The present invention relates to data storage systems, and more particularly, this invention relates to magnetic tape recording, more particularly, to an asymmetrical tape head and/or tape recording system with asymmetrical wrap angles.
In magnetic storage systems, magnetic transducers read data from and write data onto magnetic recording media. Data is written on the magnetic recording media by moving a magnetic recording transducer to a position over the media where the data is to be stored. The magnetic recording transducer then generates a magnetic field, which encodes the data into the magnetic media. Data is read from the media by similarly positioning the magnetic read transducer and then sensing the magnetic field of the magnetic media. Read and write operations may be independently synchronized with the movement of the media to ensure that the data can be read from and written to the desired location on the media.
An important and continuing goal in the data storage industry is that of increasing the density of data stored on a medium. For tape storage systems, that goal has led to increasing the track and linear bit density on recording tape, and decreasing the thickness of the magnetic tape medium. However, the development of small footprint, higher performance tape drive systems has created various problems in the design of a tape head assembly for use in such systems.
In a tape drive system, the drive moves the magnetic tape over the surface of the tape head at high speed. Usually the tape head is designed to minimize the spacing between the head and the tape. The spacing between the magnetic head and the magnetic tape is crucial and so goals in these systems are to have the recording gaps of the transducers, which are the source of the magnetic recording flux in near contact with the tape to effect writing sharp transitions, and to have the read elements in near contact with the tape to provide effective coupling of the magnetic field from the tape to the read elements.
According to one embodiment, a method includes determining a first distance from a sensor to a first edge closest thereto, where the sensor is positioned between a lower shield and the first edge, selecting a first wrap angle based on the first distance for inducing tenting of a moving magnetic recording tape in a region above the sensor, determining a second distance from a second edge to the sensor, and selecting a second wrap angle based on the determined second distance for affecting or not affecting the tenting of a moving magnetic recording tape in the region above the sensor.
According to another embodiment, a method includes running a magnetic recording tape over an edge proximate to a sensor of a module, detecting magnetic fields from the magnetic recording tape, and selecting a wrap angle to provide about a predefined height of tenting of the magnetic recording tape above the sensor as determined using the detected magnetic fields.
According to yet another embodiment, a computer-implemented method includes receiving a measurement of a first distance from a first edge to a sensor, receiving a predefined height of tenting of a magnetic recording tape above the sensor, and calculating a wrap angle to create the predefined height of tenting when the magnetic recording tape passes over the first edge in a direction of tape travel.
Any of these embodiments may be implemented in a magnetic data storage system such as a tape drive system, which may include a magnetic head, a drive mechanism for moving a magnetic medium (e.g., recording tape) over the magnetic head, and a controller electrically coupled to the magnetic head.
Other aspects and embodiments of the present invention will become apparent from the following detailed description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.
The following description is made for the purpose of illustrating the general principles of the present invention and is not meant to limit the inventive concepts claimed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations.
Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless otherwise specified.
The following description discloses several preferred embodiments of magnetic storage systems, as well as operation and/or component parts thereof.
In one general embodiment, an apparatus includes a module having a tape bearing surface, a first edge, and a second edge. A first tape tenting region extends from the first edge along the tape bearing surface toward the second edge. A transducer is located in a thin film region of the module. A distance from the first edge to the transducer is less than a distance from the second edge to the transducer. The transducer is positioned in the first tape tenting region.
In one general embodiment, an apparatus includes a module having a tape bearing surface, a first edge, and a second edge. A first tape tenting region extends from the first edge along the tape bearing surface toward the second edge. A first guide is positioned relative to the first edge for inducing tenting of a moving magnetic recording tape. The location of the tenting is above the first tape tenting region. A second guide is positioned relative to the second edge for inducing tenting of the moving magnetic recording tape. The first guide is positioned relative to the first edge to create a first wrap angle and the second guide is positioned relative to the second edge to create a second wrap angle. The first wrap angle is not the same as the second wrap angle. A transducer is positioned in the first tape tenting region.
