The present disclosure relates to a tape cassette housing a tape.
A tape cassette housing a tape that is a print medium is known. For example, a tape cassette houses a tape that is the print medium in a rear left portion of the tape cassette. An opening, which opens in the vertical direction, is provided in a right portion of the tape cassette. To the rear side of the opening, the tape bends toward the front, and then bends toward the left at a front right portion of the tape cassette. The tape is discharged from a discharge opening of an arm portion. As the print medium, for example, there is a case in which a label tape is used, on which a half cut process has been performed.
For example, in the case of the above-described label tape on which the half cut process has been performed, there are cuts on the print surface side of the tape. Thus, there is a possibility that adhesive may attach to the print surface side. In this case, there is a possibility that the adhesive may attach to a section that guides the tape from the rear side toward the front side from the opening. There is thus a possibility that the feeding of the tape may become difficult due to the attached adhesive.
Various embodiments of the broad principles derived herein provide a tape cassette that reduces a possibility of deterioration in feeding of a tape that is a print medium.
Embodiments provide a tape cassette that includes a cassette case, a tape roll, a first rotation body, a first opening, an ink ribbon roll, a second rotation body, and a first regulating part. The cassette case has a bottom plate forming a bottom surface. The tape roll is housed inside the cassette case and a tape that is a print medium is wound on the tape roll. The first rotation body is provided on a first direction side of the tape roll and is positioned on a second direction side of a winding center of the tape roll. The first direction is from one end portion toward another end portion of the bottom plate. The second direction is orthogonal to the first direction and is parallel to the bottom surface. The first rotation body forms a feed path of the tape and is configured to be driven to rotate in accordance with feeding of the tape. The first opening is provided on the second direction side of the first rotation body and penetrates the bottom plate in an orthogonal direction that is orthogonal to the bottom surface. The ink ribbon roll is provided on the second direction side of the first opening and an ink ribbon to be used in printing of the tape is wound on the ink ribbon roll. The second rotation body is provided on the first direction side and the second direction side of a winding center of the ink ribbon roll and forms the feed path. The first regulating part is a wall provided on a fourth direction side of a predetermined path. The predetermined path is a section of the feed path on the second direction side of the first rotation body and on a third direction side of the second rotation body. The third direction is an opposite direction to the second direction. The fourth direction is an opposite direction to the first direction. The first regulating part is positioned on the fourth direction side of a first virtual line. The first virtual line joins an end portion of the first rotation body on the first direction side and an end portion of the second rotation body on the first direction side.
Embodiments will be described below in detail with reference to the accompanying drawings in which:
An embodiment of the present disclosure will be explained with reference to the drawings. A tape printer 1 and a tape cassette 30 according to a present embodiment will be explained. In the explanation of the present embodiment, a lower left side, an upper right side, a lower right side, an upper left side, an upper side, and a lower side in
In the present embodiment, various tapes (a print tape and a half cut tape 57 that will be explained later, for example) housed in the tape cassette 30 are generically referred to as a tape. Types (a tape width, a print format, a tape color, a character color and the like) of the tape housed in the tape cassette 30 are generically referred to as a tape type.
The tape printer 1 will be explained with reference to
An outline configuration of the tape printer 1 will be explained. The tape printer 1 is a general purpose tape printer in which various tape cassettes, such as a thermal type, a receptor type, a laminate type, and a half cut type, can be used in the single printer. The thermal type tape cassette is provided with a heat-sensitive paper tape. The receptor type tape cassette is provided with a print tape and an ink ribbon. The laminate type tape cassette is provided with a double-sided adhesive tape, a film tape, and an ink ribbon. The half cut type tape cassette is provided with a half cut tape and an ink ribbon.
As shown in
The cassette cover 6 is a lid portion that is substantially rectangular in a plan view. The cassette cover 6 is axially supported at both end portions, on the left and the right, above the back surface of the main body cover 2. The cassette cover 6 is configured to swing between a closed position (not shown in the drawings) and an open position shown in
A discharge slit 111 is provided toward the rear of the left side surface of the main body cover 2. A printed tape is discharged from the cassette housing portion 8 via the discharge slit 111. A discharge window 112 is provided in the left side surface of the cassette cover 6. When the cassette cover 6 is closed, the discharge window 112 exposes the discharge slit 111 to the outside.
