ribbon spool 42 is rotatably provided within the same right-side area of the cassette case 31 as the film tape 59. The ink ribbon 60 is situated nearer to the front than to the rear of the cassette case 31. Therefore, the center of rotation, namely, the barycenter of the ink ribbon 60 is situated nearer to the front within the right-side area.
Between the first tape spool 40 and the ribbon spool 42 in the cassette case 31 the ribbon take-up spool 44 is rotatably supported by the support holes 67A and 67B. The ribbon take-up spool 44 pulls out the ink ribbon 60 from the ribbon spool 42 and takes up the ink ribbon 60 that has been used to print the characters. A clutch spring (not shown in the figures) is attached to a lower portion of the ribbon take-up spool 44 to prevent loosening of the taken up ink ribbon 60 due to a reverse rotation of the ribbon take-up spool 44.
In a case of the receptor type tape cassette 30 shown in
In the case of the thermal type tape cassette 30 shown in
As shown in
The structure that guides a tape as a print medium (the heat-sensitive paper tape 55, the prim tape 57, the film tape 59, for example) and the ink ribbon 60 in the arm portion 34 will be explained with reference to
A pair of guide regulating pieces 34E are formed on the lower edges of both sides of the separating wall 34D. A guide pin 34G is provided at the upstream side (the right side in
When the top case 31A and the bottom case 31B are joined to form the cassette case 31, a tape feed path and a ribbon feed path are formed inside the arm portion 34. The tape feed path guides the tape that is the print medium (in
While the lower edge of the film tape 59 is regulated by the guide regulating piece 34F, the direction of the film tape 59 is changed by the guide pin 34G. The film tape 59 is fed further while regulated in the tape width direction by each of the guide regulating pieces 34E on the lower edges of the separating wall 34D working in concert with each of the guide regulating pieces 34H of the top case 31A. In such a way, the film tape 59 is guided and fed between the external wall 34B and the separating wall 34D inside the arm portion 34.
The ink ribbon 60 is guided by the separating wall 34D and the internal wall 34C that has approximately the same height as the ribbon width, and is thus guided and fed between the internal wall 34C and the separating wall 34D inside the arm portion 34. In the arm portion 34, the ink ribbon 60 is regulated by the bottom surface of the top ease 31A and the top surface of the bottom case 31B in the ribbon width direction. Then, after the film tape 59 and the ink ribbon 60 are guided along each of the feed paths, the film tape 59 and the ink ribbon 60 are joined together at the exit 34A and discharged to a head insertion portion 39 (more specifically, an opening 77, which will be described later).
With the structure described above, the tape feed path and the ribbon feed path are formed as different feed paths separated by the separating wall 34D inside the arm portion 34. Therefore, the film tape 59 and the ink ribbon 60 may be reliably and independently guided within each of the feed paths that correspond to the respective tape width and ribbon width.
Inside the tape cassette 30, a thin plate-shaped separating wall 90 is formed between the above-described tape feed path and the arm front surface 35. The separating wall 90 extends from the top surface 30A to the bottom surface 30B of the cassette case 31 and is generally parallel to the print surface of the tape that is the print medium. The separating wall 90 prevents the arm detecting switch 210, which enters into the arm portion 34 through a non-pressing portion 801 that will be described later, from touching the print surface of the tape. Further, the separating wall 90 guides the tape smoothly along the tape feed path inside the arm portion 34.
Although
As shown in
The head holder 74 that supports the thermal head 10 of the tape printer 1 may be inserted into the head insertion portion 39. The tape that is discharged from the exit 34A of the arm portion 34 (one of the heat-sensitive paper tape 55, the print tape 57 and the film tape 59) is exposed to the outside of the cassette case 31 at the opening 77, where printing is performed by the thermal head 10.
Support reception portions are provided at positions facing the head insertion portion 39 of the cassette case 31. The support reception portions are used to determine the position of the tape cassette 30 in the vertical direction when the tape cassette 30 is installed in the tape printer 1. In the present embodiment, an upstream reception portion 39A is provided on the upstream side of the insertion position of the thermal head 10 (more specifically, the print position) in the feed direction of the tape that is the print medium (the heat-sensitive paper tape 55, the print tape 57, the film tape 59), and a downstream reception portion 39B is provided on the downstream side. The support reception portions 39A and 39B are hereinafter collectively referred to as the head reception portions 39A and 39B. When the tape cassette 30 is installed in the cassette housing portion 8, the head reception portions 39A and 39B respectively contact with the head support portions 74A and 74B provided on the head holder 74 to be supported from underneath by the head support portions 74A and 74B.
In the bottom case 31B, a latch portion 38 is provided at a position between the upstream reception portion 39A and the downstream reception portion 39B, facing the head insertion portion 39. The latch portion 38 is an indentation with a generally rectangular shape in a bottom view (refer to
Furthermore, as shown in
A distance in the vertical (height) direction of the tape cassette 30 between the position of the pin holes 62 and 63 and a center position in the vertical direction of the film tape 59 that is the print medium housed in the cassette case 31 is constant, regardless of the tape type (the tape width, for example) of the tape cassette 30. In other words, the distance remains constant even when the height of the tape cassette 30 is different.
When the tape cassette 30 is installed in the cassette housing portion 8 and the platen holder 12 moves toward the print position (refer to
The structure of the arm indicator portion 800 and the latching hole 820 will be explained in detail with reference to
The arm indicator portion 800 includes a plurality of indicators. Each of the indicators is formed as one of the non-pressing portion 801 and the pressing portion 802 and provided at a position corresponding to each of the arm detecting switches 210. Specifically, the arm indicator portion 800 includes a combination of the non-pressing portion(s) 801 and the pressing portion(s) 802 arranged in a pattern that corresponds to print information. The print information, among the tape types of the tape cassette 30, is essential to perform correct printing in the tape printer 1. In the present embodiment, the arm indicator portion 800 includes five indicators 800A to 800E, each of which is formed as either the non-pressing portion 801 or the pressing portion 802, arranged at positions that respectively oppose the five arm detecting switches 210A to 210E when the tape cassette 30 is installed in the cassette housing portion 8.
The non-pressing portion 801 is a switch hole that is square shaped to a front view. The switch terminal 222 may be inserted into or removed from the non-pressing portion 801. The arm detecting switch 210 that opposes the non-pressing portion 801 remains in an off state, because the switch terminal 222 is inserted into the non-pressing portion 801. The pressing portion 802 is a surface portion that does not allow the insertion of the switch terminal 222. The arm detecting switch 210 that opposes the pressing portion 802 is changed to an on state, because the pressing portion 802 contacts with the switch terminal 222.
The arm indicator portion 800 is provided at a position adjacent to the exit 34A on the arm front surface 35 (a left portion of the arm front surface 35). In other words, the arm indicator portion 800 is provided adjacent to the opening 77 where the film tape 59 is exposed to the outside. In addition, an aperture formed as a through-hole that extends generally perpendicular to the arm front surface 35 (in other words, generally parallel to the top surface 30A and the bottom surface 30B) is the non-pressing portion 801. As a consequence, the direction of the formation of the non-pressing portion 801 generally intersects at right angles with the tape feed path inside the arm portion 34. The surface portion of the arm front surface 35 at which the non-pressing portion 801 is not formed functions as the pressing portion 802 that presses the switch terminal 222 when opposed to the arm detecting switch 210.
As described above, in the tape cassette 30, the tape feed path and the ribbon feed path are formed in a narrow area sandwiched between the external wall 34B and the internal wall 34C. Because the non-pressing portion 801 of the present embodiment is a through-hole formed in the external wall 34B of the arm portion 34, a member that forms an aperture to function as the non-pressing portion 801 is the external 34B only, and thus the aperture does not reach the internal wall 34C. In other words, the member that forms the aperture to function as the non-pressing portion 801 does not restrict the formation of the tape feed path and the ribbon feed path between the external wall 34B and the internal wall 34C. Therefore, the tape feed path and the ribbon feed path may be formed effectively in a limited area, and the aperture may be formed that functions as a switch hole, and also as an indicator with which a person can identify the tape type by visually checking as described later.
At least one of the indicators (the non-pressing portion(s) 801 and the pressing portion(s) 802) of the arm indicator portion 800 is provided within a predetermined height range T1 (hereinafter referred to as a predetermined height T1) of the arm front surface 35. The predetermined height T1 is the height of the tape cassette 30 for which the height of the cassette case 31 is smallest among the tape cassettes 30 with different tape widths. As described above, the predetermined height T1 is the width T of the common portion 32 plus a predetermined width.
An area within the range of the predetermined height T1 of the arm front surface 35 is referred to as a common indicator portion 831. Preferably, at least one of the indicators (the non-pressing portion (s) 801 and the pressing portion(s) 802) is provided within the common indicator portion 831 that is symmetrical in the vertical direction with respect to a center line N that indicates the center of the arm front surface 35 in the vertical (height) direction of the cassette case 31.
In the present embodiment, the positions of the respective indicators in the arm indicator portion 800 are different from each other in the right-and-left direction. In other words, none of the indicators line up with each other in the vertical direction, and the indicators are arranged in a zigzag pattern. Therefore, a line linking any one of the indicators with another intersects with the vertical direction of the tape cassette 30, which is the direction of the insertion and removal of the tape cassette 30. Detection of the tape type using the arm indicator portion 800 with such a structure will be explained in more detail later.
In the case of the wide-width tape cassette 30, indicators may also be provided either above or below the common indicator portion 831 within a predetermined height range T2 (hereinafter referred to as a predetermined height T2) of the arm front surface 35. Areas that are outside the common indicator portion 831 and that are within the predetermined height T2 of the arm front surface 35 are referred to as extension portions 832.
In the ease, for example, of the wide-width tape cassette 30 with the tape width of 36 mm shown in
Yet more specifically, in the upper row in the common indicator portion 831, the indicator 800A, which is the pressing portion 802, is provided cm the left side of the tape cassette 30, and the indicator 800C, which is the non-pressing portion 801, is provided to the right of the indicator 800A. In the lower row in the common indicator portion 831, the indicator 800B, which is the non-pressing portion 801, is provided on the left side of the tape cassette 30, and the indicator 800D, which is the non-pressing portion 801, is provided to the right of the indicator 800B. Further, the indicator 800E, which is the pressing portion 802, is provided astride the common indicator portion 831 and the extension portion 832 that occupies the area below the common indicator portion 831.
In such a way, in the wide-width tape cassette 30, the arm indicator portion 800 may be formed with a larger area that corresponds to the wider arm front surface 35. Consequently, the number of tape types and the number of corresponding patterns that can be defected by the tape printer 1 may be increased.
On the other hand, in the case of the narrow-width tape cassette 30, the indicators are provided only within the range of the predetermined height T1 (in other words, within the common indicator portion 831). As described above, the height of the narrow-width tape cassette 30 is equal to the predetermined height T1. For that, reason, when the tape printer 1 is a general purpose device that can commonly use both the narrow-width tape cassette 30 and the wide-width tape cassette 30, an upper edge portion or a lower edge portion of the cassette case 31 of the narrow-width tape cassette 30 may undesirably press the arm detecting switch 210 (in
In the present embodiment, to avoid such a situation, an escape hole 803 is formed as the indicator on the and front surface 35 of the narrow-width tape cassette 30, at a position that corresponds to the indicator that is provided astride the common indicator portion 831 and the extension portion 832 of the wide-width tape cassette 30. The escape hole 803 may be formed as a thorough-hole through which the arm detecting switch 210 that opposes the indicator is inserted without being pressed. Alternatively, in place of the escape hole 803, an escape steps may be provided that are formed by being bent stepwise toward the inside.
In the case of the narrow-width tape cassette 30 with the tape width of 12 mm shown in
In such a way, even when the narrow-width tape cassette 30 is used in the tape printer 1 that is provided with the arm detecting switch 210 that is supposed to oppose the extension portion 832 of the wide-width tape cassette 30, the arm detecting switch 210 in question may be prevented from being mistakenly pressed. Therefore, even when the narrow-width tape cassette 30 and the wide-width tape cassette 30 are both commonly used in the tape printer 1, mistaken detection of the tape type can be prevented.
In the example of the wide-width tape cassette 30 shown in
As described above, the arm indicator portion 800 includes a combination of the non-pressing portion(s) 801 and the pressing portion(s) 802 arranged in a pattern that corresponds to the print information of the tape cassette 30. However, in the arm indicator portion 800 according to the present embodiment, the following two patterns are not adopted. One is a pattern in which all of the indicators (the indicators 800A to 800E) are the non-pressing portions 801. The other is a pattern in which all of the indicators provided within the range of the common indicator portion 831 (the indicators 800A to 800D) are the pressing portions 802. In other words, the arm indicator portion 800 according to the present embodiment has a pattern in which at least one of the indicators (the indicators 800A to 800E) is the pressing portion 802, and at the same time, at least one of the indicators provided within the range of the common indicator portion 831 (the indicators 800A to 800D) is the non-pressing portion 801.
As shown in
A through-hole 850 with an upright rectangular shape in a front view is provided in the arm front surface 35 of the bottom case 31B, to the left side of the arm indicator portion 800. The through-hole 850 is provided as a relief hole for a die to be used in a molding process of the cassette case 31, and does not have any particular function.
As shown in
A pair of regulating members 36 that match in the vertical direction are provided on the upstream side of the tape drive roller 46. The regulating members 36 regulate the printed film tape 59 on the downstream side of the thermal head 10 in the vertical direction (in the tape width direction), and guide the printed film tape 59 toward the tape discharge aperture 49. The regulating members 36 bond the film tape 59 and the double-sided adhesive tape 58 together appropriately without making any positional displacement.
A guide wall 47 is standing in the vicinity of the regulating members 36. The guide wall 47 separates the used ink ribbon 60 that has been fed via the head insertion portion 39 from the film tape 59, and guides the used ink ribbon 60 toward the ribbon take-up spool 44. A separating wall 48 is standing between the guide wall 47 and the ribbon take-up spool 44. The separating wall 48 prevents mutual contact between the used ink ribbon 60 that is guided along the guide wall 47 and the double-sided adhesive tape 58 that is wound on and supported by the first tape spool 40.
In a case where the receptor type tape cassette 30 shown in
In a case where the thermal type tape cassette 30 shown in
As shown in
The rear indentation 68C is a stepped portion formed at the rear of the cassette case 31 between a first tape (the double-sided adhesive tape 58, for example) wound on the first tape spool 40 and a second tape (the film tape 59, for example) wound on the second tape spool 41. In other words, the rear indentation 68C is provided between two areas that respectively house the first tape and the second tape inside the cassette case 31. More specifically, as shown in
A plurality of detection holes 600 are formed in the rear indentation 68C such that the detection holes 600 penetrate through the rear indentation 68C in the vertical direction. Each of the detection holes 600 has an opening width that freely allows the insertion and removal of the switch terminal 322 of the rear detecting switch 310 (refer to
The rear indicator portion 900 and the rear reception portion 910 are provided in the rear indentation 68C. The rear indicator portion 900 is the portion that causes the tape printer 1 to detect the tape type by selectively pressing the rear detecting switches 310. The rear reception portion 910 is the portion supported by the rear support pin 301. The rear indicator portion 900 and the rear support pin 301 will be described in more detail later.
As described above, the common portion 32 is formed to be symmetrical in the vertical direction with respect to the center line in the vertical (height) direction of the cassette case 31, and the height T of the common portion 32 is set to be constant, regardless of the tape width of the tape cassette 30. Therefore, as with the common portion 32, a distance from the center line in the vertical (height) direction of the cassette case 31 to the rear indentation 68C is constant, regardless of the tape width of the tape cassette 30.
The label sheet 700 that is affixed to the label affixing portion 68 of the cassette case 31, and affixing modes of the label sheet 700 with respect to the tape cassette 30 will be explained with reference to
As shown in
The label sheet 700 can be bent along a fold line B1 that extends in the right-and-left direction (the right-and-left direction in
When an worker affixes the label sheet 700 onto the label affixing portion 68 (refer to
The first notation portion 701 and the second notation portion 702 are portions on which is indicated the tape type of the tape cassette 30 to which the label sheet 700 is affixed. Examples of the tape types may include the tape color, the print mode, the tape width, and a color of the characters (hereinafter referred to as a character color). In the present embodiment, the tape color, the print mode, and the tape width of the tape cassette 30 are indicated on the first notation portion 701. The tape color of the tape cassette 30 corresponds to the color of the heat-sensitive paper tape 55, the print tape 57, or the double-sided adhesive tape 58. The print mode indicates one of a normal image printing mode (so-called “receptor”) and a mirror image printing mode (so-called “laminated”). The tape width and the character color of the tape cassette 30 are indicated on the second notation portion 702. The character color corresponds to the print color of the heat-sensitive paper tape 55 or the character color of the ink ribbon 60.