As shown, a tape supply cartridge 120 and a take-up reel 121 are provided to support a tape 122. One or more of the reels may form part of a removable cartridge and are not necessarily part of the system 100. The tape drive, such as that illustrated in
Guides 125 guide the tape 122 across the tape head 126. Such tape head 126 is in turn coupled to a controller 128 via a cable 130. The controller 128, may be or include a processor and/or any logic for controlling any subsystem of the drive 100. For example, the controller 128 typically controls head functions such as servo following, data writing, data reading, etc. The controller 128 may include at least one servo channel and at least one data channel, each of which include data flow processing logic configured to process and/or store information to be written to and/or read from the tape 122. The controller 128 may operate under logic known in the art, as well as any logic disclosed herein, and thus may be considered as a processor for any of the descriptions of tape drives included herein, in various embodiments. The controller 128 may be coupled to a memory 136 of any known type, which may store instructions executable by the controller 128. Moreover, the controller 128 may be configured and/or programmable to perform or control some or all of the methodology presented herein. Thus, the controller 128 may be considered to be configured to perform various operations by way of logic programmed into one or more chips, modules, and/or blocks; software, firmware, and/or other instructions being available to one or more processors; etc., and combinations thereof.
The cable 130 may include read/write circuits to transmit data to the head 126 to be recorded on the tape 122 and to receive data read by the head 126 from the tape 122. An actuator 132 controls position of the head 126 relative to the tape 122.
An interface 134 may also be provided for communication between the tape drive 100 and a host (internal or external) to send and receive the data and for controlling the operation of the tape drive 100 and communicating the status of the tape drive 100 to the host, all as will be understood by those of skill in the art.
By way of example,
The substrates 204A are typically constructed of a wear resistant material, such as a ceramic. The closures 204B may be made of the same or similar ceramic as the substrates 204A.
The readers and writers may be arranged in a piggyback or merged configuration. An illustrative piggybacked configuration comprises a (magnetically inductive) writer transducer on top of (or below) a (magnetically shielded) reader transducer (e.g., a magnetoresistive reader, etc.), wherein the poles of the writer and the shields of the reader are generally separated. An illustrative merged configuration comprises one reader shield in the same physical layer as one writer pole (hence, “merged”). The readers and writers may also be arranged in an interleaved configuration. Alternatively, each array of channels may be readers or writers only. Any of these arrays may contain one or more servo track readers for reading servo data on the medium.
In this example, the tape 208 includes 4 to 32 data bands, e.g., with 16 data bands and 17 servo tracks 210, as shown in
Several R/W pairs 222 may be present, such as 8, 16, 32 pairs, etc. The R/W pairs 222 as shown are linearly aligned in a direction generally perpendicular to a direction of tape travel thereacross. However, the pairs may also be aligned diagonally, etc. Servo readers 212 are positioned on the outside of the array of R/W pairs, the function of which is well known.
Generally, the magnetic tape medium moves in either a forward or reverse direction as indicated by arrow 220. The magnetic tape medium and head assembly 200 operate in a transducing relationship in the manner well-known in the art. The piggybacked MR head assembly 200 includes two thin-film modules 224 and 226 of generally identical construction.
Modules 224 and 226 are joined together with a space present between closures 204B thereof (partially shown) to form a single physical unit to provide read-while-write capability by activating the writer of the leading module and reader of the trailing module aligned with the writer of the leading module parallel to the direction of tape travel relative thereto. When a module 224, 226 of a piggyback head 200 is constructed, layers are formed in the gap 218 created above an electrically conductive substrate 204A (partially shown), e.g., of AlTiC, in generally the following order for the R/W pairs 222: an insulating layer 236, a first shield 232 typically of an iron alloy such as NiFe (−), cobalt zirconium tantalum (CZT) or Al—Fe—Si (Sendust), a sensor 234 for sensing a data track on a magnetic medium, a second shield 238 typically of a nickel-iron alloy (e.g., ˜80/20 at % NiFe, also known as permalloy), first and second writer pole tips 228, 230, and a coil (not shown). The sensor may be of any known type, including those based on MR, GMR, AMR, tunneling magnetoresistance (TMR), etc.
The first and second writer poles 228, 230 may be fabricated from high magnetic moment materials such as ˜45/55 NiFe. Note that these materials are provided by way of example only, and other materials may be used. Additional layers such as insulation between the shields and/or pole tips and an insulation layer surrounding the sensor may be present. Illustrative materials for the insulation include alumina and other oxides, insulative polymers, etc.