An internal configuration of the main body cover 2 below the cassette cover 6 will be explained with reference to
As shown in
A head holder 74 is provided in the front portion of the cassette housing portion 8. A thermal head 10, which is provided with a heating element (not shown in the drawings), is installed on the head holder 74. When the tape cassette 30 is inserted in the cassette housing portion 8, the head holder 74 is inserted into a head insertion portion 39 (refer to
A ribbon take-up shaft 95 is provided standing on the top surface of the gear 94. The ribbon take-up shaft 95 is a shaft body configured to be inserted into and removed from a ribbon take up spool 44. A tape drive shaft 100 is provided standing on the top surface of the gear 101. The tape drive shaft 100 is a shaft body configured to be inserted into and removed from a hole 461 of a tape drive roller 46.
When the tape cassette 30 is inserted in the cassette housing portion 8, if the tape drive motor 23 drives the gear 91 to rotate in the counterclockwise direction, the ribbon take-up shaft 95 is driven to rotate in the counterclockwise direction via the gear 93 and the gear 94. The ribbon take-up shaft 95 rotationally drives the ribbon take up spool 44 mounted on the ribbon take-up shaft 95. Furthermore, the rotation of the gear 94 is transmitted to the tape drive shaft 100 via the gear 97, the gear 98 and the gear 101, and the tape drive shaft 100 is driven to rotate in the clockwise direction. The tape drive shaft 100 rotationally drives the tape drive roller 46 mounted on the tape drive shaft 100.
As shown in
A release lever (not shown in the figures) is coupled to the platen holder 12. The release lever moves in the left-right direction in response to the opening and closing of the cassette cover 6. When the cassette cover 6 is opened, the release lever moves in the right direction, and the platen holder 12 moves toward a stand-by position shown in
When the cassette cover 6 is closed, the release lever moves in the left direction and the platen holder 12 moves to the rear toward a print position (not shown in the drawings). In the print position, the platen holder 12 is in proximity to the cassette housing portion 8. Specifically, when the half cut type tape cassette 30 is inserted in the cassette housing portion 8, the platen roller 15 applies pressure to the thermal head 10 via the half cut tape 57 and an ink ribbon 60. At the same time, the movable feed roller 14 applies pressure to the tape drive roller 46 via the half cut tape 57. In the print position, the tape printer 1 can perform printing using the tape cassette 30 inserted in the cassette housing portion 8.
As shown in
The half cut tape 57 will be explained with reference to
An outline configuration of the tape cassette 30 will be explained. The tape cassette 30 is a general purpose cassette that can be mounted in the receptor type, the half cut type, or the like, by changing the type of the tape housed inside the tape cassette 30 as appropriate. In
As shown in
In the explanation below, a direction toward the right from the left end portion that is one end of the bottom plate 306 toward the right end portion that is the other end of the bottom plate 306 is referred to as a first direction. A direction that is orthogonal to the first direction and parallel to the bottom plate 306 is referred to as a second direction. A direction opposite to the second direction is referred to as a third direction. A direction opposite to the first direction is referred to as a fourth direction. In the present embodiment, the first direction is the rightward direction, and the second direction is the frontward direction. The third direction is the rearward direction and the fourth direction is the leftward direction. The direction orthogonal to the bottom surface 302 is the up-down direction.
In the cassette case 31 of the present embodiment, the whole periphery of the top plate 305 and the bottom plate 306 is surrounded by peripheral walls forming side surfaces. The cassette case 31 has four corner portions 321 to 324, irrespective of the tape type of the tape cassette 30. The corner portions 321 to 324 are formed so as to have the same width (the length is the same in the vertical direction). The corner portions 321 to 324 protrude in an outward direction from the side surfaces of the cassette case 31 such that they form a right angle when seen in a plan view. Since a discharge guide portion 49 is provided in a corner of the front left corner portion 324, the corner portion 324 does not form a right angle. When the tape cassette 30 is inserted in the cassette housing portion 8, the underneath surfaces of the corner portions 321 to 324 are sections supported by the corner support portions 812.