In the defection setting portion 703, hole(s) 703A or blocking portion(s) 703B (refer to
The hole 703A is a circular hole that has a slightly larger opening width than the detection hole 600. When the label sheet 700 is affixed, the detection hole 600 that opposes the holes 703A is exposed through the hole 703A. Consequently, the switch terminal 322 of the rear detecting switch 310 can therefore be freely inserted and removed. The rear detecting switch 310 that opposes the detection hole 600 exposed through the hole 703A remains in the off state, as the switch terminal 322 is inserted into the defection hole 600.
As the holes 703A each have a larger opening width than the detection holes 600, even if the affixed position of the detection setting portion 703 is slightly misaligned with respect to the rear indentation 68C, the detection holes 600 opposed to the holes 703A are reliably exposed. In such a way, some misalignment in the affixed position of the detection sewing portion 703 may be tolerated, and the operation to affix the label sheet 700 can be made easier.
The blocking portion 703B is a surface portion in which the holes 703A is not formed. When the label sheet 700 is affixed, the detection hole 600 that opposes the blocking portion 703B is covered by the blocking portion 703B. Consequently, the switch terminal 322 of the rear detecting switch 310 cannot be inserted. The rear detecting switch 310 that opposes the detection hole 600 covered by the blocking portion 703B is changed to the on state, as the switch terminal 322 is not inserted into the detection hole 600 and contacts with the blocking portion 703B.
The label sheet 700 shown in
Further, on the detection setting portion 703 of the label sheet 700 shown in
The label sheet 700 shown in
Further, on the detection setting portion 703 of the label sheet 700 shown in
As shown in
The rear indicator portion 900 includes a plurality of indicators. Each of the indicators is formed as one of a non-pressing portion 901 and a pressing portion 902 and provided at a position corresponding to each of the rear detecting switches 310. Specifically, the rear indicator portion 900 includes a combination of the non-pressing portion(s) 901 and the pressing portion(s) 902 arranged in a pattern that corresponds to color information. The color information, among the tape types of the tape cassette 30, indicates the tape color and the character color of the tape cassette 30. In the present embodiment, the rear indicator portion 900 has five indicators 900A to 900E, each of which is formed as either the non-pressing portion 901 or the pressing portion 902, arranged at positions that respectively oppose the rear detecting switches 310A to 310E when the tape cassette 30 is installed in the cassette housing portion 8.
The non-pressing portion 901 is a switch hole through which the switch terminal 322 can be inserted and removed. The non-pressing portion 901 corresponds to the detection hole 600 that is exposed through the hole 703A of the label sheet 700. The rear detection switch 310 that opposes the non-pressing portions 901 remains in an off state, because the switch terminals 322 is inserted into the non-pressing portion 901. The pressing portion 902 is a surface portion that does not allow the insertion of the switch terminal 322. The pressing portion 902 corresponds to the detection hole 600 that is covered by the blocking portion 703B of the label sheet 700. The rear detection switch 310 that opposes the pressing portions 902 is changed to an on state, because the blocking portion 703B contacts the switch terminal 322.
In the example shown in
In the example shown in
In such a way, the pattern of the indicators 900A to 900E provided on the rear indicator portion 900 (in other words, the combination of the non-pressing portion(s) 901 and the pressing portion(s) 902) can be varied simply by affixing the label sheet 700 to the label affixing portion 68 (refer to
As shown in
As shown in
The installing modes of the tape cassette 30 in the tape printer 1 according to the present embodiment will be explained below with reference to
The support of the head reception portions 39A and 39B by the head support portions 74A and 74B will be explained with reference to
As described above, the upstream support 74A and the downstream support 74B are respectively provided on the right end and the left end of the head holder 74. The upstream reception portion 39A and the downstream reception portion 39B are provided at positions on the tape cassette 30 that correspond to the positions of the upstream support 74A and the downstream support 74B. In other words, the upstream reception portion 39A and the downstream reception portion 39B are respectively provided at the positions on the right side and the left rear side of the head insertion portion 39 facing the head insertion portion 39.
Therefore, when the user pushes the inserted tape cassette 30 downwards, the upstream reception portion 39A of the tape cassette 30 comes into contact with the upstream support 74A provided on the head holder 74, and the movement of the upstream reception portion 39A beyond that point in the downward direction is restricted. Further, the downstream reception portion 39B of the tape cassette 30 comes into contact with the downstream support 74B provided on the head holder 74, and the movement of the downstream reception portion 39B beyond that point in the downward direction is restricted. Then, the tape cassette 30 is held in a state in which the head reception portions 39A and 39B are supported from underneath by the head support portions 74A and 74B.
in such a way, with the tape cassette 30 and the tape printer 1 according to the present embodiment, the positioning of the tape cassette 30 in the vertical direction may be accurately performed at a position in the vicinity of the thermal head 10 that performs printing on the tape as the print medium (the heat-sensitive paper tape 55, the print tape 57, or the film tape 59). Then, the center position of printing by the thermal head 10 in the vertical direction may be accurately matched with the center position of the film tape 59 in the tape width direction. In particular, in the feed direction of the tape as the print medium, the tape cassette 30 is supported on both the upstream and downstream sides with respect to the insertion position of the thermal head 10, more specifically, with respect to the print position. As a consequence, the positioning in the vertical direction may be particularly accurately performed. Thus, the center position of printing by the thermal head 10 in the vertical direction and the center position in the tape width direction may be particularly accurately matched with each other.
In addition, the upstream reception portion 39A and the downstream reception portion 39B of the tape cassette 30 according to the present embodiment surface the head insertion portion 39 from mutually orthogonally intersecting directions. Both the head reception portions 39A and 39B, which are indented portions, are supported by the head support portions 74A and 74B that extend in the mutually orthogonally intersecting directions. Consequently, the movement of the tape cassette 30 is restricted not only in the vertical direction, but also in the right-and-left direction and the back-and-forth direction. As a result, a proper positional relationship can be maintained between the thermal head 10 and the head insertion portion 39.
Next, the support of the tape cassette 30 by the rear support pin 301, and the detection of the tape type of the tape cassette 30 by the rear detection portion 300 will be explained with reference to
In addition, the positioning pins 102 and 103 provided on the cassette support portion 8B are inserted into the pin holes 62 and 63 provided on the peripheral portions of the tape cassette 30, and the tape cassette 30 is supported from underneath (refer also to
In such a way, in addition to the above-described head reception portions 39A and 39B, the tape cassette 30 according to the present embodiment includes the rear reception portion 910, that is positioned between the storage areas that respectively house the tape (the double-sided adhesive tape 58, for example) wound on the first tape spool 40 and the tape (the film tape 59, for example) wound on the second tape spool 41, and to the rear of these tape rolls. In other words, the rape cassette 30 has support reception portions in at least two positions that sandwich the tapes having a significant weight.
Consequently, when the tape cassette 30 is being installed as described above, or after the tape cassette 30 has been installed, even if there is a tendency for the tape cassette 30 to tilt toward the rear where it is heavier, the rear reception portion 910 comes into contact with the rear support pin 301 that stands upward from the rear support portion 8C of the tape printer 1 and supports the tape cassette 30. Therefore, positioning in the vertical direction at the rear of the tape cassette 30 may be accurately performed, and also, when the tape cassette 30 is installed in the tape printer 1, a stable installed state of the tape cassette 30 may be maintained.
In addition, as shown in
Next, modes of detecting the tape type of the tape cassette 30 by the tape printer 1 according to the present embodiment will be explained with reference to
Detection modes of the arm indicator portion 800 by the arm detection portion 200 will be explained with reference to
In a case where the tape cassette 30 is installed in the cassette housing portion 8 at the proper position, the latching piece 225 is inserted into the latching hole 820. As a result, the latching piece 225 does not interfere with the tape cassette 30, and the switch terminals 222 of the arm detecting switches 210 that protrude from the cassette-facing surface 12B (refer to
In the case of the arm indicator portion 800 of the wide-width tape cassette 30 shown in
In the case of the arm indicator portion 800 of the narrow-width tape cassette 30 shown in
In the tape printer 1, the print information of the tape cassette 30 is identified based on a detected pattern by the arm detection portion 200, namely, the combination of the on and off states of the five arm detecting switches 210A to 210E, and this will be explained in mote detail later.
In the present embodiment, the head reception portions 39A and 39B, which are used for positioning the tape cassette 30 in the vertical direction when the tape cassette 30 is installed in the tape printer 1, are provided at the positions facing the head insertion portion 39, namely, adjacent to the arm portion 34 on which the arm indicator portion 800 is provided. Therefore, when the tape cassette 30 is installed in the tape printer 1, a positional relationship between the arm detection portion 200 and the arm indicator portion 800 may be accurately maintained, and mistaken detection by the arm detecting switches 210 may be prevented.
Furthermore, in the case of the wide-width tape cassette 30, the indicators) (in
In the case of the narrow-width tape cassette 30, mistaken detection of the tape type may be prevented by providing the escape hole 803 that does not press the arm detecting switch 210 that opposes the extension portion 832 of the wide-width tape cassette 30 (in
Further, as described above, the thickness of the latching piece 225 is reduced toward the leading end of the latching piece 225, due to the inclined portion 226 that is formed on the lower surface of the latching piece 225. The opening width of the latching hole 820 in the vertical direction is increased toward the arm front surface 35, due to the inclined portion 821 formed on the lower wall of the latching hole 820. As a consequence, if the position of the latching piece 225 is slightly misaligned with respect to the latching hole 820 in the downward direction (namely, if the cassette case 31 is slightly raised with respect to the proper position in the cassette housing portion 8), when the platen holder 12 moves toward the print position, the inclined portion 226 and the inclined portion 821 interact with each other to guide the latching piece 225 into the latching hole 820. In such a way, even when the cassette case 31 is slightly raised with respect to the proper position in the cassette housing portion 8, the latching piece 225 may he properly installed into the latching hole 820, and the arm defection portion 200 may be accurately positioned to oppose the arm indicator portion 800.
The latching piece 225 according to the present embodiment is provided on the upstream side of the arm detection portion 200 in the insertion direction of the tape cassette 30, (in other words, above the arm detection portion 200). Therefore, when the tape cassette 30 is inserted, the latching piece 225 opposes the arm front surface 35 in advance of the arm detecting switches 210. In other words, unless the latching piece 225 is inserted into the latching hole 820, the arm detecting switches 210 do not contact with the arm front surface 35. In other words, unless the tape cassette 30 is installed at the proper position, none of the arm detecting switches 210 are not pressed (namely, the arm detecting switches 210 remain in the off state). Thus, the mistaken detection of the tape type may be even more reliably prevented.
The detection modes of the rear indicator portion 900 by the rear detection portion 300 will be explained with reference to
More specifically, the rear detecting switch 310 that opposes the non-pressing portion 901 is inserted into the non-pressing portion 901 (the detection hole 600 that is exposed through the hole 703A) and remains in the off state. The rear detecting switch 310 that opposes the pressing portion 902 is pressed by the pressing portion 902 (the detection hole 600 that is covered by the blocking portion 703B) and is changed to the on state.
In the case of the rear indicator portion 900 of the wide-width tape cassette 30 shown in
In the case of the rear indicator portion 900 of the narrow-width tape cassette 30 shown in
In the tape printer 1, the color information of the tape cassette 30 is identified based on the detection pattern of the rear detection portion 300 (namely, the combination of the on and off states of the five rear detecting switches 310A to 310B) and this will be explained in more detail later.
As described above, in the tape cassette 30 according to the present embodiment, the rear indicator portion 900 is provided adjacent to the rear support portion 910 that is supported by the rear support pin 301. As a consequence, detection of the tape type of the tape cassette 30 may be accurately performed by the rear detection portion 300 in a state in which the tape cassette 30 is correctly positioned in the vertical direction.
Next, main processing of the tape printer 1 according to the present embodiment will be explained with reference to
As shown in
Next, the print information of the tape cassette 30 is identified based on the detection pattern of the arm detection portion 200 (namely, based on the combination of the on and off states of the arm detecting switches 210) (step S3). As described above, the print information is information essential for the tape printer 1 to perform correct printing. At step S3, with reference to a first identification table 510 stored in the ROM 402, the print information that corresponds to the combination of the on and off states of the arm detecting switches 210 is identified.
As shown in
With the first identification table 510 shown in
Any selected print information may be newly added corresponding to the detection pattern shown as “SPARE”. In addition, the print information that is recorded in the first identification table 510 may be deleted, the correspondence between each detection pattern and the print information may be changed, and the content of the print information corresponding to each detection pattern may be changed.
In a case where the wide-width tape cassette 30 shown in
In a case where the narrow-width tape cassette 30 shown in
As described above, when the tape cassette 30 is installed at the proper position, the tape width and the print mode of the tape cassette 30 are identified as the print information at step S3 in the main processing (refer to
As shown in
As the latching piece 225 thus prevents a contact between the switch terminals 222 and the arm front surface 35, all the arm detecting switches 210A to 210B remain in the off state. Then, the switches SW1 to SW5 that correspond to the arm detecting switches 210A to 210E are identified as 0, 0, 0, 0 and 0, respectively. Consequently, with reference to the first identification table 510, the print information is identified as “ERROR 1” at step S3 in the main processing (refer to
As shown in
As shown in
As shown in
As described above, the arm indicator portion 800 according to the present embodiment is formed in a pattern in which at least one of the indicators (the indicators 800A to 800E) is the pressing portion 802, and, at the same time, at least one of the indicators provided within the range of the common indicator portion 831 (the indicators 800A to 800D) is the non-pressing portion 801. In other words, the arrangement patterns of the arm indicator portion 800 do not include a pattern in which all the indicators (the indicators 800A to 800E) are the non-pressing portions 801, nor a pattern in which all the indicators provided within the range of the common indicator portion 831 (the indicators 800A to 800D) are the pressing portions 802.
The reason for not employing the above-desert bed two patterns in the arm indicator portion 800 is that the combination of the on and off states of the arm detecting switches 210A to 210E resulting from the above-described patterns corresponds to any one of the above-described “ERROR 1”, “ERROR 2”, and “ERROR 3”. Therefore, the tape printer 1 according to the present embodiment can detect not only the tape type of the tape cassette 30, but can also detect the installed state of the tape cassette 30 with respect, to the cassette housing portion 8.
As described above, the arm portion 34 is a portion that guides the film tape 59 pulled out from the second tape spool 41 and the ink ribbon 60 pulled out from the ribbon spool 42, causes the film tape 59 and the ink ribbon 60 to be joined at the exit 34A and then discharges them towards the head insertion portion 39 (more specifically, the opening 77). Therefore, the positional relationships in the height direction between the thermal head 10 inserted in the head insertion portion 39, the film tape 59 and the ink ribbon 60 are determined by the arm portion 34.
Therefore, if the tape cassette 30 is not properly installed in the cassette housing portion 8, an error may occur in the positional relationship with the thermal head 10, and printing may be performed at a misaligned position relative to the tape width direction (the height direction) of the film tape 59. This also applies to the print tape 57 and the heat-sensitive paper tape 55.
Considering this situation, in the present embodiment, the arm indicator portion 800 is provided on the arm front surface 35 of the arm portion 34, which is in the vicinity of the head insertion portion 39 into which the thermal head 10 is inserted. Thus, the arm portion 34 (more specifically, the arm front surface 35) forms the basis for easy detection of an error in the positional relationship with the thermal head 10, and, printing accuracy may be improved by determining whether or not the tape cassette 30 is installed in the cassette housing portion 8 at the proper position.
In the main processing (refer to
After step S7 is performed, the processing returns to step S3. Even when the tape cassette 30 is properly installed in the cassette housing portion 8, if the cassette cover 6 is open, the platen holder 12 is in the stand-by position (refer to
If the print information is not “ERROR” (no at step S5), it is determined whether the switch SW4, namely, the detecting switch 210D is in the on state (step S9). If the switch SW4 is in the on state (yes at step S9), a second color table 522 is selected from among color tables included in a second identification table 520 (refer to
Then, based on the detection pattern of the rear detection portion 300, namely, the combination of the on and off states of the rear detecting switches 310, the color information of the tape cassette 30 is identified (step S15). As described above, the color information is information that indicates the tape color and the character color of the tape cassette 30. At step S15, with reference to the color table selected at step S11 or step S13, the color information corresponding to the combination of the on and off states of the rear detecting switches 310 is identified.
As shown in
The second identification table 520 includes a plurality of color tables to respectively identify different color information (the tape color and the character color) corresponding to the detection patterns of the rear detection portion 300 (the combination of the on and off states of the rear detecting switches 310A to 310E). In the present embodiment, corresponding to the combination of the on and off states of the rear detecting switches 310A to 310E, the second identification table 520 includes the first color table 521 to identify one set of color information, and the second color table 522 to identify another set of color information. In the present embodiment, the same color information is not included in the first color table 521 and the second color table 522, but the same color information may be included in each of the color tables 521 and 522.