The configuration of the tape head 126 according to one embodiment includes multiple modules, preferably three or more. In a write-read-write (W-R-W) head, outer modules for writing flank one or more inner modules for reading. Referring to
In one embodiment, the tape bearing surfaces 308, 310, 312 of the first, second and third modules 302, 304, 306 lie on about parallel planes (which is meant to include parallel and nearly parallel planes, e.g., between parallel and tangential as in
Where the tape bearing surfaces 308, 310, 312 lie along parallel or nearly parallel yet offset planes, intuitively, the tape should peel off of the tape bearing surface 308 of the leading module 302. However, the vacuum created by the skiving edge 318 of the leading module 302 has been found by experimentation to be sufficient to keep the tape adhered to the tape bearing surface 308 of the leading module 302. The trailing edge 320 of the leading module 302 (the end from which the tape leaves the leading module 302) is the approximate reference point which defines the wrap angle over the tape bearing surface 310 of the second module 304. The tape stays in close proximity to the tape bearing surface until close to the trailing edge 320 of the leading module 302. Accordingly, read and/or write elements 322 may be located near the trailing edges of the outer modules 302, 306. These embodiments are particularly adapted for write-read-write applications.
A benefit of this and other embodiments described herein is that, because the outer modules 302, 306 are fixed at a determined offset from the second module 304, the inner wrap angle is fixed when the modules 302, 304, 306 are coupled together or are otherwise fixed into a head. The inner wrap angle is approximately tan−1(δ/W) where δ is the height difference between the planes of the tape bearing surfaces 308, 310 and W is the width between the opposing ends of the tape bearing surfaces 308, 310. An illustrative inner wrap angle is in a range of about 0.3° to about 1.1°, though can be any angle required by the design.
Beneficially, the inner wrap angle on the side of the module 304 receiving the tape (leading edge) will be larger than the inner wrap angle on the trailing edge, as the tape 315 rides above the trailing module 306. This difference is generally beneficial as a smaller tends to oppose what has heretofore been a steeper exiting effective wrap angle.
Note that the tape bearing surfaces 308, 312 of the outer modules 302, 306 are positioned to achieve a negative wrap angle at the trailing edge 320 of the leading module 302. This is generally beneficial in helping to reduce friction due to contact with the trailing edge 320, provided that proper consideration is given to the location of the crowbar region that forms in the tape where it peels off the head. This negative wrap angle also reduces flutter and scrubbing damage to the elements on the leading module 302. Further, at the trailing module 306, the tape 315 flies over the tape bearing surface 312 so there is virtually no wear on the elements when tape is moving in this direction. Particularly, the tape 315 entrains air and so will not significantly ride on the tape bearing surface 312 of the third module 306 (some contact may occur). This is permissible, because the leading module 302 is writing while the trailing module 306 is idle.
Writing and reading functions are performed by different modules at any given time. In one embodiment, the second module 304 includes a plurality of data and optional servo readers 331 and no writers. The first and third modules 302, 306 include a plurality of writers 322 and no data readers, with the exception that the outer modules 302, 306 may include optional servo readers. The servo readers may be used to position the head during reading and/or writing operations. The servo reader(s) on each module are typically located towards the end of the array of readers or writers.
By having only readers or side by side writers and servo readers in the gap between the substrate and closure, the gap length can be substantially reduced. Typical heads have piggybacked readers and writers, where the writer is formed above each reader. A typical gap is 20-35 microns. However, irregularities on the tape may tend to droop into the gap and create gap erosion. Thus, the smaller the gap is the better. The smaller gap enabled herein exhibits fewer wear related problems.
In some embodiments, the second module 304 has a closure, while the first and third modules 302, 306 do not have a closure. Where there is no closure, preferably a hard coating is added to the module. One preferred coating is diamond-like carbon (DLC).
In the embodiment shown in
With reduced-thickness ceramic or thin film closures 334, 336 or no closures on the outer modules 302, 306, the write-to-read gap spacing can be reduced to less than about 1 mm, e.g., about 0.75 mm, or 50% less than commonly-used LTO tape head spacing. The open space between the modules 302, 304, 306 can still be set to approximately 0.5 to 0.6 mm, which in some embodiments is ideal for stabilizing tape motion over the second module 304.
Depending on tape tension and bending stiffness, it may be desirable to angle the tape bearing surfaces of the outer modules relative to the tape bearing surface of the second module.
Typically, the tape wrap angles may be set about midway between the embodiments shown in
Additional aspects of the embodiments shown in
A 32 channel version of a multi-module head 126 may use cables 350 having leads on the same or smaller pitch as current 16 channel piggyback LTO modules, or alternatively the connections on the module may be organ-keyboarded for a 50% reduction in cable span. Over-under, writing pair unshielded cables may be used for the writers, which may have integrated servo readers.