Four support holes 65 to 68 are provided in the cassette case 31. The support holes 65 to 68 rotatably support spools and the like mounted inside the cassette case 31. In the explanation below, the hole portions provided in the rear left side portion, the rear right side portion, and the front right side portion of the cassette case 31 are respectively referred to as the first tape support hole 65, the second tape support hole 66, and the ribbon support hole 67. The hole portion provided between the first tape support hole 65 and the ribbon support hole 67 in a plan view is referred to as the take up spool support hole 68.
The first tape support hole 65 rotatably supports a first tape spool 40 (refer to
As shown in
The peripheral wall that extends to the rear from the right end portion of the arm back surface wall 37 and that extends in parallel to the arm back surface wall 37 is a head peripheral wall 36. A space which is prescribed by the arm back surface wall 37 and the head peripheral wall 36, which penetrates the tape cassette 30 in the vertical direction and which is substantially rectangular in a plan view is the head insertion portion 39. The head insertion portion 39 penetrates the bottom plate 306 and the top plate 305 in the vertical direction. The head insertion portion 39 is adjacent to the third direction side of the arm portion 34. The head insertion portion 39 extends in the first direction of the cassette case 31, and is configured to cross a central position of the cassette case 31 in the first direction. The head insertion portion 39 is communicated with the outside on the front surface side of the tape cassette 30, via an exposed portion 77 provided in the front surface side of the tape cassette 30. As shown in
As shown in
A first tape area 400 and a second tape area 410 are provided inside the cassette case 31. The first tape area 400 is an area in which the tape can be housed. The first tape area 400 is adjacent to the corner portion 321 of the rear left portion of the cassette case 31. The first tape area 400 is an area that is substantially circular in a plan view and that occupies approximately all the left half of the inside of the cassette case 31. The second tape area 410 is adjacent to the corner portion 322 of the rear right portion of the cassette case 31. The second tape area 410 is an area that is substantially circular in a plan view, and is provided in the rear right portion inside the cassette case 31. In the present embodiment, the tape is not housed in the second tape area 410. However, if the tape cassette 30 is the laminate cassette, for example, the film tape that is the print medium may be housed in the second tape area 410.
When the tape cassette 30 is the half cut type, a tape roll 571, on which the half cut tape 57 is wound, is housed in the first tape area 400. A first rotation body 71 is provided on the first direction side of the tape roll 571, and on the second direction side of a winding center 572 of the tape roll 571. The first rotation body 71 is positioned in a front portion of the second tape area 410.
As shown in
As shown in
As shown in
The ribbon spool 42 is provided on the second direction side of the opening 80. The ink ribbon 60, which is used for printing on the half cut tape 57, is wound on the ribbon spool 42. The ink ribbon 60 faces the opening 801 in the front-rear direction. The ribbon spool 42 is positioned on the first direction side of the head insertion portion 39. Flange portions 423 are provided on the end portions of the ribbon spool 42 in the vertical direction. The flange portions 423 protrude outward in a radial direction of the ribbon spool 42. In
The ribbon take up spool 44, on which the ink ribbon 60 is wound after being used for the printing, is provided on the third direction side and the fourth direction side of the ribbon spool 42. The ribbon take up spool 44 is provided between the first tape area 400 and the ribbon spool 42.
A second rotation body 72 is disposed to diagonally to the right and the front of the ribbon spool 42. The second rotation body 72 is provided on the first direction side and the second direction side of a winding center 421 of the ribbon spool 42. As shown in
As shown in
A guide portion 33 is provided on the end portion of the arm portion 34 on the fourth direction side. The guide portion 33 guides the half cut tape 57 to the discharge opening 341. The guide portion 33 extends in the vertical direction. The rear end portion of the guide portion 33 is rounded. The front end portion of the guide portion 33 is parallel to the left-right direction. Protruding portions 331 are provided on the end portions of the guide portion 33 in the vertical direction. The protruding portions 331 protrude in the second direction. In
In the explanation below, of the feed path of the tape roll 571 shown in
The feed path 59 is oriented toward the first rotation body 71 from the tape roll 571. The feed path 59 bends at an obtuse angle toward the head insertion portion 39 at the first rotation body 71. The feed path 59 bends at an acute angle toward the head insertion portion 39 at the second rotation body 72. The feed path 59 bends at an obtuse angle toward the head insertion portion 39 at the guide portion 33. In the present embodiment, locations at which the feed path 59 bends toward the head insertion portion 39, that is, bends toward the inside of the cassette case 31, are only three locations of the first rotation body 71, the second rotation body 72, and the guide portion 33. As shown in
The feed path 59 of the present embodiment is a path on which the half cut tape 57 is positioned in a state in which there is no slack in the half cut tape 57. For example, the feed path 59 is a path when tension is applied to the half cut tape 57 from the discharge opening 341 toward regulating members 361 and 362 (refer to
A virtual line joining an end portion 714 on the first direction side of the first rotation body 71 and an end portion 724 on the first direction side of the second rotation body 72 is referred to as a first virtual line 731. In the present embodiment, the second feed path 592 and the first virtual line 731 are on the same line. A virtual line joining an end portion 725 on the second direction side of the second rotation body 72 and an end portion 334 on the second direction side of the guide portion 33 is referred to as a second virtual line 732. In the present embodiment, the third feed path 593 and the second virtual line 732 are on the same line.