As shown in
Any selected color information may be newly added corresponding to any of the blank fields. Further, in each of the color tables 521 and 522, the color information that is recorded may be deleted, the correspondence between each detection pattern and the color information may be changed, and the content of the color information corresponding to each detection pattern may be changed.
In a case where the wide-width tape cassette 30 shown in
Furthermore, when the wide-width tape cassette 30 is installed, the value indicating the state of the switch SW4 is identified as 0 at step S3 in the main processing as described above (refer to
In a case where the narrow-width tape cassette 30 shown in
In addition, when the narrow-width tape cassette 30 is installed, the value indicating the state of the switch SW4 is identified as 1 at step S3 in the main processing described above (refer to
In such a way, in the present embodiment, the color table used to identify the color information of the tape cassette 30 is selected in accordance with the detected state of a specific arm detecting switch 210 (specifically, the on or off state of the arm detecting switch 210D). Therefore, the number of color information patterns that can be identified by the tape printer 1 can be increased without increasing the number of the rear detecting switches 310, in other words, without increasing the area occupied by the rear detection portion 300.
In the main processing (refer to
Next, it is determined whether there is any input from the keyboard 3 (step S19), if there is an input from the keyboard 3 (yes at step S19). the CPU 401 receives the characters input from the keyboard 3 as print data, and stores the print data (text data) in the text memory of the RAM 404 (step S21). If there is no input from the keyboard 3 (no at step S19), the process returns to step S19 and waits for an input from the keyboard 3.
Then, if there is an instruction to start printing from the keyboard 3, the print data stored in the text memory is processed in accordance with the print information identified at step S3 (step S23). For example, at step S23, the print data is processed such that a print range and a print size corresponding to the tape width identified at step S3, and a print position corresponding to the print mode (the mirror image printing mode or the normal image printing mode) identified at step S3 are incorporated. Based on the prim data processed at step S23, print processing is performed on the tape that is the print medium (step S25). After the print processing is performed at step S25, the main processing ends.
The above-described print processing (step S25) will be explained below more specifically. In a case where the laminated type tape cassette 30 shown in
The film tape 59 that has been pulled out from the second tape spool 41 passes the outer edge of the ribbon spool 42 and is fed along the feed path within the arm portion 34. Then, the film tape 59 is discharged from the exit 34A toward the head insertion portion 39 in a state in which the ink ribbon 60 is joined to the surface of the film tape 59. The film tape 59 is then fed between the thermal head 10 and the platen roller 15 of the tape printer 1. Then, characters are printed onto the print surface of the film tape 59 by the thermal head 10.
Following that, the used ink ribbon 60 is separated from the printed film tape 59 at the guide wall 47 and wound onto the ribbon take-up spool 44. Meanwhile, the double-sided adhesive tape 58 is pulled out from the first tape spool 40 by the tape drive roller 46 moving in concert with the movable feed roller 14. While being guided and caught between the tape drive roller 46 and the movable feed roller 14, the double-sided adhesive tape 58 is layered onto and affixed to the print surface of the printed film tape 59. The printed film tape 59 to which the double-sided adhesive tape 58 has been affixed (namely, the printed tape 50) is then fed toward the tape discharge aperture 49 and is cut by the cutting mechanism 17.
In a case where the receptor type tape cassette 30 shown in
The print tape 57 that has been pulled out from the first tape spool 40 is bent in the leftward direction in the right front portion of the cassette case 31, and fed along the feed path within the arm portion 34. Then, the print tape 57 is discharged from the exit 34A toward the head insertion portion 39 in a state in which the ink ribbon 60 is joined to the surface of the print tape 57. The print tape 57 is then fed between the thermal head 10 and the platen roller 15 of the tape printer 1. Then, characters are printed onto the print surface of the print tape 57 by the thermal head 10.
Following that, the used ink ribbon 60 is separated from the printed print tape 57 at the guide wall 47 and wound onto the ribbon take-up spool 44. Meanwhile, the printed print tape 57 (in other words, the printed tape 50) is then fed toward the tape discharge aperture 49 and is cut by the cutting mechanism 17.
In a case where the thermal type tape cassette 30 shown in
Following that, the printed heat-sensitive paper tape 55 (namely, the printed tape 50) is further fed toward the tape discharge aperture 49 by the tape drive roller 46 moving in concert with the movable feed roller 14, and is cut by the cutting mechanism 17.
When printing is being performed with the thermal type tape cassette 30, the ribbon take-up spool 44 is also driven to rotate via the ribbon take-up shaft 95. However, there is no ribbon spool housed in the thermal type tape cassette 30. For that reason, the ribbon take-up spool 44 does not pull out the unused ink ribbon 60. nor does it wind the used ink ribbon 60. In other words, even when the thermal type tape cassette 30 is used in the tape printer 1 that is equipped with the ribbon take-up shaft 95, the rotation drive of the ribbon take-up shaft 95 does not have an influence on the printing operation of the heat-sensitive paper tape 55 and printing can be correctly performed. In the thermal type tape cassette 30, the ribbon take-up spool 44 may not be provided, and the ribbon take-up shaft 95 may perform idle running inside the support holes 67A and 67B in a similar way.
In the above-described print processing (step S25), in a case where the laminated type tape cassette 30 is installed, mirror image printing is performed. In mirror image printing, the ink of the ink ribbon 60 is transferred onto the film tape 59 such that the characters are shown as a mirror image. In a case where the receptor type tape cassette 30 is installed, normal image printing is performed. In normal image printing, the ink of the ink ribbon 60 is transferred onto the print tape 57 such that the characters are shown as a normal image. In a case where the thermal type tape cassette 30 is installed, thermal type normal printing is performed on the heat-sensitive paper tape 55 such that the characters are shown as a normal image.
In the present embodiment, the “laminated” print mode is applied to the tape cassette 30 with which mirror image printing is performed, while the “receptor” print mode is applied to the tape cassette 30 with which normal image printing is performed. Therefore, the “receptor” print mode is applied not only to the receptor type tape cassette 30 shown in
Through the above-described main processing (refer to
In the present embodiment, the indicator portions (the arm indicator portion 800 and the rear indicator portion 900) are provided on the plurality of surfaces of the tape cassette 30, while the detection devices (the arm detection portion 200 and the rear detection portion 300) that detect each of the indicator portions from respective different directions are provided in the tape printer 1. As a result, the following effects may be achieved.
A conventional tape printer has a cassette detection device that includes a plurality of detecting switches that protrude from underneath toward the bottom surface of the tape cassette. The detecting switches are concentrated at a location in a specified area such that the cassette detection device does not have a negative impact on the print mechanism and the feed mechanism and so on. In a case where there is a large number of tape types and the patterns to be detected from the tape cassette, a large number of detecting switches in the cassette detection device may be required. In such a case, the specified area in the cassette housing that is occupied by the cassette detection device may become large, resulting in restrictions on the design of the cassette detection device, and an increase in the size of the tape printer.
Further, a conventional tape cassette has a cassette indicator portion that includes a plurality of indicators corresponding to the above-described plurality of detecting switches. The indicators are concentrated at a location in a specified area on the bottom surface of the cassette case such that the indicators do not have a negative impact on a storage area of the print tape and the feed paths and so on. In a case where there is a large number of tape types and the patterns to be detected from the tape cassette, the specified area on the bottom surface of the cassette case that is occupied by the cassette indicator portion becomes large with the increase in the number of the detecting switches. As a result, there may be restrictions on the design of the cassette indicator portion, and an increase in the size of the tape cassette.
In contrast, in the tape printer 1 according to the present embodiment, the cassette detection devices (the arm detection portion 200 and the rear detection portion 300) are dispersed at different locations in a plurality of directions, and thus the individual cassette detection devices may be unitized and compactly designed. Therefore, the degree of freedom in the design of the cassette detection devices may be improved, and even if the number of tape types and the patterns increases, an increase in the size of the tape printer 1 may be inhibited.
Moreover, with the tape cassette 30 according to the present embodiment, the cassette indicator portions (the arm indicator portion 800 and the rear indicator portion 900) are dispersed at different locations on a plurality of surfaces of the cassette case 31, and thus the individual cassette indicator portions may be made smaller. Therefore, the cassette indicator portions may be freely and efficiently formed, and even if the number of tape types and the patterns increases, an increase in the size of the tape cassette 30 may be inhibited.
In addition, in the present embodiment, the cassette detection devices (the arm detection portion 200 and the rear detection portion 300) each detect different elements of the tape type (print information and color information), based on the cassette indicator portions (the arm indicator portion 800 and the rear indicator portion 900) that respectively oppose the cassette detection devices. In other words, as the cassette detection portions can each detect the different elements of the tape type, the tape printer 1 may selectively identify only the necessary element among the elements of the tape type.
The tape printer 1 according to the present embodiment may perform the correct printing operation if the tape printer 1 identifies the print information of the tape cassette 30. Therefore, by providing only the arm defection portion 200 that detects the print information indicated by the arm indicator portion 800, costs may be reduced and the inexpensive tape printer 1 may be offered. On the other hand, by providing both the arm detection portion 200 and the rear detection portion 300, the high function tape printer 1 may be offered that identifies not only the print information, but also the color information from the tape cassette 30, as described above.
The tape cassette 30 according to the present embodiment is configured such that the tape cassette 30 not only enables the tape printer 1 to identify the print information indicated by the arm indicator portion 800, but also enables a person to visually check the arm indicator portion 800 and identify the print information of the tape cassette 30. Methods of identifying the print information by a visual check of the arm indicator portion 800 and the effects will be explained below, with reference to
In the present embodiment, the tape cassette 30 is configured such that the tape printer 1 can defect different elements of the tape type in accordance with predetermined rules, based on the detection patterns of the arm defection portion 200 (the combination of the on and off states of the arm detecting switches 210). Table 1 to Table 3 below show the elements of the tape type that can be detected by the arm detecting switches 210A to 210E according to the present embodiment.
TABLE-US-00001 TABLE 1 Tape Width SW1 SW2 SW5 3.5 mm 1 1 0 6 mm 0 0 0 9 mm 0 1 0 12 mm 1 0 0 18 mm 0 0 1 24 mm 0 1 1 36 mm 1 0 1
TABLE-US-00002 TABLE 2 Print Mode SW3 Receptor (normal image printing mode) 1 Laminated (mirror image printing mode) 0
TABLE-US-00003 TABLE 3 Color table Selection SW4 First color table 0 Second color table 1
As shown in Table 1, the tape width or the print information is identified at the step S3 in the main processing (refer to
More specifically, the indicators 800A, 800B and 800E that indicate the tape width of the tape cassette 30 are arranged on the arm indicator portion 800 in accordance with predetermined rules. As shown in
Among all the indicators 800A to 800E, the indicator 800E is furthest to the opening 77. As shown in Table 1, if the tape width is equal to or greater than the predetermined width (18 mm), the switch SW5 is in the on state, and so the indicator 800E is not a switch hole. In other words, the indicator 800E is formed as the pressing portion 802. On the other hand, if the tape width is less than the predetermined width (18 mm), the switch SW5 is in the off state. In other words, the indicator 800E is formed as the escape hole 803. Therefore, simply by visually checking whether or not the escape hole 803 is provided at the lower edge of the arm front surface 35, a person can identify whether the indicator 800E is either the pressing portion 802 or the escape hole 803, namely, whether the switch SW5 is to be in the on state or in the off state.
Expressed differently, the person may identify whether or not the tape width is equal to or more than the predetermined tape width (18 mm) by checking the presence or absence of the escape hole 803. In addition to this, if the person knows in advance the general height positions of the respective rows in which the indicators 800A and 800B are provided, simply by visually checking whether or not a switch hole is formed in the vicinity of the opening 77 of the arm front surface 35, the person can identify whether each of the indicators 800A and 800B is the non-pressing portion 801 and the pressing portion 802, (namely, whether each of the switch SW1 and the switch SW2 is to be in the on state or in the off state).
As shown in Table 1, regardless of whether the tape width is equal to or greater than the predetermined width, or is less than the predetermined width, the relationship between the relative sizes of the tape width can be identified by the combination of the non-pressing portion 801 and the pressing portion 802 with respect to the indicators 800A and 800B.
Specifically, if the indicators 800A and 800B are both the pressing portions 802 that do not have a hole, namely, both the switch SW1 and the switch SW2 are to be in the on state, this indicates the smallest tape width (in the example shown in Table 1, 3.5 mm) among all the tape widths. If the indicators 800A and 800B are both the non-pressing portions 801, (namely, both the switch SW1 and the switch SW2 are to be in the off state), within both the tape width ranges (equal to or greater than the predetermined width, and less than the predetermined width), this indicates a tape width that is larger than the tape width indicated by the indicators 800A and 800B being both the pressing portions 802 (in the example of Table 1, 6 mm or 18 mm).
If the indicator 800A is the non-pressing portion 801 and the indicator 800B is the pressing portion 802 (namely, the switch SW1 is to be in the off state and the switch SW2 is to be in the on state), within both the tape width ranges (equal to or greater than the predetermined width, and less than the predetermined width), this indicates a tape width that is larger than the tape width indicated by the indicators 800A and 800B being both the non-pressing portions 801 (in the example of Table 1, 9 mm or 24 mm). If the indicator 800A is the pressing portion 802 and the indicator 800B is the non-pressing portion 801 (namely, the switch SW1 is to be in the on state and the switch SW2 is to be in the off state), this indicates a tape width that is larger than the tape width indicated by the indicator 800A being the non-pressing portion 801 and the indicator 800B being the pressing portion 802. In other words, this indicates the largest tape width within both the tape width ranges (equal to or greater than the predetermined width, and less than the predetermined width) (in the example of Table 1, 12 mm or 36 mm).
The first identification table 510 according to the present embodiment does not include the arrangement pattern in which both the indicators 800A and 800B in the arm indicator portion 800 are the pressing portions 802 when the tape width of the tape cassette 30 is equal to or greater than 18 mm. Therefore, as a combination of the indicators 800A and 8008 to indicate any tape width that is equal to or greater than 18 mm, an arrangement pattern in which both the indicators 800A and 800B are the pressing portions 802 can also be included in the first identification table 510. For example, as an arrangement pattern to indicate a tape width between the 12 mm tape width and the 18 mm tape width (15 mm, for example), the arrangement pattern may be set such that both the indicators 800A and 800B are the pressing portions 802.
As described above, because the arm indicator portion 800 is configured in accordance with predetermined rules, a person can easily determine whether the tape width is equal to or greater than the predetermined width, or is less than the predetermined width by visually checking the indicator 800E. Moreover, the person can easily identify the tape width more specifically by visually checking the indicators 800A and 800B.
The above-described examples are explained based on the premise that the tape printer 1 can use both the wide-width tape cassette 30 and the narrow-width tape cassette 30. in a case where the tape printer 1 is a dedicated device that only uses the narrow-width tape cassette 30, the switch SW5 (the arm detecting switch 210E) opposing the extension portion 832 of the wide-width tape cassette 30 may not be necessary. Therefore, in the dedicated device tape printer 1 that uses only the narrow-width tape cassette 30, the tape width may be identified based on the on and off states of the switches SW1 and SW2,
Meanwhile, the narrow-width tape cassette 30 that is only used in the dedicated device tape printer 1 may not need the escape hole 803. In such a case, a person may identify the tape width of the narrow-width tape cassette 30 by visually checking the two indicators in the vicinity of the opening 77 (namely, the indicators 800A and 800B). In other words, for the tape width of the tape cassette 30 to be identified by visual checking, the arm indicator portion 800 may include at least two indicators in the vicinity of the opening 77.
As shown in Table 2, the print mode of the print information is identified at step S3 in the main processing (refer to
More specifically, the indicator 800C that indicates the print mode of the tape cassette 30 is provided in the arm indicator portion 800 in accordance with predetermined rules. As shown in
If the print mode is “receptor” (normal image printing), the switch SW3 is to be in the on state, as shown in Table 2. Therefore, the indicator 800C does not have a switch hole. In other words, the indicator 800C is formed as the pressing portion 802. On the other hand, if the print mode is “laminated” (the mirror image printing mode), the switch SW3 is to be in the off state, and the indicator 800C has a switch hole. In other words, the indicator 800C is formed as the non-pressing portion 801.
Therefore, a person can identify the print mode as either “laminated” (the mirror image printing mode) or “receptor” (the normal image printing mode) simply by visually checking whether or not the switch hole is farmed close to the latching hole 820 (namely, the indicator 800C). As described above, the “receptor” print mode (the normal image printing mode) includes all types of printing except for mirror image printing, such as a type of printing in which the ink from the ink ribbon is transferred to the tape as the print medium, and a type of printing in which a heat-sensitive tape is color developed without use of an ink ribbon.
As shown in Table 3, the color table selection is identified at the step S3 in the main processing (refer to
As shown in Table 3, if the first color table 521 is to be used, the switch SW4 is to be in the off state, and the indicator 800D is a switch hole. In other words, the indicator 800D is formed as the non-pressing portion 801. On the other hand, if the second color table 522 is to be used, the switch SW4 is to be in the on state, and the indicator 800D is not a switch hole. In other words, the indicator 800D is formed as the pressing portion 802. As described above, in the main processing according to the present embodiment (refer to
The color table selection identified by the switch SW4 may be necessary information for the tape printer 1 to identify the color information of the tape cassette 30. However, the color information is not always necessary for the tape printer 1 to perform correct printing. Therefore, it may not be necessary for a person to identify the color table to be used by visually checking the indicator 800D. On the other hand, by identifying the color table selection based on the on or off state of the arm detecting switch 210D, the structure of the rear detection portion 300 (the rear detecting switches 310A to 310E) may be simplified, as described above, and the number of detectable color information patterns may also be increased.
As described above, based the detection results of each of the arm detecting switches 210, the tape printer 1 is able to identify different tape type elements in accordance with the predetermined rules. Consequently, the processing to identify individual elements included in the tape type may be simplified.
Furthermore, in the conventional tape printer, random combinations of on and off states of a plurality of detecting switches are associated with respective tape types. Therefore, if mistaken detection is made by one of the detecting switches, all the elements of the tape type may be mistakenly identified. In contrast, in the present embodiment, the tape type element to be identified based on the detection results of each of the arm detecting switches 210 is set in advance. As a result, if mistaken detection is made by one of the arm detecting switches 210, the element corresponding to that arm detecting switch 210 may be mistakenly identified, but the elements corresponding to the other arm detecting switches 210 may be correctly identified. Consequently, even when mistaken detection is made by some of the arm detecting switches 210, errors in identifying the tape type by the tape printer 1 may be kept to a minimum.
In the present embodiment, the tape printer 1 is configured such that the cassette detection devices (the arm detection portion 200 and the rear detection portion 300) each detect the different tape type elements. Therefore, if one of the tape type elements (print information and color information) of the tape cassette 30 is the same but the other elements are different for each of the tape cassettes 30, the cassette indicator portion (the arm indicator portion 800 or the rear indicator portion 900) that indicates the same element has a combination of holes arranged in the same pattern in each of the tape cassettes 30. Moreover, in the arm indicator portion 800, if a part of the print information is different in accordance with the predetermined rules, the presence or absence of a hole is different only for the indicator corresponding to that part.
For example, the tape cassette 30 shown in
Therefore, in the arm indicator portion 800 shown in
If the tape cassette 30 shown in
The label sheet 700 shown in
In addition, the detection setting portion 703 of the label sheet 700 shown in
If the tape cassette 30 shown in
As described above, the tape cassette 30 according to the present embodiment is configured such that a person can identify the print information of the tape cassette 30 by visually checking the arm indicator portion 800. As a result, the following effects may be achieved.
In a conventional manufacturing method for tape cassettes, it is a general practice to house a tape as a print medium in a cassette case having the height (so-called case size) corresponding to of the print tape. In contrast to this, a tape cassette manufacturing method is proposed in which the tapes with differing tape widths are respectively housed in cassette cases with the same height (the same case size). With this type of tape cassette manufacturing method that uses a common case size, the following benefits may be expected.
First, conventionally, when transporting cassette cases of different case sizes corresponding to different tape widths from a parts manufacturing plant to an assembly plant, cassette cases are transported in different transportation containers each prepared for each of the case sizes. In contrast, by using a common case size, common transportation containers can be used when transporting the cassette cases from the parts manufacturing plant to the assembly plant. Consequently, transportation costs for the cassette cases may be reduced.
Second, if the case size is different for each tape width, when products are shipped from the assembly plant, it is necessary to use different package boxes each prepared for each case size. In contrast, by using a common case size, common package boxes can be used and a common packaging format can also be used when shipping the products. Consequently, packaging cost may also be reduced.
Third, if an ink ribbon with the same width is used for a tape with a narrow tape width, the width of the ink ribbon itself (the ribbon width) is narrow. In such a case, the ink ribbon may get cut during the printing operation. In contrast, by using a common case size that can maintain a ribbon width with an adequate strength, even if the width of the tape is narrow, the ink ribbon may be prevented from getting cut during the printing operation.
On the other hand, in the manufacture of the tape cassettes, if tapes with different tape widths are respectively mounted in the common size cassette cases, a tape with the a wrong tape width may be housed in the cassette case. For example, a worker may mistakenly mount a tape with a 6 mm or a 9 mm width in the cassette case intended to house a 12 mm tape. This may happen because the common size cassette case capable of housing the 12 mm tape has a rib height that allows housing a tape with a less than 12 mm width.
Furthermore, as described above, the print modes of the tape cassette include the so-called receptor type, with which normal image printing is performed directly onto the print tape, and the laminated type, with which, after mirror image printing is performed on a transparent tape, a double-sided adhesive tape is affixed to the print surface. The common size cassette cases have the same external appearance, and therefore, a wrong tape may be mounted in the cassette case in the wrong print mode. For example, a worker may mount a wrong tape in the cassette case to assemble the receptor type tape cassette, when the cassette case is intended for the laminated type tape cassette.
With the tape cassette 30 according to the present embodiment, however, a person can identify the print information of the tape cassette 30 simply by visually checking the arm indicator portion 800. In other words, the worker can ascertain the tape width of the tape that should be mounted in the cassette case 31, and the print mode that is intended for the cassette case 31. As a consequence, in the manufacturing process of the tape cassette 30, the worker can work while confirming the contents to be housed in the cassette case 31, and thus errors in the manufacture of the tape cassette 30 may be reduced.
Furthermore, when the tape cassette 30 is shipped from the plant, an inspector can verify whether the contents housed in the cassette case 31 are correct by simply visually checking the arm indicator portion 800. and therefore product inspection can be performed on the tape cassette 30. More specifically, the inspector can verify whether the tape exposed at the opening 77 of the manufactured tape cassette 30 matches the print information (namely, the tape width and the print mode) that can be identified from the arm indicator portion 800.
In particular, the arm indicator portion 800 according to the present embodiment is provided on the arm front surface 35 that is in the vicinity of the opening 77 at which the tape is exposed. Moreover, the arm front surface 35 is a portion that can be seen from the same direction as the tape that is exposed at the opening 77 (more specifically, from the front, of the tape cassette 30). In other words, the arm indicator portion 800 and the tape are in adjacent, positions and can be seen from the same direction, and thus the inspector can inspect the tape while verifying the arm indicator portion 800. As a consequence, working efficiency in the product inspection of the tape cassette 30 may be improved.
In addition, the arm indicator portion 800 has a simple structure formed of a combination of the presence or absence of switch holes (namely, a combination of the non-pressing portion(s) 801 and the pressing portion(s) 802). Therefore, the arm indicator portion 800 may be easily formed on the cassette case 31 in advance. Consequently, at the time of manufacture of the cassette case 31, there may be no need to print contents to be housed in each of the cassette cave 31, nor to affix labels to indicate the contents, and therefore errors in the manufacture of the tape cassette 30 can be reduced at a low cost.
In the manufacturing process of the tape cassette 30, the label sheet 700 corresponding to the contents to be housed in the cassette case 31 is affixed to the label affixing portion 68. At that time, the worker can first check the print information (the tape width and the print mode) indicated by the arm indicator portion 800, and can then affix the label sheet 700 of which the notation portions 701 and 702 indicate contents that match the print information onto the label affixing portion 68. Therefore, errors may be prevented when the worker affixes the label sheet 700.
In addition, when the label sheet 700 is affixed to the label affixing portion 68, the rear indicator portion 900 (the indicators 900A to 900E) is formed by the detection setting portion 703, such that the combination of the non-pressing portion(s) 901 and the pressing portion(s) 902 correspond to the color information (the tape color and the character color) according to the contents housed in the cassette case 31. As a result, defects may be prevented in which the actual color information of the tape cassette 30 does not match the detection pattern based on the rear indicator portion 900.
In the present embodiment, the arrangement pattern of the rear indicator portion 900 (the indicators 900A to 900E) can be changed by affixing the label sheet 700. Therefore, at the time of manufacture of the cassette case 31, the same number of detection holes 600 as the number of the rear detecting switches 310 may be formed uniformly, at positions opposing the respective rear detecting switches 310. As a result, the common cassette cases 31 may be further utilized, and the tape cassette 30 manufacturing costs may be reduced.
Moreover, in the present embodiment, the laminated type tape cassette 30 formed from the general purpose cassette is used in the general purpose tape printer 1, Therefore, a single tape printer 1 can be used with each type of the tape cassette 30, such as the thermal type, the receptor type, and the laminated type etc., and it may not be necessary to use the different tape printer 1 for each type. Furthermore, the tape cassette 30 is normally formed by injecting plastic into a plurality of combined dies. In the case of the tape cassette 30 that corresponds to the same tape width, common dies can be used, except for the die including the portion that forms the and indicator portion 800. Thus, costs may be significantly reduced.
In the present embodiment, as the arm indicator portion 800 is provided on the arm front surface 35 of the cassette case 31, the length of the arm indicator portion 800 in the vertical direction (namely, the height) is limited by the height of the cassette case 31. Therefore, when the height of the arm indicator portion 800 is small, if the switch holes (namely, the non-pressing portions 801) that maintain the arm detecting switches 210 in the off state are aligned in the vertical direction, the distance between the switch holes is small. In such a case, the strength of the cassette case 31 may be decreased. Thus, when the worker or the user holds or presses the arm portion 34 of the tape cassette 30, the arm front surface 35 of the cassette case 31 may be damaged.
To resolve this, in the arm indicator portion 800 according to the present embodiment, the switch holes (namely, the non-pressing portions 801) that maintain the arm detecting switches 210 in the off state are not aligned in the vertical direction, but the indicators 800A to 800E are each arranged at different positions in the right-and-left direction. Therefore, not only may the installed state of the tape cassette 30 be correctly detected, as described above, but the distance between the switch holes in the and indicator portion 800 can also be increased and the strength of the cassette case 31 may therefore be improved.
The tape cassette and the tape printer of the present invention are not limited to those in the above-described embodiment, and various modifications and alterations may of course be made insofar as they are within the scope of the present invention.
The shape, size, number and arrangement pattern of the non-pressing portion(s) 801 and 901 and the pressing portion(s) 802 and 902 of the arm indicator portion 800 and the rear indicator portion 900 are not limited to the examples represented in the above-described embodiment, but can be modified. For example, in the above-described embodiment, the non-pressing portion 801 of the arm indicator portion 800 is a through-hole with a square shape in a front view, and the non-pressing portions 901 of the rear indicator portion 900 is a through-hole with a circular shape in a front view. However, both the non-pressing portion 801 and the non-pressing portion 901 may have the same shape, or may have other differing shapes. Furthermore, the non-pressing portions 801 provided in the arm indicator portion 800 may not be a through-hole, but may be an indentation 810 formed on the arm front surface 35, as shown in
In a case where a plurality of non-pressing portions that respectively oppose a plurality of arm detection switches 210 are provided in close proximity in the same row in the vertical direction in the arm indicator portion 800, the non-pressing portions may be connected with each other in the horizontal direction to form grooves 811 and 812, as shown in
As described above, the indicators of the arm indicator portion 800 are not aligned in the vertical direction, and therefore, if a plurality of the grooves 811, 812, and 813 that connect the indicators are formed, the grooves 811, 812, and 813 are formed in the horizontal direction (refer to
Furthermore, in the above-described embodiment, by affixing the label sheet 700 and thus exposing or covering the detection holes 600 that are formed in the rear indentation 68C, the arrangement pattern of the rear indicator portion 900 (the indicators 900A to 900E) can be changed in accordance with the tape type of the tape cassette 30, but the present invention is not limited to this example. For example, as shown in
As shown in
As shown in
When the sensor part 750 is attached to the parts attachment portion 69, the worker holds the handle portion 752 between the fingers and moves the sensor part 750 in the downward direction such that the latching pin 69A is inserted into the shaft hole of the cylinder 753 and the blocking pins 754 are fitted into the corresponding detection holes 600. Then, as shown in
When the sensor part 750 is attached to the parts attachment portion 69 in such a way, the rear detecting switches 310 cannot be inserted into the detection holes 600 into which the blocking pins 754 have been fitted. As a result, the detection holes 600 into which the blocking pins 754 have been fitted form the pressing portions 802 that press the rear detecting switches 310, and cause the rear detecting switches 310 to be in the on state, in a similar way to the detection holes 600 that are covered by the blocking portions 703B of the above-described label sheet 700. On the other hand, the detection holes 600 into which the blocking pins 754 have not been fitted, and that are thus exposed, form the non-pressing portions 801 through which the rear detecting switches 310 are inserted, and cause the rear detecting switches 310 to be in the off state, in a similar way to the detection holes 600 that are exposed through the holes 703A of the above-described label sheet 700.
In the tape cassette 30 manufacturing process, the worker may attach the sensor part 750 to the parts attachment portion 69 that has the blocking pins 754 arranged in a pattern that corresponds to the contents housed in the cassette case 31. In a similar way as in a case where the label sheet 700 is affixed, by exposing and blocking the detection holes 600 formed in the rear indentation 68C in this way, the arrangement pattern of the rear indicator portion 900 (the indicators 900A to 900E) can be changed in accordance with the tape type of the tape cassette 30.
The apparatus and methods described above with reference to the various embodiments are merely examples. It goes without saying that they are not confined to the depicted embodiments. While various features have been described in conjunction with the examples outlined above, various alternatives, modifications, variations, and/or improvements of those features and/or examples may be possible. Accordingly, the examples, as set forth above, are intended to be illustrative. Various changes may be made without departing from the broad spirit and scope of the underlying principles.