A first regulating part 75 is provided on the fourth direction side of the second feed path 592 and the fourth direction side of the first virtual line 731. A second regulating part 76 is provided facing the first regulating part 75 in the left-right direction. The second regulating part 76 is provided facing the first regulating part 75 such that the second feed path 592 is sandwiched therebetween. The second regulating part 76 is positioned on the first direction side of the first virtual line 731.
The first regulating part 75 includes a wall portion 751 and a wall portion 752. The wall portion 751 extends in the left-right direction along the opening 80, and more specifically, along the end portion on the second direction side of the opening 801. The wall portion 752 extends in the third direction from the end portion of the wall portion 751 in the first direction. The end portion of the wall portion 752 in the third direction is on the second direction side of the center, in the front-rear direction, of the opening 801.
The second regulating part 76 includes a wall portion 761 and a wall portion 762. The wall portion 761 extends in the left-right direction along the opening 80, and more specifically, along the end portion on the second direction side of the opening 802. The wall portion 762 extends in the third direction from the end portion of the wall portion 761 in the fourth direction. The end portion of the wall portion 762 in the third direction is on the second direction side of the center, in the front-rear direction, of the opening 802.
A distance from an end portion 803 on the third direction side of the opening 801 in the front-rear direction to an end portion 753 on the second direction side of the first regulating part 75 is a first distance L5. A distance from the end portion 803 on the third direction side of the opening 801 in the front-rear direction to the end portion 725 on the second direction side of the second rotation body 72 is a second distance L6. The first distance L5 is equal to or less than one third of the second distance L6. In
A wall portion 78 is provided around the left end portion and the rear left portion of the opening 801. The wall portion 78 is connected to the end portion in the fourth direction of the first regulating part 75. A wall portion 79 is provided around the right end portion, the rear end portion, and the rear left portion of the opening 802. The wall portion 79 is connected to the end portion in the first direction of the second regulating part 76.
An extension wall portion 85 is connected to the right end of the rear end portion of the wall portion 78. The extension wall portion 85 extends to the fourth direction side of the first rotation body 71 from the opening 80, more specifically, the end portion 803 on the third direction side of the opening 801. The extension wall portion 85 curves in line with the first rotation body 71. As shown in
As shown in
As shown in
The tape drive roller 46 is rotatably and axially supported (refer to
The discharge guide portion 49 is provided on the downstream side, in the feed direction, of the tape drive roller 46. The discharge guide portion 49 is provided so as to be slightly separated, to the front, from the front end portion of the left side surface of the cassette case 31. The discharge guide portion 49 is a plate-shaped member that extends between the top surface 301 and the bottom surface 302. The printed tape 50 is fed via the tape drive roller 46. The discharge guide portion 49 guides the fed printed tape 50 into a path formed between the discharge guide portion 49 and the front end portion of the left side surface of the cassette case 31. The printed tape 50 is discharged to the outside of the tape cassette 30 from an end of this path.
The feeding and the printing of the half cut tape 57 will be explained. As shown in
Meanwhile, the ribbon take up spool 44 rotates in the counterclockwise direction in a plan view in accordance with the driving of the ribbon take-up shaft 95, and pulls out the ink ribbon 60 from the ribbon spool 42. The ribbon spool 42 rotates in the counterclockwise direction in a plan view in accordance with the pulling out of the ink ribbon 60. The ink ribbon 60 pulled out from the ribbon spool 42 is fed toward the arm portion 34.
Inside the arm portion 34, the half cut tape 57 passes through the third feed path 593 that extends substantially in parallel to the arm front surface wall 35. The half cut tape 57 is bent diagonally to the left and to the rear by the guide portion 33, and is discharged from the discharge opening 341 to the exposed portion 77. The ink ribbon 60 passes inside the arm portion 34, on the third direction side of the cylindrical portion 333, the wall portion 332, and the guide portion 33. The ink ribbon 60 is overlaid with the half cut tape 57 and is discharged from the discharge opening 341 to the exposed portion 77.
In the exposed portion 77, the release paper 577 (refer to
After the printing is performed, the ink ribbon 60 is separated from the half cut tape 57 by the separating portion 61. The ink ribbon 60 moves along the ribbon guide wall 38 and is taken up by the ribbon take up spool 44. After the printing, the half cut tape 57, that is, the printed tape 50, is guided to the downstream side in the tape feed direction by the regulating members 361 and 362. The printed tape 50 is fed toward the discharge guide portion 49 via the space between the tape drive roller 46 and the movable feed roller 14. The printed tape 50 is discharged to the outside from the discharge guide portion 49. The printed tape 50 is obtained in this manner.
The tape cassette 30 according to the present embodiment is configured and the printing is performed as described above. In the present embodiment, as shown in
The first regulating part 75 is positioned on the fourth direction side of the first virtual line 731. As a result, in comparison to a case in which the first regulating part 75 is positioned on the first virtual line 731 or is positioned on the first direction side of the first virtual line 731, the surface of the half cut tape 57 on the fourth direction side, namely, the print surface 574, does not easily come into contact with the first regulating part 75. As a result, the possibility of the adhesive 580 of the tape becoming attached to the first regulating part 75 may be reduced. Therefore, the possibility may be reduced that the half cut tape 57 is less easily fed due to the adhesive 580.
In the front-rear direction, the distance L3 between the first rotation body 71 and the opening 80 is shorter than the diameter of the first rotation body 71. Thus, in comparison to a case in which the distance L3 between the first rotation body 71 and the opening 80 is equal to or greater than the diameter of the first rotation body 71, the first rotation body 71 is closer to the opening 80, and the position of the half cut tape 57 at the opening 80 is stable. As a result, for example, when the sensor 20 (refer to
The first regulating part 75 is positioned on the fourth direction side of the first virtual line 731, and the second regulating part 76 is positioned on the first direction side of the first virtual line 731. The release paper 577 forms the first direction side surface of the half cut tape 57 between the first rotation body 71 and the second rotation body 72. In comparison to a case in which the second regulating part 76 is positioned on the first virtual line 731 or is positioned on the fourth direction side of the first virtual line 731, the release paper 577 is less likely to come into contact with the second regulating part 76 between the first rotation body 71 and the second rotation body 72. The first regulating part 75 is positioned on the fourth direction side of the first virtual line 731. Thus, the half cut tape 57 extends in a straight line along the first virtual line 731 from the first rotation body 71 toward the second rotation body 72. As a result, the possibility may be reduced that the half cut tape 57 bends at the second regulating part 76 and that frictional force occurs between the half cut tape 57 and the second regulating part 76. Therefore, the possibility may be reduced that the half cut tape 57 is less easily fed.
The feed path 59 only bends toward the head insertion portion 39, that is, toward the inside of the cassette case 31, at the three locations of the first rotation body 71, the second rotation body 72, and the guide portion 33. Thus, in comparison to a case in which there are four or more locations at which the feed path 59 bends toward the head insertion portion 39, the frictional force is less likely to occur. Therefore, the possibility may be reduced that the half cut tape 57 is less easily fed due to the frictional force.
The recessed portion 84 is positioned on the second direction side of the second virtual line 732. Thus, the possibility may be reduced that the half cut tape 57 bends in a direction away from the head insertion portion 39 due to the recessed portion 84. As a result, the possibility may be reduced that the half cut tape 57 bends at the recessed portion 84 and that frictional force occurs between the half cut tape 57 and the recessed portion 84. Therefore, the possibility may be reduced that the half cut tape 57 is less easily fed.