Number | Date | Country | Kind |
---|---|---|---|
2008-331634 | Dec 2008 | JP | national |
2008-331635 | Dec 2008 | JP | national |
2008-331638 | Dec 2008 | JP | national |
2008-331639 | Dec 2008 | JP | national |
2008-331641 | Dec 2008 | JP | national |
2008-331642 | Dec 2008 | JP | national |
2008-331643 | Dec 2008 | JP | national |
2009-088440 | Mar 2009 | JP | national |
2009-088441 | Mar 2009 | JP | national |
2009-088456 | Mar 2009 | JP | national |
2009-088460 | Mar 2009 | JP | national |
2009-088468 | Mar 2009 | JP | national |
This application is a continuation of U.S. Ser. No. 15/276,474, filed Sep. 26, 2016, which is a continuation of U.S. Ser. No. 14/226,380, filed Mar. 26, 2014, now U.S. Pat. No. 9,649,861, issued on May 16, 2017, which is a continuation of U.S. Ser. No. 12/644,572, filed Dec. 22, 2009, now U.S. Pat. No. 9,493,016, issued on Nov. 15, 2016, which claims priority to Japanese Patent Application Nos. 2008-331634, 2008-331635, 2008-331638, 2008-331639, 2008-331641, 2008-331642 and 2008-331643, respectively filed on Dec. 25, 2008, and also claims priority to Japanese Patent Application Nos. 2009-088440, 2009-088441, 2009-088456, 2009-088460 and 2009-088468, respectively filed on Mar. 31, 2009, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3901372 | Denley | Aug 1975 | A |
4127883 | Mestdagh | Nov 1978 | A |
4226547 | Bradshaw et al. | Oct 1980 | A |
4360278 | Paque | Nov 1982 | A |
D267330 | Worrell | Dec 1982 | S |
4391539 | Connoy | Jul 1983 | A |
4402619 | Paque et al. | Sep 1983 | A |
4557617 | Richardson et al. | Dec 1985 | A |
4567488 | Moriguchi et al. | Jan 1986 | A |
4678353 | Richardson et al. | Jul 1987 | A |
4725155 | Kittel et al. | Feb 1988 | A |
4773775 | Bradshaw et al. | Sep 1988 | A |
4815871 | McGourty et al. | Mar 1989 | A |
4815874 | Richardson et al. | Mar 1989 | A |
4815875 | Richardson et al. | Mar 1989 | A |
4832514 | Basile | May 1989 | A |
4844636 | Paque | Jul 1989 | A |
4880325 | Ueda et al. | Nov 1989 | A |
4892425 | Shimizu et al. | Jan 1990 | A |
4907902 | Doi | Mar 1990 | A |
D307296 | Ivarson et al. | Apr 1990 | S |
4915516 | Shimizu et al. | Apr 1990 | A |
4917514 | Richardson et al. | Apr 1990 | A |
D307918 | Goda | May 1990 | S |
4927278 | Kuzuya et al. | May 1990 | A |
4930913 | Basile | Jun 1990 | A |
D311416 | Richardson et al. | Oct 1990 | S |
4966476 | Kuzuya et al. | Oct 1990 | A |
4983058 | Nagae | Jan 1991 | A |
5022771 | Paque | Jun 1991 | A |
D319070 | Lavander | Aug 1991 | S |
D320391 | Paque | Oct 1991 | S |
5056940 | Basile | Oct 1991 | A |
5078523 | McGourty et al. | Jan 1992 | A |
5098208 | Martinez | Mar 1992 | A |
5104247 | Ohshima | Apr 1992 | A |
5111216 | Richardson et al. | May 1992 | A |
5188469 | Nagao et al. | Feb 1993 | A |
5193919 | Godo et al. | Mar 1993 | A |
5195835 | Collins | Mar 1993 | A |
5203951 | Hattori et al. | Apr 1993 | A |
5223939 | Imaizumi et al. | Jun 1993 | A |
5227477 | Auerbach et al. | Jul 1993 | A |
5239437 | Hoge et al. | Aug 1993 | A |
D342275 | Cooper | Dec 1993 | S |
RE34521 | Shimizu et al. | Jan 1994 | E |
5277503 | Nagao | Jan 1994 | A |
5318370 | Nehowig | Jun 1994 | A |
5348406 | Yoshiaki et al. | Sep 1994 | A |
5350243 | Ichinomiya et al. | Sep 1994 | A |
D352305 | Cooper | Nov 1994 | S |
5374132 | Kimura | Dec 1994 | A |
D356333 | Pearce et al. | Mar 1995 | S |
5395173 | Ueno et al. | Mar 1995 | A |
5399033 | Putman | Mar 1995 | A |
D357497 | Gray et al. | Apr 1995 | S |
5411339 | Bahrabadi et al. | May 1995 | A |
5419648 | Nagao et al. | May 1995 | A |
D359303 | Gray et al. | Jun 1995 | S |
5424757 | Thom | Jun 1995 | A |
5429443 | Kobayashi et al. | Jul 1995 | A |
5431504 | Beadman et al. | Jul 1995 | A |
5435657 | Pearce et al. | Jul 1995 | A |
5466076 | Kobayashi et al. | Nov 1995 | A |
5492282 | Okuchi et al. | Feb 1996 | A |
5492420 | Nunokawa et al. | Feb 1996 | A |
5494362 | Kobayashi et al. | Feb 1996 | A |
5506736 | Ota | Apr 1996 | A |
5511891 | Nehowig et al. | Apr 1996 | A |
5518328 | Okuchi et al. | May 1996 | A |
D372044 | Ware et al. | Jul 1996 | S |
5533818 | Bahrabadi | Jul 1996 | A |
5536092 | Yamaguchi | Jul 1996 | A |
5538352 | Sugiura | Jul 1996 | A |
5540510 | Sims et al. | Jul 1996 | A |
5541796 | Sawada | Jul 1996 | A |
5553952 | Umbach | Sep 1996 | A |
5564843 | Kawaguchi | Oct 1996 | A |
5593237 | Nozaki et al. | Jan 1997 | A |
5595447 | Takayama et al. | Jan 1997 | A |
5599119 | Nunokawa et al. | Feb 1997 | A |
5605404 | Nunokawa et al. | Feb 1997 | A |
5620268 | Yamaguchi et al. | Apr 1997 | A |
5634728 | Nunokawa et al. | Jun 1997 | A |
5653542 | Sugimoto et al. | Aug 1997 | A |
5658083 | Day et al. | Aug 1997 | A |
5659441 | Eckberg et al. | Aug 1997 | A |
5709486 | Day | Jan 1998 | A |
5727888 | Sugimoto et al. | Mar 1998 | A |
5730536 | Yamaguchi | Mar 1998 | A |
5739839 | Iwai et al. | Apr 1998 | A |
5752777 | Nunokawa et al. | May 1998 | A |
5755519 | Klinefelter | May 1998 | A |
5765954 | Nunokawa et al. | Jun 1998 | A |
5771803 | Takami | Jun 1998 | A |
5788387 | Takayama et al. | Aug 1998 | A |
5795086 | Watanabe et al. | Aug 1998 | A |
5813773 | Kawai | Sep 1998 | A |
5813779 | Palmer et al. | Sep 1998 | A |
5823689 | Nehowig et al. | Oct 1998 | A |
5825724 | Matsumoto et al. | Oct 1998 | A |
5826995 | Day et al. | Oct 1998 | A |
5857788 | Gutsell et al. | Jan 1999 | A |
5860752 | Watanabe et al. | Jan 1999 | A |
5887993 | Nunokawa et al. | Mar 1999 | A |
5961225 | Nunokawa et al. | Oct 1999 | A |
5964539 | Yamaguchi et al. | Oct 1999 | A |
5967678 | Nunokawa et al. | Oct 1999 | A |
5997194 | Nunokawa et al. | Dec 1999 | A |
6012860 | Nunokawa et al. | Jan 2000 | A |
6042280 | Yamaguchi et al. | Mar 2000 | A |
6048118 | Martinez et al. | Apr 2000 | A |
6050672 | Matsuhashi | Apr 2000 | A |
6050734 | Watanabe et al. | Apr 2000 | A |
6059469 | Hirumi | May 2000 | A |
6106171 | Nunokawa et al. | Aug 2000 | A |
6116796 | Yamaguchi et al. | Sep 2000 | A |
6126344 | Takayama et al. | Oct 2000 | A |
6132120 | Yamaguchi et al. | Oct 2000 | A |
6146034 | Watanabe et al. | Nov 2000 | A |
6149325 | Nunokawa et al. | Nov 2000 | A |
6160679 | Maekawa et al. | Dec 2000 | A |
6167696 | Maaseidvaag et al. | Jan 2001 | B1 |
6168328 | Ueda et al. | Jan 2001 | B1 |
6190065 | Brzuskiewicz | Feb 2001 | B1 |
6190067 | Kobayashi et al. | Feb 2001 | B1 |
6190069 | Yamaguchi et al. | Feb 2001 | B1 |
6196740 | Yamaguchi et al. | Mar 2001 | B1 |
6227477 | Komatsuzaki et al. | May 2001 | B1 |
6232993 | Kobayashi et al. | May 2001 | B1 |
6270269 | Watanabe et al. | Aug 2001 | B1 |
6317156 | Nagasaki et al. | Nov 2001 | B1 |
6334724 | Yamaguchi et al. | Jan 2002 | B2 |
6366425 | Kletzl et al. | Apr 2002 | B1 |
6386774 | Takayama et al. | May 2002 | B1 |
6406202 | Unno et al. | Jun 2002 | B1 |
6419648 | Vitek et al. | Jul 2002 | B1 |
6429443 | Mankos et al. | Aug 2002 | B1 |
6435744 | Dunn et al. | Aug 2002 | B1 |
6476838 | Italiano | Nov 2002 | B1 |
6485206 | Takahashi | Nov 2002 | B1 |
6520696 | Huss et al. | Feb 2003 | B2 |
6644876 | Carriere et al. | Nov 2003 | B2 |
D486853 | Wilken et al. | Feb 2004 | S |
6709179 | Yamaguchi et al. | Mar 2004 | B2 |
6910819 | Carriere et al. | Jun 2005 | B2 |
6929415 | Wilken | Aug 2005 | B2 |
6955318 | Nonomura | Oct 2005 | B2 |
D519522 | Lee | Apr 2006 | S |
7070347 | Carriere et al. | Jul 2006 | B2 |
7070348 | Sugimoto et al. | Jul 2006 | B2 |
7097372 | Heyse | Aug 2006 | B1 |
7121751 | Harada et al. | Oct 2006 | B2 |
7128483 | Harada et al. | Oct 2006 | B2 |
D534203 | Harada et al. | Dec 2006 | S |
7201522 | Bandholz et al. | Apr 2007 | B2 |
D542334 | Harada et al. | May 2007 | S |
7232268 | Sugimoto et al. | Jun 2007 | B2 |
7287715 | Ban | Oct 2007 | B2 |
7296941 | Suzuki et al. | Nov 2007 | B2 |
7357585 | Kurashina | Apr 2008 | B2 |
7404684 | Sugimoto et al. | Jul 2008 | B2 |
D579942 | Terry et al. | Nov 2008 | S |
7503714 | Yamamoto et al. | Mar 2009 | B2 |
7841790 | Yamaguchi et al. | Nov 2010 | B2 |
7942594 | Kumazaki et al. | May 2011 | B2 |
7965308 | Jauert et al. | Jun 2011 | B2 |
8045288 | Ota et al. | Oct 2011 | B2 |
8109684 | Yamaguchi | Feb 2012 | B2 |
8162553 | Vandermeulen | Apr 2012 | B2 |
8164609 | Liu et al. | Apr 2012 | B2 |
8382389 | Yamaguchi et al. | Feb 2013 | B2 |
D681727 | Van Den Broecke | May 2013 | S |
8529142 | Tanaka | Sep 2013 | B2 |
8540444 | Vandermeulen et al. | Sep 2013 | B2 |
8550393 | Tada | Oct 2013 | B2 |
8562228 | Yamaguchi et al. | Oct 2013 | B2 |
8641304 | Yamaguchi et al. | Feb 2014 | B2 |
8734035 | Suva et al. | May 2014 | B2 |
8740482 | Yamaguchi et al. | Jun 2014 | B2 |
8757907 | Yamaguchi et al. | Jun 2014 | B2 |
8764326 | Yamaguchi et al. | Jul 2014 | B2 |
8770877 | Yamaguchi et al. | Jul 2014 | B2 |
9403389 | Yamaguchi et al. | Aug 2016 | B2 |
9498998 | Yamaguchi et al. | Nov 2016 | B2 |
9533522 | Yamaguchi et al. | Jan 2017 | B2 |
9566808 | Yamaguchi et al. | Feb 2017 | B2 |
9649861 | Yamaguchi et al. | May 2017 | B2 |
9656495 | Noda | May 2017 | B2 |
9802432 | Yamaguchi et al. | Oct 2017 | B2 |
9855779 | Yamaguchi et al. | Jan 2018 | B2 |
10226949 | Yamaguchi et al. | Mar 2019 | B2 |
20020006303 | Yamaguchi et al. | Jan 2002 | A1 |
20020012558 | Huss et al. | Jan 2002 | A1 |
20020047063 | Kaneda et al. | Apr 2002 | A1 |
20020135938 | Hiraguchi et al. | Sep 2002 | A1 |
20030081978 | Carriere et al. | May 2003 | A1 |
20040056143 | Nonomura | Mar 2004 | A1 |
20040062586 | Harada et al. | Apr 2004 | A1 |
20040233269 | Tsubota | Nov 2004 | A1 |
20040265027 | Hine et al. | Dec 2004 | A1 |
20050036816 | Carriere et al. | Feb 2005 | A1 |
20050152732 | Bandholz et al. | Jul 2005 | A1 |
20050172981 | Byun | Aug 2005 | A1 |
20060008608 | Kurashina | Jan 2006 | A1 |
20060088802 | Akaiwa | Apr 2006 | A1 |
20060121229 | Nagae | Jun 2006 | A1 |
20060182921 | Hioki et al. | Aug 2006 | A1 |
20060193669 | Takada et al. | Aug 2006 | A1 |
20060204304 | Hioki et al. | Sep 2006 | A1 |
20060216099 | Sakano et al. | Sep 2006 | A1 |
20060216100 | Minoya et al. | Sep 2006 | A1 |
20060233582 | Horiuchi | Oct 2006 | A1 |
20060238600 | Vandermeulen et al. | Oct 2006 | A1 |
20060239743 | Naito | Oct 2006 | A1 |
20070009302 | Vandermeulen | Jan 2007 | A1 |
20070009306 | Harada et al. | Jan 2007 | A1 |
20070031171 | Heyse et al. | Feb 2007 | A1 |
20070041772 | Harada et al. | Feb 2007 | A1 |
20070070168 | Mindler et al. | Mar 2007 | A1 |
20070098473 | Heyse et al. | May 2007 | A1 |
20070172293 | Vandermeulen | Jul 2007 | A1 |
20070212149 | Ota et al. | Sep 2007 | A1 |
20070231041 | Ueda et al. | Oct 2007 | A1 |
20070237562 | Kato et al. | Oct 2007 | A1 |
20070264070 | Loo et al. | Nov 2007 | A1 |
20070283249 | Nose et al. | Dec 2007 | A1 |
20080003043 | Fukui et al. | Jan 2008 | A1 |
20080029530 | Yuyama et al. | Feb 2008 | A1 |
20080050160 | Yamaguchi et al. | Feb 2008 | A1 |
20080056793 | Yokoyama | Mar 2008 | A1 |
20080080922 | Vandermeulen | Apr 2008 | A1 |
20080181703 | Ito et al. | Jul 2008 | A1 |
20080181708 | Yamaguchi et al. | Jul 2008 | A1 |
20080205958 | Moriyama et al. | Aug 2008 | A1 |
20080226373 | Yamaguchi et al. | Sep 2008 | A1 |
20080232886 | Kato et al. | Sep 2008 | A1 |
20080310904 | Yamaguchi et al. | Dec 2008 | A1 |
20090016795 | Caveney et al. | Jan 2009 | A1 |
20090085451 | Yuyama et al. | Apr 2009 | A1 |
20090190988 | Vereecken et al. | Jul 2009 | A1 |
20090202283 | Kumazaki et al. | Aug 2009 | A1 |
20090285617 | Vandermeulen | Nov 2009 | A1 |
20100119281 | Ford et al. | May 2010 | A1 |
20100166475 | Yamaguchi et al. | Jul 2010 | A1 |
20100166478 | Yamaguchi et al. | Jul 2010 | A1 |
20100166479 | Yamaguchi et al. | Jul 2010 | A1 |
20100232862 | Vandermeulen | Sep 2010 | A1 |
20100247208 | Yamaguchi et al. | Sep 2010 | A1 |
20100247209 | Yamaguchi et al. | Sep 2010 | A1 |
20100247210 | Yamaguchi et al. | Sep 2010 | A1 |
20100272492 | Van Britsom et al. | Oct 2010 | A1 |
20110058884 | Kato et al. | Mar 2011 | A1 |
20120008999 | Yamaguchi et al. | Jan 2012 | A1 |
20120009001 | Sago et al. | Jan 2012 | A1 |
20120027485 | Suva et al. | Feb 2012 | A1 |
20120027486 | Suva et al. | Feb 2012 | A1 |
20120027487 | Suva et al. | Feb 2012 | A1 |
20120057917 | Van Britsom et al. | Mar 2012 | A1 |
20120080550 | Yamaguchi et al. | Apr 2012 | A1 |
20120170959 | Vandermeulen et al. | Jul 2012 | A1 |
20120188325 | Yamaguchi et al. | Jul 2012 | A1 |
20120189366 | Yamaguchi et al. | Jul 2012 | A1 |
20120201588 | Yamaguchi et al. | Aug 2012 | A1 |
20140205350 | Yamaguchi et al. | Jul 2014 | A1 |
20140218458 | Suva et al. | Aug 2014 | A1 |
20150283837 | Sakano | Oct 2015 | A1 |
20170100948 | Yamaguchi et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2003294971 | Jul 2004 | AU |
2108332 | Apr 1994 | CA |
2182264 | Jun 1996 | CA |
121073 | Jun 1927 | CH |
136498 | Nov 1929 | CH |
1063641 | Aug 1992 | CN |
1098984 | Feb 1995 | CN |
1119146 | Mar 1996 | CN |
1143928 | Feb 1997 | CN |
1146954 | Apr 1997 | CN |
1148547 | Apr 1997 | CN |
1148548 | Apr 1997 | CN |
1166155 | Nov 1997 | CN |
1209776 | Mar 1999 | CN |
1289293 | Mar 2001 | CN |
1313197 | Sep 2001 | CN |
1313198 | Sep 2001 | CN |
1085151 | May 2002 | CN |
1376115 | Oct 2002 | CN |
1385312 | Dec 2002 | CN |
1385313 | Dec 2002 | CN |
1385314 | Dec 2002 | CN |
1397431 | Feb 2003 | CN |
1415482 | May 2003 | CN |
1415484 | May 2003 | CN |
1415485 | May 2003 | CN |
1469811 | Jan 2004 | CN |
1493462 | May 2004 | CN |
1636755 | Jul 2005 | CN |
1642746 | Jul 2005 | CN |
1663807 | Sep 2005 | CN |
1744993 | Mar 2006 | CN |
1744994 | Mar 2006 | CN |
1762720 | Apr 2006 | CN |
1785685 | Jun 2006 | CN |
1799850 | Jul 2006 | CN |
1799851 | Jul 2006 | CN |
1820940 | Aug 2006 | CN |
1827386 | Sep 2006 | CN |
1829607 | Sep 2006 | CN |
1835867 | Sep 2006 | CN |
1865012 | Nov 2006 | CN |
1914045 | Feb 2007 | CN |
1990261 | Jul 2007 | CN |
1331684 | Aug 2007 | CN |
101028771 | Sep 2007 | CN |
101035683 | Sep 2007 | CN |
101039807 | Sep 2007 | CN |
101060985 | Oct 2007 | CN |
101077664 | Nov 2007 | CN |
101128324 | Feb 2008 | CN |
201030694 | Mar 2008 | CN |
101229724 | Jul 2008 | CN |
101264701 | Sep 2008 | CN |
101264702 | Sep 2008 | CN |
101310989 | Nov 2008 | CN |
101327696 | Dec 2008 | CN |
101356061 | Jan 2009 | CN |
101516628 | Aug 2009 | CN |
101758676 | Jun 2010 | CN |
102616025 | Aug 2012 | CN |
202895934 | Apr 2013 | CN |
214466 | Mar 1987 | EP |
0329369 | Aug 1989 | EP |
0511602 | Nov 1992 | EP |
0555954 | Aug 1993 | EP |
0593269 | Apr 1994 | EP |
0629509 | Dec 1994 | EP |
0635375 | Jan 1995 | EP |
0644506 | Mar 1995 | EP |
0684143 | Nov 1995 | EP |
0703089 | Mar 1996 | EP |
734878 | Oct 1996 | EP |
0742103 | Nov 1996 | EP |
0760291 | Mar 1997 | EP |