On the feed path 59, the plurality of bent portions 701 to 703 all bend toward the head insertion portion 39, namely, toward the inside of the cassette case 31. Thus, in comparison to a case in which there is a location where the feed path 59 bends in a direction away from the head insertion portion 39, it is possible to reduce frictional force, and the possibility may be reduced that the half cut tape 57 is less easily fed.
The lower case 312 is provided with the extension wall portion 85. Thus, when the half cut tape 57 is disposed in the feed path 59 in a manufacturing process, due to the extension wall portion 85, the half cut tape 57 is less easily disposed on the fourth direction side of the first rotation body 71. The possibility may thus be reduced that the half cut tape 57 is disposed on the fourth direction side of the first rotation body 71 and is not guided to the first rotation body 71. Therefore, the possibility may be reduced that the half cut tape 57 is less easily fed.
As shown in
As shown in
The second rotation body 72 is configured to be driven to rotate in accordance with the feeding of the half cut tape 57. In this case, for example, in comparison to a case in which the second rotation body 72 rotates in reverse to the feed direction of the half cut tape 57, the frictional force between the second rotation body 72 and the half cut tape 57 becomes smaller. Thus, the possibility may be reduced that the adhesive 580 of the half cut tape 57 attaches to the second rotation body 72. Therefore, the possibility may be reduced that the tape is less easily fed due to the adhesive 580.
The diameter of the first rotation body 71 is smaller than the diameter of the second rotation body 72. Thus, in comparison to a case in which the diameter of the first rotation body 71 is equal to or greater than that of the second rotation body 72, the distance that the half cut tape 57 passes from the end portion 714 on the first direction side of the first rotation body 71 to the opening 80 is shorter. As a result, the position of the half cut tape 57 at the opening 80 is stable. Thus, for example, when the sensor 20 is inserted into the opening 80, the possibility that the sensor 20 comes into contact with the half cut tape 57 may be reduced. The possibility of warping of the half cut tape 57 may therefore be reduced. Further, when the rod-shaped object that is not the sensor 20 is inserted from the opening 80, the possibility of contact with the half cut tape 57 may be reduced. The possibility of warping of the half cut tape 57 may therefore be reduced. As a result, the possibility may be reduced that the half cut tape 57 becomes warped and is less easily fed.
As shown in
As shown in
The present disclosure is not limited to the above-described embodiment, and various modifications are possible. For example, in the cassette case 31 of the present embodiment, the whole periphery of the top plate 305 and the bottom plate 306 is surrounded by the peripheral wall that forms the side surfaces. However, the whole periphery of the top plate 305 and the bottom plate 306 need not necessarily be surrounded by the peripheral wall. For example, an opening may be provided in a part of the peripheral wall (the back surface, for example) such that the interior of the cassette case 31 is exposed. For example, a boss that connects the top plate 305 and the bottom plate 306 may be provided in a position facing the opening provided in the part of the peripheral wall. For example, the whole of the peripheral wall forming the side surfaces around the periphery of the top plate 305 and the bottom plate 306 need not necessarily be provided.
The length L1 of the first rotation body 71 in the vertical direction shown in
The first distance L5 may be greater than one third of the second distance L6. The position of the top end 851 of the extension wall portion 85 shown in
In the feed path 59 of the above-described embodiment, the locations that bend toward the head insertion portion 39 are only the three locations of the first rotation body 71, the second rotation body 72, and the guide portion 33. However, the locations in the feed path 59 that bend toward the head insertion portion 39 may be four or more locations. In the above-described embodiment, the recessed portion 84 is positioned on the second direction side of the second virtual line 732. However, the recessed portion 84 may be positioned on the second virtual line 732 or may be positioned on the third direction side of the second virtual line 732. The arm portion 34 need not necessarily be provided. The head insertion portion 39 need not necessarily be provided. The second regulating part 76 need not necessarily be provided. The distance L3 between the first rotation body 71 and the opening 80 may be shorter than the diameter of the first rotation body 71.