0863021 | Sep 1998 | EP |
0644506 | Apr 1999 | EP |
0936076 | Aug 1999 | EP |
0940263 | Sep 1999 | EP |
0958931 | Nov 1999 | EP |
0997300 | May 2000 | EP |
1167049 | Jan 2002 | EP |
1170139 | Jan 2002 | EP |
1199179 | Apr 2002 | EP |
1284196 | Feb 2003 | EP |
1502758 | Feb 2005 | EP |
1516739 | Mar 2005 | EP |
1552949 | Jul 2005 | EP |
1575781 | Sep 2005 | EP |
1700705 | Sep 2006 | EP |
1707395 | Oct 2006 | EP |
1829696 | Sep 2007 | EP |
2059396 | May 2009 | EP |
2236303 | Oct 2010 | EP |
2236304 | Oct 2010 | EP |
2448762 | Sep 2013 | EP |
S56-20944 | Feb 1981 | JP |
S58-139415 | Sep 1983 | JP |
S58-220783 | Dec 1983 | JP |
S59-78879 | May 1984 | JP |
S60-99692 | Jun 1985 | JP |
S61-179776 | Aug 1986 | JP |
S62-173944 | Nov 1987 | JP |
S63-81063 | May 1988 | JP |
S63-166557 | Jul 1988 | JP |
S63-203348 | Aug 1988 | JP |
S63-254085 | Oct 1988 | JP |
H01-195088 | Aug 1989 | JP |
H01-146945 | Oct 1989 | JP |
H02-56664 | Apr 1990 | JP |
H02-56665 | Apr 1990 | JP |
H02-56666 | Apr 1990 | JP |
H02-147272 | Jun 1990 | JP |
H03-14865 | Jan 1991 | JP |
H03-63155 | Mar 1991 | JP |
H03-93584 | Apr 1991 | JP |
H03-151261 | Jun 1991 | JP |
H03-118672 | Dec 1991 | JP |
H03-120680 | Dec 1991 | JP |
H11-263055 | Dec 1991 | JP |
H04-16113 | Feb 1992 | JP |
H04-37575 | Feb 1992 | JP |
H04-133756 | May 1992 | JP |
H04-168086 | Jun 1992 | JP |
H05-16342 | Mar 1993 | JP |
H05-18853 | Mar 1993 | JP |
H05-63067 | Mar 1993 | JP |
H05-104840 | Apr 1993 | JP |
H05-155067 | Jun 1993 | JP |
H05-54225 | Jul 1993 | JP |
H05-78565 | Oct 1993 | JP |
H05-80765 | Nov 1993 | JP |
H05-294051 | Nov 1993 | JP |
H05-301435 | Nov 1993 | JP |
H06-12053 | Feb 1994 | JP |
H06-52560 | Feb 1994 | JP |
H06-21953 | Mar 1994 | JP |
H06-122239 | May 1994 | JP |
H06-122249 | May 1994 | JP |
H06-124406 | May 1994 | JP |
H06-127094 | May 1994 | JP |
H06-152907 | May 1994 | JP |
H06-53560 | Jul 1994 | JP |
H06-183117 | Jul 1994 | JP |
H06-191081 | Jul 1994 | JP |
H06-210889 | Aug 1994 | JP |
H06-255145 | Sep 1994 | JP |
H06-74348 | Oct 1994 | JP |
H06-328800 | Nov 1994 | JP |
H07-1782 | Jan 1995 | JP |
H07-1805 | Jan 1995 | JP |
H07-9743 | Jan 1995 | JP |
H07-20725 | Jan 1995 | JP |
H07-25122 | Jan 1995 | JP |
H07-25123 | Jan 1995 | JP |
H07-47737 | Feb 1995 | JP |
H07-61009 | Mar 1995 | JP |
H07-68814 | Mar 1995 | JP |
H07-68877 | Mar 1995 | JP |
H07-069497 | Mar 1995 | JP |
H07-89115 | Apr 1995 | JP |
H07-89196 | Apr 1995 | JP |
H07-101133 | Apr 1995 | JP |
H07-108702 | Apr 1995 | JP |
H07-108730 | Apr 1995 | JP |
H07-137327 | May 1995 | JP |
H07-40456 | Jul 1995 | JP |
H07-214876 | Aug 1995 | JP |
H07-237314 | Sep 1995 | JP |
H07-251539 | Oct 1995 | JP |
H07-276695 | Oct 1995 | JP |
H07-290803 | Nov 1995 | JP |
H07-314862 | Dec 1995 | JP |
H07-314864 | Dec 1995 | JP |
H07-314865 | Dec 1995 | JP |
H07-314866 | Dec 1995 | JP |
H08-25768 | Jan 1996 | JP |
H08-39909 | Feb 1996 | JP |
H08-058211 | Mar 1996 | JP |
H08-90887 | Apr 1996 | JP |
H08-118738 | May 1996 | JP |
H08-165035 | Jun 1996 | JP |
H08-216461 | Aug 1996 | JP |
H08-252964 | Oct 1996 | JP |
H08-267839 | Oct 1996 | JP |
H08-290618 | Nov 1996 | JP |
H08-290681 | Nov 1996 | JP |
H09-39347 | Feb 1997 | JP |
2596263 | Apr 1997 | JP |
H09-109533 | Apr 1997 | JP |
H09-118044 | May 1997 | JP |
H09-123579 | May 1997 | JP |
H09-134557 | May 1997 | JP |
H09-141986 | Jun 1997 | JP |
H09-141997 | Jun 1997 | JP |
H09-188049 | Jul 1997 | JP |
H09-188050 | Jul 1997 | JP |
H09-240158 | Sep 1997 | JP |
H10-56604 | Feb 1998 | JP |
H10-181063 | Jul 1998 | JP |
H10-301701 | Nov 1998 | JP |
H11-78188 | Mar 1999 | JP |
H11-78189 | Mar 1999 | JP |
H11-91144 | Apr 1999 | JP |
H11-105351 | Apr 1999 | JP |
H11-129563 | May 1999 | JP |
H11-263056 | Sep 1999 | JP |
2000-006481 | Jan 2000 | JP |
2000-006501 | Jan 2000 | JP |
2000-025251 | Jan 2000 | JP |
2000-025316 | Jan 2000 | JP |
2998617 | Jan 2000 | JP |
2000-043336 | Feb 2000 | JP |
2000-043337 | Feb 2000 | JP |
2000-076372 | Mar 2000 | JP |
2000-085224 | Mar 2000 | JP |
2000-103129 | Apr 2000 | JP |
2000-103131 | Apr 2000 | JP |
3031439 | Apr 2000 | JP |
2000-135843 | May 2000 | JP |
2000-198258 | Jul 2000 | JP |
2000-211193 | Aug 2000 | JP |
2000-229750 | Aug 2000 | JP |
2001-011594 | Jan 2001 | JP |
2001-048389 | Feb 2001 | JP |
2001-088359 | Apr 2001 | JP |
2001-121797 | May 2001 | JP |
3207860 | Sep 2001 | JP |
2001-310540 | Nov 2001 | JP |
2001-319447 | Nov 2001 | JP |
2002-042441 | Feb 2002 | JP |
2002-053248 | Feb 2002 | JP |
3266736 | Mar 2002 | JP |
3266739 | Mar 2002 | JP |
2002-103762 | Apr 2002 | JP |
2002-104568 | Apr 2002 | JP |
2002-166605 | Jun 2002 | JP |
2002-166606 | Jun 2002 | JP |
2002-167084 | Jun 2002 | JP |
2002-179300 | Jun 2002 | JP |
2002-192769 | Jul 2002 | JP |
2002-308481 | Oct 2002 | JP |
2002-308518 | Oct 2002 | JP |
2002-367333 | Dec 2002 | JP |
3357128 | Dec 2002 | JP |
2003-011454 | Jan 2003 | JP |
2003-026164 | Jan 2003 | JP |
2003-048337 | Feb 2003 | JP |
2003-506235 | Feb 2003 | JP |
3378622 | Feb 2003 | JP |
2003-072127 | Mar 2003 | JP |
2003-145902 | May 2003 | JP |
3426983 | Jul 2003 | JP |
2003-251902 | Sep 2003 | JP |
2003-251904 | Sep 2003 | JP |
2003-285522 | Oct 2003 | JP |
2004-018077 | Jan 2004 | JP |
2004-155150 | Jun 2004 | JP |
3543659 | Jul 2004 | JP |
2004-255656 | Sep 2004 | JP |
3564848 | Sep 2004 | JP |
3567469 | Sep 2004 | JP |
2004-291591 | Oct 2004 | JP |
2004-323241 | Nov 2004 | JP |
3106187 | Dec 2004 | JP |
2005-059504 | Mar 2005 | JP |
2005-088597 | Apr 2005 | JP |
2005-178206 | Jul 2005 | JP |
2005-231203 | Sep 2005 | JP |
2005-280008 | Oct 2005 | JP |
2005-297348 | Oct 2005 | JP |
2005-298031 | Oct 2005 | JP |
2006-021432 | Jan 2006 | JP |
2006-096030 | Apr 2006 | JP |
2006-512224 | Apr 2006 | JP |
2006-142835 | Jun 2006 | JP |
2006-168974 | Jun 2006 | JP |
2006-182034 | Jul 2006 | JP |
2006-224675 | Aug 2006 | JP |
2006-240310 | Sep 2006 | JP |
2006-248059 | Sep 2006 | JP |
2006-264337 | Oct 2006 | JP |
2006-272895 | Oct 2006 | JP |
2006-272977 | Oct 2006 | JP |
2006-289991 | Oct 2006 | JP |
2007-070028 | Mar 2007 | JP |
2007-111863 | May 2007 | JP |
2007-196654 | Aug 2007 | JP |
2007-230155 | Sep 2007 | JP |
2007-268815 | Oct 2007 | JP |
2007-296863 | Nov 2007 | JP |
4003068 | Nov 2007 | JP |
2007-313681 | Dec 2007 | JP |
2008-044180 | Feb 2008 | JP |
2008-062474 | Mar 2008 | JP |
4061507 | Mar 2008 | JP |
2008-080668 | Apr 2008 | JP |
2008-083432 | Apr 2008 | JP |
2008-094103 | Apr 2008 | JP |
2008-509823 | Apr 2008 | JP |
2008-213462 | Sep 2008 | JP |
2008-229855 | Oct 2008 | JP |
2008-254384 | Oct 2008 | JP |
2008-265180 | Nov 2008 | JP |
2008-265278 | Nov 2008 | JP |
2008-279678 | Nov 2008 | JP |
2008-307703 | Dec 2008 | JP |
2009-001020 | Jan 2009 | JP |
2009-028976 | Feb 2009 | JP |
2009-509812 | Mar 2009 | JP |
2009-184832 | Aug 2009 | JP |
2009-214431 | Sep 2009 | JP |
2009-215083 | Sep 2009 | JP |
2010-234697 | Oct 2010 | JP |
4571626 | Oct 2010 | JP |
2011-011401 | Jan 2011 | JP |
2011-011407 | Jan 2011 | JP |
2011-110843 | Jun 2011 | JP |
2011-110845 | Jun 2011 | JP |
2011-110848 | Jun 2011 | JP |
2007-0091073 | Sep 2007 | KR |
2297333 | Apr 2007 | RU |
200827179 | Jul 2008 | TW |
9616812 | Jun 1996 | WO |
2000032401 | Jun 2000 | WO |
0110649 | Feb 2001 | WO |
0232680 | Apr 2002 | WO |
03080350 | Oct 2003 | WO |
2004058509 | Jul 2004 | WO |
2005101306 | Oct 2005 | WO |
2005120844 | Dec 2005 | WO |
20060013466 | Feb 2006 | WO |
2006024913 | Mar 2006 | WO |
2006033431 | Mar 2006 | WO |
2006033432 | Mar 2006 | WO |
2006090842 | Aug 2006 | WO |
2008029931 | Mar 2008 | WO |
2009107534 | Sep 2009 | WO |
2010-113782 | Oct 2010 | WO |
2010113445 | Oct 2010 | WO |
Entry |
---|
Photographs of a Brother Kogyo Kabushiki Kaisha TX series cassette sold in the United States at least around Jan. 6, 1993. |
Photographs of a Brother Kogyo Kabushiki Kaisha TC series cassette sold in the United States at least around Dec. 28, 1988. |
Supplemental List of Patents or Patent Applications Treated as Related dated Aug. 6, 2018, pp. 4. |
U.S. Appl. No. 12/644,373, Abandoned. |
U.S. Appl. No. 12/644,413, Abandoned. |
U.S. Appl. No. 12/644,451, Patented. |
U.S. Appl. No. 12/644,481, Patented. |
U.S. Appl. No. 12/644,525, Patented. |
U.S. Appl. No. 12/644,555, Patented. |
U.S. Appl. No. 12/644,572, Patented. |
U.S. Appl. No. 12/718,129, Patented. |
U.S. Appl. No. 12/732,247, Abandoned. |
U.S. Appl. No. 12/732,257, Patented. |
U.S. Appl. No. 12/732,404, Patented. |
U.S. Appl. No. 12/732,457, Patented. |
U.S. Appl. No. 12/732,647, Patented. |
U.S. Appl. No. 12/732,747, Patented. |
U.S. Appl. No. 12/732,828, Patented. |
U.S. Appl. No. 12/817,556, Abandoned. |
U.S. Appl. No. 12/873,633, Abandoned. |
U.S. Appl. No. 13/240,216, Patented. |
U.S. Appl. No. 13/240,266, Patented. |
U.S. Appl. No. 13/240,322, Patented. |
U.S. Appl. No. 13/430,033, Patented. |
U.S. Appl. No. 13/430,080, Abandoned. |
U.S. Appl. No. 13/431,277, Patented. |
U.S. Appl. No. 13/431,350, Patented. |
U.S. Appl. No. 13/431,371, Patented. |
U.S. Appl. No. 13/755,174, Patented. |
U.S. Appl. No. 13/848,750, Patented. |
U.S. Appl. No. 13/934,512, Patented. |
U.S. Appl. No. 14/141,568, Patented. |
U.S. Appl. No. 14/141,576, Patented. |
U.S. Appl. No. 14/141,673, Patented. |
U.S. Appl. No. 14/226,165, Patented. |
U.S. Appl. No. 14/226,201, Patented. |
U.S. Appl. No. 14/226,256, Patented. |
U.S. Appl. No. 14/226,259, Patented. |
U.S. Appl. No. 14/226,262, Patented. |
U.S. Appl. No. 14/226,289, Abandoned. |
U.S. Appl. No. 14/226,325, Patented. |
U.S. Appl. No. 14/226,367, Patented. |
U.S. Appl. No. 14/226,373, Patented. |
U.S. Appl. No. 14/226,380, Patented. |
U.S. Appl. No. 14/226,386, Patented. |
U.S. Appl. No. 14/226,402, Patented. |
U.S. Appl. No. 14/226,411, Patented. |
U.S. Appl. No. 14/226,417, Patented. |
U.S. Appl. No. 14/226,424, Abandoned. |
U.S. Appl. No. 14/226,428, Patented. |
U.S. Appl. No. 14/641,681, Patented. |
U.S. Appl. No. 14/643,865, Patented. |
U.S. Appl. No. 14/742,077, Pending. |
U.S. Appl. No. 14/755,141, Patented. |
U.S. Appl. No. 14/867,877, Patented. |
U.S. Appl. No. 14/920,398, Patented. |
U.S. Appl. No. 15/130,109, Patented. |
U.S. Appl. No. 15/226,188, Pending. |
U.S. Appl. No. 15/250,310, Allowed. |
U.S. Appl. No. 15/276,474, Allowed. |
U.S. Appl. No. 15/276,599, Patented. |
U.S. Appl. No. 15/357,004, Pending. |
U.S. Appl. No. 15/389,497, Pending. |
U.S. Appl. No. 15/715,329, Pending. |
U.S. Appl. No. 15/832,531, Pending. |
U.S. Appl. No. 15/866,000, Pending. |
Mar. 5, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007088. |
Mar. 16, 2010 (PCT) International Search Report and Written Opinion issued in International Application No. PCT/JP2009/071812. |
Mar. 16, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/050253. |
Mar. 23, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/070971. |
Mar. 23, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/071568. |
May 20, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007085. |
May 20, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007086. |
May 20, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007087. |
May 21, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007089. |
May 21, 2010 Extended European Search Report in European Patent Application No. 09180351. |
May 21, 2010 Extended European Search Report in European Patent Application No. 09180354. |
Jun. 22, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/055305. |
Jun. 22, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/055310. |
Jun. 22, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/055311. |
Jun. 22, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/055324. |
Jun. 22, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/055326. |
Jun. 28, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/002170. |
Jul. 2, 2010 Extended European Search Report in European Patent Application No. 10157994. |
Jul. 12, 2010 Extended European Search Report in European Patent Application No. 10158024. |
Jul. 30, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/002165. |
Jul. 30, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/002169. |
Aug. 3, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/002154. |
Aug. 3, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/002161. |
Aug. 24, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/004076. |
Oct. 12, 2010 Extended European Search Report in European Patent Application No. 10155348. |
Dec. 3, 2010 Extended European Search Report in European Patent Application No. 10175769. |
Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Application No. 2008-331634. |
Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Application No. 2009-088227. |
Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Application No. 2009-088238. |
Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Application No. 2009-088441. |
Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Application No. 2009-088460. |
Oct. 11, 2011—(JP) Office Action issued in Japanese Patent Application No. 2009-088440. |
Nov. 15, 2011 (JP) Office Action issued in Japanese Patent Application No. 2009-088241. |
Nov. 15, 2011 (PCT) International Preliminary Report on Patentability issued in PCT/JP2009/071568. |
Nov. 15, 2011 (PCT) International Preliminary Report on Patentability issued in PCT/JP2010/050253. |
Nov. 15, 2011 (PCT) International Preliminary Report on Patentability issued in PCT/JP2010/055324. |
Nov. 15, 2011 (PCT) International Preliminary Report on Patentability issued in PCT/JP2010/055326. |
Jan. 17, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-088456. |
Feb. 14, 2012 (PCT) International Preliminary Report on Patentability in International Application No. PCT/JP2010/055305. |
Feb. 14, 2012 (PCT) International Preliminary Report on Patentability in International Application No. PCT/JP2010/055311. |
Mar. 7, 2012 U.S. Office Action issued in U.S. Appl. No. 12/732,404. |
Mar. 8, 2012 U.S. Office Action issued in U.S. Appl. No. 12/732,247. |
Mar. 9, 2012 U.S. Office Action issued in U.S. Appl. No. 12/732,257. |
Mar. 26, 2012 U.S. Office Action issued in U.S. Appl. No. 12/732,457. |
Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2008-331638. |
Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2008-331639. |
Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-156405. |
Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-156406. |
Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-156407. |
Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-270221. |
Oct. 10, 2014—U.S. Notice of Allowance—U.S. Appl. No. 12/732,457. |
Oct. 27, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/141,576. |
Oct. 30, 2014 U.S. Final Office Action App—U.S. Appl. No. 14/226,256. |
Sep. 2, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,165. |
Sep. 9, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,380. |
Sep. 9, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,417. |
Sep. 10, 2014—U.S. Notice of Allowance—U.S. Appl. No. 13/934,512. |
Sep. 11, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 13/848,750. |
Sep. 12, 2014—U.S. Final Office Action—U.S. Appl. No. 13/431,371. |
Sep. 12, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,386. |
Sep. 22, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/141,673. |
Sep. 24, 2014—(JP) Notification of Rejection—App 2013-142488—Eng Tran. |
Sep. 24, 2014—U.S. Notice of Allowance—U.S. Appl. No. 13/431,277. |
Sep. 25, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,424. |
Jan. 17, 2014 (CN) Office Action issued in Chinese Patent Application No. 201210071810.7. |
Jan. 22, 2014 (CN) Office Action issued in Chinese Patent Application No. 201010274378.2. |
Feb. 5, 2014 (EP) Extended European Search Report issued in European Patent Application No. 09852818.5. |
Mar. 10, 2014 U.S. Non-Final Office Action issued in U.S. Appl. No. 13/430,080. |
Mar. 13, 2014 (CN) Office Action issued in Chinese Application No. 201010150928. |
Mar. 25, 2014 U.S. Non-Final Office Action issued in U.S. Appl. No. 13/431,371. |
Mar. 26, 2014 U.S. Final Office Action issued in U.S. Appl. No. 12/732,457. |
Mar. 27, 2014 U.S. Notice of Allowance issued in U.S. Appl. No. 13/240,266. |
Apr. 1, 2014 (JP) Office Action issued in Japanese Patent Application No. 2013-035990. |
Apr. 2, 2014 (CN) Office Action issued in Chinese Patent Application No. 201210070968. |
Apr. 10, 2014 (CN) Office Action issued in Chinese Application No. 201010150109. |
Apr. 11, 2014 U.S. Notice of Allowance issued in U.S. Appl. No. 12/644,572. |
Apr. 15, 2014 (AU) Office Action issued in Australian Patent Application No. 2009332345. |
Apr. 17, 2014 (RU) Office Action issued in Russian Patent Application No. 2011143817. |
Apr. 25, 2014 (MX) Mexican Office Action issued in Mexican Application No. MX/a/2011/013553. |
May 6, 2014 (CN) Chinese Office Action issued in Chinese Application No. 201010150087.2. |
May 6, 2014 (CN) Chinese Office Action issued in Chinese Application No. 201010150878.5. |
May 6, 2014 U.S. Notice of Allowance issued in U.S. Appl. No. 13/934,512. |
May 7, 2014 U.S. Final Office Action issued in U.S. Appl. No. 13/240,216. |
May 9, 2014 (VN) Office Action issued in Vietnamese Patent Application No. 1-2011-02491. |
May 13, 2014 (CN) Chinese Office Action issued in Chinese Application No. 201080013339.5. |
May 21, 2014 (EP) Extended European Search Report issued in European Application No. 10758552.3. |
May 22, 2014 U.S. Non-Final Office Action issued in U.S. Appl. No. 14/226,256. |
Jun. 2, 2014 (AU) Office action issued in Australian Patent Application No. 2010231425. |
Jun. 10, 2014 (JP) Japanese Office Action issued Japanese Application No. 2013-142488. |
Jun. 20, 2014 (CN) Office action issued in Chinese Patent Application No. 201210070147. |
Jun. 24, 2014 (JP) Japanese Office Action issued Japanese Application No. 2013-153250. |
Jun. 24, 2014 (JP) Japanese Office Action issued Japanese Application No. 2013-153340. |
Apr. 1, 2015—U.S. Notice of Allowance—U.S. Appl. No. 12/732,457. |
Apr. 1, 2015—U.S. Notice of Allowance—U.S. Appl. No. 13/430,033. |
Apr. 2, 2015 (EP) Office Action in Application No. 10711776.4. |
Apr. 7, 2015 (TW) Office Action in Application No. 99132600. |
Apr. 9, 2015—(TW) Office Action—App 099132598—Eng. Tran. |
Apr. 9, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/641,681. |
Apr. 9, 2015—U.S. Notice of Allowance—U.S. Appl. No. 13/431,277. |
Apr. 10, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 13/430,080. |
Supplemental List of Patents or Patent Applications Treated as Related dated May 24, 2019, pp. 4. |
Supplemental List of Patents or Patent Applications Treated as Related dated Mar. 20, 2019, pp. 4. |
Apr. 13, 2015—(CN) Notification of Third Office Action—App 201210071810.7—Eng. Tran. |
Apr. 14, 2015—U.S. Notice of Allowance—U.S. Appl. No. 13/240,266. |
Apr. 17, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,367. |
Apr. 20, 2015 (AU) Office Action in Application No. 2010231426. |
Apr. 21, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,428. |
Aug. 4, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/141,576. |
Aug. 6, 2015—(CN) Office Action—App 201410046812.X—Eng Tran. |
Aug. 11, 2015—(AU) Patent Examination Report 1—App 2014221250. |
Aug. 13, 2015—U.S. Final Office Action—U.S. Appl. No. 13/431,371. |
Aug. 24, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,402. |
Feb. 6, 2015—(EP) Extended Search Report—App. 14189221.6. |
Feb. 10, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,380. |
Feb. 12, 2015—U.S. Final Office Action—U.S. Appl. No. 12/732,257. |
Feb. 12, 2015—U.S. Final Office Action—U.S. Appl. No. 13/431,350. |
Feb. 12, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,417. |
Feb. 13, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 13/240,322. |
Feb. 17, 2015—U.S. Final Office Action—U.S. Appl. No. 14/141,673. |
Feb. 19, 2015 (CA) Office Action in Application No. 2755885. |
Jan. 2, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,262. |
Jan. 5, 2015—U.S. Non-final Office Action—U.S. Appl. No. 14/226,201. |
Jan. 16, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,402. |
Jan. 20, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 13/431,371. |
Jan. 22, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,411. |
Jan. 22, 2015—U.S. Notice of Allowance—U.S. Appl. No. 12/732,457. |
Jan. 23, 2015 (AU) Office Action in Application No. 2010231426. |
Jan. 28, 2015—U.S. Notice of Allowance—U.S. Appl. No. 13/431,277. |
Jan. 29, 2015—(TW) Office Action—App 099132599. |
Jul. 7, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/141,673. |
Jul. 16, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,417. |
Jul. 31, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,411. |
Jun. 1, 2015—(CN) Notification of First Office Action—App 201310717842.4—Eng Tran. |
Jun. 1, 2015—(CN) Notification of First Office Action—App 201310717871.0—Eng Tran. |
Jun. 2, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,262. |
Jun. 2, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,256. |
Jun. 5, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,380. |
Jun. 17, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,325. |
Jun. 19, 2015—(CN) Notification of First Office Action—App 201310659875.8—Eng Tran. |
Jun. 25, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 13/431,350. |
Mar. 2, 2015 (TW) Office Action in Application No. 101110368. |
Mar. 4, 2015—U.S. Final Office Action—U.S. Appl. No. 14/141,576. |
Mar. 4, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,386. |
Mar. 6, 2015 (AU) Office Action in Application No. 2010231425. |
Mar. 6, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,424. |
Mar. 10, 2015—(JP) Office Action in Application No. 2014-095027. |
Mar. 12, 2015—(EP) Search Report in Application No. 14156840.2. |
Mar. 13, 2015—U.S. Notice of Allowance in U.S. Appl. No. 14/226,165. |
Mar. 17, 2015—U.S. Notice of Allowance—U.S. Appl. No. 13/848,750. |
Mar. 23, 2015 U.S. Notice of Allowance in U.S. Appl. No. 13/934,512. |
May 1, 2015—U.S. Notice of Allowance—U.S. Appl. No. 12/644,572. |
May 6, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,259. |
U.S. Official Action dated Oct. 30, 2018 from related U.S. Appl. No. 15/832,531. |
Supplemental List of Patents or Patent Applications Treated as Related dated Nov. 29, 2018, pp. 4. |
Feb. 16, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/867,877. |
Feb. 24, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,262. |
Feb. 25, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/141,568. |
Feb. 22, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,386. |
Feb. 23, 2016—U.S. Final Office Action—U.S. Appl. No. 14/226,424. |
Mar. 4, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/643,865. |
Mar. 15, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,367. |
Mar. 29, 2016—U.S. Notice of Allowance—U.S. Appl. No. 13/431,350. |
Mar. 29, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/641,681. |
Apr. 18, 2016—U.S. Final Office Action—U.S. Appl. No. 14/226,373. |
Apr. 19, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,417. |
Apr. 21, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,428. |
May 25, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/755,141. |
Aug. 16, 2016—U.S. Notice of Allowance—U.S. Appl. No. 13/240,322. |
Jun. 1, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,259 (no new art). |
Jun. 2, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,165. |
Jul. 4, 2017—(CN) Office Action—App 201510714069.5 with English Translation. |
Dec. 28, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,380. |
Jan. 8, 2018—U.S. Non-Final Office Action—U.S. Appl. No. 15/226,188. |
Nov. 6, 2017—(CN) Office Action—App 201610344359.X with English Translation. |
Jul. 5, 2017—U.S. Office Action—U.S. Appl. No. 15/357,004. |
Dec. 20, 2017—U.S. Notice of Allowance—U.S. Appl. No. 15/389,497. |
Aug. 25, 2017—U.S. Office Action—U.S. Appl. No. 15/389,497. |
Sep. 22, 2016—(KR) Notice of Final Rejection—App 10-2011-7021961, Eng Tran. |
List of Patents or Patent Applications Treated as Related dated May 16, 2018, 4 pages. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156357. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156371. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156398. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156403. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-270325. |
Apr. 8, 2013 (EP) European Search Report issued in European Patent Application No. 09852278.2. |
Apr. 15, 2013 (CN) Office Action issued in Chinese Patent Application No. 201080013099.9. |
Apr. 19, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262678.6. |
Apr. 23, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-73748. |
Apr. 23, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-73750. |
Apr. 23, 2013 U.S. Office Action in U.S. Appl. No. 13/430,080. |
Apr. 26, 2013 (CN)Office Action issued in Chinese Patent Application No. 200910262676.7. |
Apr. 26, 2013 U.S. Office Action in U.S. Appl. No. 13/755,174. |
May 2, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262677.1. |
May 2, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262679.0. |
May 2, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262680.3. |
May 7, 2013 U.S. Office Action in U.S. Appl. No. 12/732,404. |
May 14, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-073747. |
May 14, 2013 U.S. Office Action in U.S. Appl. No. 13/431,350. |
May 14, 2013 U.S. Office Action in U.S. Appl. No. 13/431,371. |
May 21, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-154698. |
May 21, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-154699. |
May 21, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-073749. |
May 21, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-073755. |
May 21, 2013 U.S. Office Action in U.S. Appl. No. 12/732,257. |
May 21, 2013 U.S. Office Action in U.S. Appl. No. 12/732,828. |
May 22, 2013 U.S. Office Action in U.S. Appl. No. 12/644,413. |
May 22, 2013 U.S. Office Action in U.S. Appl. No. 12/873,633. |
May 28, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-073751. |
May 30, 2013 U.S. Office Action in U.S. Appl. No. 12/732,247. |
Jun. 4, 2013 (CN) Office Action issued in Chinese Patent Application No. 200980161443.6. |
Jun. 4, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-073754. |
Jun. 19, 2013 U.S. Office Action in U.S. Appl. No. 12/644,373. |
Jul. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156281. |
Jul. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156350. |
Jul. 10, 2013 (NZ) (Office Action issued in New Zealand Patent Application No. 596044. |
Jul. 16, 2013 U.S. Office Action issued in U.S. Appl. No. 12/817,556. |
Aug. 1, 2013 U.S. Office Action in U.S. Appl. No. 12/732,747. |
Aug. 7, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262675.2. |
Aug. 9, 2013 U.S. Office Action in U.S. Appl. No. 13/431,350. |
Aug. 22, 2013 (CN) Office Action issued in Chinese Patent Application No. 201080013339.5. |
Aug. 27, 2013 U.S. Office Action in U.S. Appl. No. 12/644,451. |
Aug. 27, 2013 U.S. Office Action in U.S. Appl. No. 12/644,572. |
Sep. 3, 2013 (CN) Office Action issued in Chinese Patent Application No. 201010150928.X. |
Sep. 3, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011-507143. |
Sep. 9, 2013 U.S. Office Action issued in U.S. Appl. No. 12/732,404. |
Sep. 11, 2013 U.S. Office Action in U.S. Appl. No. 13/430,080. |
Sep. 12, 2013 U.S. Office Action in U.S. Appl. No. 12/732,457. |
Sep. 12, 2013 U.S. Office Action in U.S. Appl. No. 12/732,828. |
Sep. 17, 2013 U.S. Office Action in U.S. Appl. No. 12/732,647. |
Sep. 22, 2013 (CN) Office Action issued in Chinese Patent Application No. 201010150109.5. |
Sep. 25, 2013 (NZ) Office Action issued in New Zealand Patent Application No. 596044. |
Sep. 26, 2013 (CN) Office Action issued in Chinese Patent Application No. 201010150090.4. |
Sep. 30, 2013 (CN) Office Action issued in Chinese Patent Application No. 201010150088.7. |
Oct. 1, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011-547222. |
Oct. 16, 2013 U.S. Non-Final Office Action issued in corresponding U.S. Appl. No. 13/240,266. |
Oct. 28, 2013 (CN) Office Action issued in Chinese Patent Application No. 200980158165.9. |
Nov. 1, 2013 (CN) Office Action Issued in Chinese Patent Application No. 200980161405.0. |
Nov. 6, 2013 (EP) European Search Report issued in European Patent Application No. 09842716.4. |
Nov. 8, 2013 (NZ) Office Action issued in New Zealand Patent Application No. 596044. |
Nov. 12, 2013 (EP) European Search Report issued in European Patent Application No. 10758310.6. |
Nov. 13, 2013 U.S. Office Action issued in corresponding U.S. Appl. No. 13/240,216. |
Nov. 19, 2013 U.S. Office Action issued in corresponding U.S. Appl. No. 13/934,512. |
Dec. 3, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011-507049. |
Dec. 16, 2013 (EP) Extended European Search Report in European Patent Application No. 12160324.5. |
Dec. 18, 2013 (EP) Extended European Search Report in European Patent Application No. 12160192.6. |
Dec. 19, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262674.8. |