The first regulating part 75 need not necessarily include the wall portion 751 provided on the second direction side of the opening 801. The second regulating part 76 need not necessarily include the wall portion 761 provided on the second direction side of the opening 802. For example, as shown in
In the above-described embodiment, the tape housed in the first tape area 400 is the half cut tape 57, for example. However, the tape housed in the first tape area 400 need not necessarily be the half cut tape 57. For example, a print tape or the like may be disposed in the first tape area 400. Even when it is the print tape without the cuts 578 (refer to
In the above-described embodiment, the opening 80 includes the opening 801 and the opening 802, but the present disclosure is not limited to this example. For example, as with the opening 805 of a tape cassette 307 shown in
The second rotation body 72 need not necessarily be rotatably driven in accordance with the feeding of the half cut tape 57. For example, as with a tape cassette 308 shown in
It is sufficient that the position of the first rotation body 71 be on the first direction side of the tape roll 571, on the second direction side of the winding center 572 of the tape roll 571, and on the third direction side of the opening 80. For example, as with a tape cassette 309 shown in
The apparatus and methods described above with reference to the various embodiments are merely examples. It goes without saying that they are not confined to the depicted embodiments. While various features have been described in conjunction with the examples outlined above, various alternatives, modifications, variations, and/or improvements of those features and/or examples may be possible. Accordingly, the examples, as set forth above, are intended to be illustrative. Various changes may be made without departing from the broad spirit and scope of the underlying principles.
Number | Date | Country | Kind |
---|---|---|---|
2015-073983 | Mar 2015 | JP | national |
This application is a continuation application of International Application No. PCT/JP2016/057529, filed Mar. 10, 2016, which claims priority from Japanese Patent Application No. 2015-073983, filed on Mar. 31, 2015. The disclosure of the foregoing application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
20020012558 | Huss et al. | Jan 2002 | A1 |
20100166475 | Yamaguchi et al. | Jul 2010 | A1 |
20100166477 | Yamaguchi et al. | Jul 2010 | A1 |
20100166478 | Yamaguchi et al. | Jul 2010 | A1 |
20100166479 | Yamaguchi et al. | Jul 2010 | A1 |
20100166480 | Yamaguchi et al. | Jul 2010 | A1 |
20100247205 | Yamaguchi et al. | Sep 2010 | A1 |
20100247206 | Yamaguchi et al. | Sep 2010 | A1 |
20100247207 | Sago et al. | Sep 2010 | A1 |
20100247208 | Yamaguchi et al. | Sep 2010 | A1 |
20100247209 | Yamaguchi et al. | Sep 2010 | A1 |
20100247210 | Yamaguchi et al. | Sep 2010 | A1 |
20100247212 | Yamaguchi et al. | Sep 2010 | A1 |
20100254742 | Yamaguchi et al. | Oct 2010 | A1 |
20110008090 | Yamaguchi et al. | Jan 2011 | A1 |
20120008999 | Yamaguchi et al. | Jan 2012 | A1 |
20120080550 | Yamaguchi et al. | Apr 2012 | A1 |
20120175454 | Noda | Jul 2012 | A1 |
20150306892 | Noda | Oct 2015 | A1 |
20180015749 | Inoue | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
101323217 | Dec 2008 | CN |
101850663 | Oct 2010 | CN |
102099196 | Jun 2011 | CN |
102241204 | Nov 2011 | CN |
102481794 | May 2012 | CN |
103862894 | Jun 2014 | CN |
104442042 | Mar 2015 | CN |
2000-094773 | Apr 2000 | JP |
2004-42468 | Feb 2004 | JP |
2004-148719 | May 2004 | JP |
2006264337 | Oct 2006 | JP |
2010-179482 | Aug 2010 | JP |
2010-234775 | Oct 2010 | JP |
2011206910 | Oct 2011 | JP |
WO 2010113780 | Oct 2010 | WO |
Entry |
---|
Machine translation of JP 2000-094773 A (JP 2000-094773 A was published on Apr. 4, 2000.) (Year: 2000). |
Notification of Reasons for Rejection dated Nov. 21, 2017 received from the Japanese Patent Office in related application JP 2015-073983 together with English language translation. |
International Search Report dated May 31, 2016 issued in PCT/JP2016/057529. |
International Preliminary Report on Patentability dated Oct. 3, 2017 issued in PCT/JP2016/057529. |
Extended European search report dated Jan. 3, 2019 received in related application EP 16772168.7. |
Chinese Official Action dated Sep. 5, 2018 received in application CN 201680017872.6 together with an English language translation. |
Number | Date | Country | |
---|---|---|---|
20180015757 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2016/057529 | Mar 2016 | US |
Child | 15717148 | US |