Dec. 20, 2013 (EP) Extended European Search Report issued in European Patent Application No. 12161271.7. |
Dec. 23, 2013 U.S. Final Office Action issued in U.S. Appl. No. 13/431,350. |
Dec. 30, 2013 (CN) Office Action issued in Chinese Application No. 201010209208.6. |
Dec. 30, 2013 (CN) Office Action issued in Chinese Patent Application No. 201210070147.9. |
Aug. 12, 2014—(CN) Notice of Second Office Action—App 201210071810.7—Eng Tran. |
Aug. 26, 2014—(CN) Notice of Second Office Action—App 201010274378.2—Eng Tran. |
Aug. 28, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 13/240,216. |
Dec. 1, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,289. |
Dec. 5, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,325. |
Dec. 16, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,259. |
Dec. 16, 2014—U.S. Notice of Allowance—U.S. Appl. No. 13/240,216. |
Dec. 26, 2014—(CN) Office Action in Application No. 201080013339.5. |
Feb. 4, 2014 U.S. Notice of Allowance issued in U.S. Appl. No. 12/732,404. |
Feb. 19, 2014 U.S. Notice of Allowance issued in U.S. Appl. No. 12/732,747. |
Feb. 24, 2014 U.S. Notice of Allowance issued in U.S. Appl. No. 12/644,451. |
Jan. 3, 2014 (AU) Office Action issued in Australian Patent Application No. 2010231426. |
Jan. 27, 2014 U.S. Notice of Allowance issued in U.S. Appl. No. 12/732,828. |
Jul. 7, 2014 U.S. Final Office Action issued in U.S. Appl. No. 13/430,080. |
Jul. 8, 2014 (CA) Office Action issued in Canadian Patent Application No. 2,755,882. |
Jul. 8, 2014 (JP) Office Action issued in Japanese Patent Application No. 2013-153421. |
Jul. 8, 2014 (JP) Office Action issued in Japanese Patent Application No. 2013-153495. |
Jul. 18, 2014 U.S. Office Action in U.S. Appl. No. 13/431,350. |
Jul. 22, 2014 U.S. Office Action in U.S. Appl. No. 12/732,257. |
Jul. 25, 2014—(CN) Notice of Second Office Action—App 201010150090.4—Eng Tran. |
Jul. 28, 2014—(CN) Notice of Second Office Action—App 201010150088.7—Eng Tran. |
Jun. 26, 2014—(CN) Office Action—App 200980161405. |
Jun. 27, 2014 (AU) Office Action issued in Australian Patent Application No. 2010231426. |
Nov. 4, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,367. |
Nov. 4, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,428. |
Nov. 5, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,373. |
Nov. 12, 2014 (MX) Office Action in Application No. MX/a/2011/013553. |
Nov. 25, 2014—U.S. Notice of Allowance—U.S. Appl. No. 13/934,512. |
Oct. 2, 2014—U.S. Non-Final Office Action—U.S. Appl. No. 13/430,033. |
Apr. 4, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,402. |
Apr. 6, 2016—U.S. Notice of Allowance—U.S. Appl. No. 12/732,457. |
Apr. 6, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/141,673. |
Apr. 20, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,325. |
Aug. 1, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,325. |
Aug. 1, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,201. |
Aug. 16, 2016—U.S. Final Office Action—U.S. Appl. No. 14/226,262. |
Aug. 18, 2016—U.S. Final Office Action App—U.S. Appl. No. 14/226,386. |
Aug. 22, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/867,877. |
Aug. 25, 2016—U.S. Final Office Action—U.S. Appl. No. 14/141,568. |
Aug. 26, 2016—U.S. Notice of Allowance—U.S. Appl. No. 13/430,033. |
Dec. 1, 2016—U.S. Notice of Allowance and Fees Due—U.S. Appl. No. 14/226,262. |
Dec. 2, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/141,568. |
Feb. 11, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,402. |
Feb. 12, 2016—U.S. Notice of Allowance—U.S. Appl. No. 13/431,277. |
Jul. 5, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 15/130,109. |
Jun. 3, 2016—U.S. Final Office Action—U.S. Appl. No. 14/920,398. |
Jun. 16, 2016—U.S. Final Office Action—U.S. Appl. No. 14/226,380. |
Jun. 24, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,256. |
Mar. 31, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,411. |
May 2, 2016—U.S. Notice of Allowance—U.S. Appl. No. 12/644,572. |
May 3, 2016—U.S. Final Office Action—U.S. Appl. No. 14/226,289. |
May 12, 2016—U.S. Notice of Allowance—U.S. Appl. No. 13/934,512. |
May 17, 2016—U.S. Notice of Allowance—U.S. Appl. No. 13/848,750. |
May 23, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/641,681. |
Nov. 28, 2016—U.S. Final Office Action—U.S. Appl. No. 14/226,165. |
Oct. 3, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 15/250,310. |
Oct. 19, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,373. |
Oct. 19, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,380. |
Oct. 28, 2016—U.S. Notice of Allowance—U.S. Appl. No. 15/130,109. |
Sep. 14, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,325. |
Sep. 20, 2016—U.S. Final Office Action—U.S. Appl. No. 14/226,259. |
Sep. 23, 2016—U.S. Notice of Allowance—U.S. Appl. No. 13/240,322. |
Sep. 28, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 14/920,398. |
Apr. 20, 2018—U.S. Non-Final Office Action—U.S. Appl. No. 14/742,077. |
Nov. 27, 2017—U.S. Notice of Allowance—U.S. Appl. No. 15/276,474. |
May 3, 2018—U.S. Final Office Action—U.S. Appl. No. 15/226,188. |
Jan. 31, 2017—U.S. Office Action—U.S. Appl. No. 15/226,188. |
Jul. 16, 2014 U.S. Restriction requirement in U.S. Appl. No. 13/848,750. |
Sep. 11, 2014—U.S. Election Requirement—U.S. Appl. No. 13/240,322. |
Jun. 6, 2014 U.S. Restriction Requirement issued in corresponding U.S. Appl. No. 13/430,033. |
Feb. 8, 2018 U.S. Notice of Allowance—U.S. Appl. No. 15/250,310. |
Dec. 1, 2017 U.S. Notice of Allowance—U.S. Appl. No. 15/250,310. |
Sep. 25, 2017 U.S. Notice of Allowance—U.S. Appl. No. 15/250,310. |
Feb. 16, 2018 U.S. Notice of Allowance—U.S. Appl. No. 15/276,474. |
Jul. 14, 2017 U.S. Office Action—U.S. Appl. No. 15/276,474. |
Jun. 26, 2017 U.S. Notice of Allowance—U.S. Appl. No. 15/276,599. |
Apr. 27, 2018 U.S. Office Action—U.S. Appl. No. 15/832,531. |
Jan. 22, 2018 U.S. Final Office Action—U.S. Appl. No. 15/357,004. |
Mar. 30, 2012 U.S. Office Action issued in U.S. Appl. No. 12/644,451. |
Apr. 11, 2012 (PCT) International Preliminary Report on Patentability issued in PCT/JP2010/055310. |
Apr. 11, 2012 U.S. Office Action in U.S. Appl. No. 12/644,572. |
May 8, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-086239. |
May 10, 2012 U.S. Office Action in U.S. Appl. No. 13/431,371. |
May 22, 2012 (JP) Japanese Office Action issued in Japanese Patent Application No. 2010-041323. |
Jun. 4, 2012 U.S. Office Action in U.S. Appl. No. 13/431,350. |
Jun. 6, 2012 U.S. Office Action in U.S. Appl. No. 12/732,747. |
Jun. 8, 2012 U.S. Office Action in U.S. Appl. No. 13/431,277. |
Jun. 12, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-086222. |
Jun. 12, 2012 (JP) Office Action issued in Japanese Patent Application No. 2010-084499. |
Jun. 12, 2012 U.S. Office Action in U.S. Appl. No. 12/732,828. |
Jun. 15, 2012 U.S. Office Action in U.S. Appl. No. 12/732,404. |
Jul. 3, 2012 (JP) Office Action issued in Japanese Patent Application No. 2010-084500. |
Jul. 3, 2012 (JP) Office Action issued in Japanese Patent Application No. 2010-084501. |
Jul. 3, 2012 (JP) Office Action issued in Japanese Patent Application No. 2010-084502. |
Jul. 10, 2012 (PCT) International Preliminary Report on Patentability issued in PCT/JP2009/070971. |
Jul. 13, 2012 U.S. Office Action in U.S. Appl. No. 12/644,413. |
Jul. 20, 2012 U.S. Office Action in U.S. Appl. No. 12/817,556. |
Jul. 30, 2012 U.S. Final Office Action in U.S. Appl. No. 12/732,247. |
Aug. 3, 2012 U.S. Office Action in U.S. Appl. No. 12/644,373. |
Aug. 14, 2012 (PCT) International Preliminary Report on Patentability issued in PCT/JP2009/071812. |
Aug. 27, 2012 U.S. Office Action in U.S. Appl. No. 12/644,572. |
Aug. 28, 2012 U.S. Office Action in U.S. Appl. No. 12/644,451. |
Aug. 28, 2012 U.S. Office Action in U.S. Appl. No. 12/732,257. |
Aug. 28, 2012 U.S. Office Action in U.S. Appl. No. 12/732,457. |
Aug. 30, 2012 U.S. Office Action in U.S. Appl. No. 12/732,647. |
Sep. 6, 2012 (EP) European Communication issued in European Patent Application No. 10711477.9. |
Sep. 11, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-086172. |
Sep. 11, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-088449. |
Sep. 28, 2012 (NZ) Examination Report issued in New Zealand Patent Application No. 596044. |
Oct. 16, 2012 U.S. Office Action in U.S. Appl. No. 12/873,633. |
Oct. 23, 2012 U.S. Office Action in U.S. Appl. No. 12/732,404. |
Nov. 13, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-270056. |
Nov. 13, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-297502. |
Dec. 18, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-156369. |
Nov. 22, 2013 (EP) Office Action issued in European Patent Application No. 10711776.4. |
Nov. 26, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011-507142. |
Jan. 17, 2013 U.S. Office Action in U.S. Appl. No. 12/732,747. |
Jan. 22, 2013 U.S. Office Action in U.S. Appl. No. 12/732,247. |
Jan. 29, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011-506968. |
Jan. 30, 2013 U.S. Office Action in U.S. Appl. No. 13/431,277. |
Feb. 28, 2013 U.S. Office Action in U.S. Appl. No. 12/817,556. |
Mar. 1, 2013 U.S. Office Action in U.S. Appl. No. 12/732,647. |
Mar. 8, 2013 (CN) Office Action issued in Chinese Patent Application No. 200980158165.9. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No, 2009-156399. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No, 2009-156404. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156281. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156350. |
Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156355. |
May 6, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,373. |
May 19, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,201. |
May 19, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,289. |
May 20, 2015—U.S. Notice of Allowance—U.S. Appl. No. 13/848,750. |
May 22, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 12/732,257. |
May 26, 2015—(CN) Office Action—App 201310659625.4. |
May 29, 2015—(MY) Substantive Examination Adverse Report—App. PI 2013702520—Eng Tran. |
May 29, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,165. |
Sep. 1, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,259. |
Sep. 8, 2015—(JP) Office Action—App 2014-210427—Eng Tran. |
Sep. 8, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/141,673. |
Sep. 9, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,386. |
Jul. 16, 2013 U.S. Office Action in U.S. Appl. No. 12/817,556. |
Mar. 23, 2015—U.S. Notice of Allowance in Application No. 13/934,512. |
Sep. 17, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,424. |
Sep. 18, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,428. |
Oct. 1, 2015—U.S. Notice of Allowance—U.S. Appl. No. 12/732,457. |
Oct. 5, 2015—U.S. Notice of Allowance—U.S. Appl. No. 12/644,572. |
Oct. 5, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/141,673. |
Oct. 7, 2015—U.S. Final Office Action—U.S. Appl. No. 131240,322. |
Oct. 13, 2015—U.S. Notice of Allowance—U.S. Appl. No. 13/430,033. |
Oct. 20, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,201. |
Oct. 22, 2015—U.S. Final Office Action—U.S. Appl. No. 14/641,681. |
Sep. 2, 2015—(CN) Notification of First Office Action—App 201410200475.5. |
Oct. 23, 2015—U.S. Final Office Action—U.S. Appl. No. 13/431,350. |
Oct. 26, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/643,865. |
Oct. 30, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,373. |
Nov. 3, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,259. |
Photographs of various TX cassettes relating to U.S. Pat. No. 5,518,328, undated. |
Nov. 9, 2015—U.S. Notice of Allowance—U.S. Appl. No. 13/848,750. |
Nov. 13, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,289. |
Nov. 25, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,256. |
Nov. 27, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,367. |
Dec. 4, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,325. |
Dec. 10, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/755,141. |
Nov. 20, 2015—(KR) Office Action—App 10-2015-7006347. |
Nov. 20, 2015—(KR) Office Action—App 10-2011-7017238. |
Dec. 11, 2015—U.S. Notice of Allowance—U.S. Appl. No. 14/226,165. |
Dec. 17, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/920,398. |
Dec. 21, 2015—U.S. Notice of Allowance—U.S. Appl. No. 13/934,512. |
Dec. 23, 2015—U.S. Final Office Action—U.S. Appl. No. 14/226,417. |
Oct. 27, 2015—(CN) Office Action—App 201410195767.4. |
Dec. 24, 2015—U.S. Non-Final Office Action—U.S. Appl. No. 14/226,380. |
Nov. 27, 2015—(CN) Office Action—App 201410311930.9. |
Dec. 3, 2015—(CN) Office Action—App 201510088644.5. |
Jan. 12, 2016—U.S. Notice of Allowance—U.S. Appl. No. 13/431,371. |
Jan. 15, 2016—U.S. Notice of Allowance—U.S. Appl. No. 12/732,257. |
Jan. 29, 2016—U.S. Notice of Allowance—U.S. Appl. No. 14/226,411. |
Dec. 24, 2015—(TW) Decision of Rejection—App 101110368—Eng Tran. |
Feb. 5, 2016—U.S. Non-Final Office Action—U.S. Appl. No. 13/240,322. |
Office Action dated May 20, 2019 received from the United States Patent Office in related U.S. Appl. No. 15/226,188. |
Extended European Search Report dated Aug. 29, 2019 received in European Patent Application No. 19173286.6. |
Official Action dated Jun. 3, 2019 received from the Chinese Patent Office in related application CN 201711461753.2 together with an English language translation. |
Office Action dated Apr. 4, 2019 received in related U.S. Appl. No. 16/256,604. |
Office Action dated Apr. 12, 2019 received in related U.S. Appl. No. 15/715,329. |
Notice of Allowance dated Jun. 5, 2019 received in related U.S. Appl. No. 15/832,531. |
Notice of Allowance dated Nov. 5, 2019 received from the United States Patent Office in related U.S. Appl. No. 16/160,343. |
Notification of Reasons for Rejection dated Oct. 29, 2019 received from the Japanese Patent Office in application JP 2018-246396 together with an English language translation. |
U.S. Appl. No. 15/357,004, Allowed. |
U.S. Appl. No. 15/389,497, Allowed. |
U.S. Appl. No. 15/866,000, Allowed. |
U.S. Appl. No. 15/981,465, Pending. |
U.S. Appl. No. 16/160,343, Pending. |
Notice of Allowance dated Apr. 8, 2020 received in related U.S. Appl. No. 16/796,463. |
Supplemental List of Patents or Patent Applications Treated As Related dated May 8, 2020, p. 4. |
Number | Date | Country | |
---|---|---|---|
20180257400 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15276474 | Sep 2016 | US |
Child | 15981465 | US | |
Parent | 14226380 | Mar 2014 | US |
Child | 15276474 | US | |
Parent | 12644572 | Dec 2009 | US |
Child | 14226380 | US |