The outer wrap angles may be set in the drive, such as by guides of any type known in the art, such as adjustable rollers, slides, etc. or alternatively by outriggers, which are integral to the head. For example, rollers having an offset axis may be used to set the wrap angles. The offset axis creates an orbital arc of rotation, allowing precise alignment of the wrap angle.
To assemble any of the embodiments described above, conventional u-beam assembly can be used. Accordingly, the mass of the resultant head may be maintained or even reduced relative to heads of previous generations. In other approaches, the modules may be constructed as a unitary body. Those skilled in the art, armed with the present teachings, will appreciate that other known methods of manufacturing such heads may be adapted for use in constructing such heads. Moreover, unless otherwise specified, processes and materials of types known in the art may be adapted for use in various embodiments in conformance with the teachings herein, as would become apparent to one skilled in the art upon reading the present disclosure.
Conventionally, limitations on areal density are imposed by loss of signal quality due to increase in head-media spacing resulting from head wear, or from deposits or other buildup on the head surface. A method used by the industry to counter the effects of head wear includes pre-recessing and coating the magnetic head. However, pre-recession and coating increase magnetic spacing between the tape and the surface of the sensor and may limit achievable recording linear density.
A longer tape bearing surface between the edges of a module may enable minimal tape-to-head spacing may improve resolution and signal output. Specifically, a longer tape bearing surface creates a middle region of the tape bearing surface for the tape to couple with between regions of tenting created by the tape at each edge of the module. However, in TMR heads, minimal spacing between tape and the tape bearing surface of the sensor may result in shorting of the sensor by the moving tape. Unfortunately, shorting of the TMR sensor has the capability to render a TMR sensor partially to completely non-functional.
Particularly, defects in the magnetic medium may cause shorting across the sensor. Conventionally, pre-recessed sensors with very hard coatings on the media bearing surfaces help mitigate wear and shorting due to defects in the magnetic medium passing over the sensor. However, under severe conditions, such as large defects embedded in the media, shorting may still occur in these heads. Moreover, coatings may be susceptible to wear by the tape and thus become less protective over time.
Methods such as pre-recession of the recording gap and/or coating on the tape bearing surface may also be used to control head-tape spacing. However, neither of these methods provide a way to tailor the spacing according to measured head geometry for each head. In addition, when the fabrication processes of the module are complete, there are no previously-known methods to make adjustments to the spacing between the head and tape. Accordingly, because the spacing in conventional heads may be at a minimal spacing, the shorting problem of TMR sensors has been a pervasive barrier to the introduction of TMR to tape recording.
Various embodiments described herein provide, along with heads having transducers such as such as sensors (e.g., data sensors, servo sensors, Hall effect sensors, etc.) and/or write transducers (writer) positioned in the tape tenting region, methods to set the fly height of a tape above the sensors precisely to about a predetermined value that may be independent of variations of head geometry. Furthermore, it is desirable to have a certain approximate predefined spacing between the tape bearing surface of the sensor and the tape because error rate, bit error rate, resolution, and channel parameters are affected by this spacing.
Moreover, manufacturing processes that define the edge of the tape bearing surface near the sensor are subject to variation. In other words, the distance from the edge to the sensor may be controlled within 10 μm in some embodiments which may translate to a variation in spacing between the sensor and tape of the order of a few nanometers. Thus, despite the variable distances of the sensor to the edge closest thereto from head to head, the total spacing between the transducer and the tape can be controlled to a consistent spacing by adjusting the wrap angle. Furthermore, various embodiments described herein include a module arranged asymmetrically on a tape head.
The heads depicted in the FIGS. discussed above may be constructed to mitigate the occurrence of shorting due to tape defects by inducing tape tenting above the transducers using the teachings presented herein.
Moreover, the magnetic transducer(s) in any of the embodiments described herein may be sensors (e.g., data sensors, servo sensors, Hall effect sensors, etc.) and/or write transducers (writer). While much of the following description refers to a sensor being present in the tape tenting region, this is done by way of example only, and any type of transducer may be used in any of the embodiments in place of the described sensor.
The following description describes various embodiments with reference to figures. Note that the figures are not drawn to scale, but rather features may have been exaggerated to help exemplify the descriptions herein.
In the embodiment of apparatus 800, the module 801 includes a tape bearing surface 808, a first edge 806, and a second edge 804.
Looking to
According to some embodiments, the sensor 809 may be configured as a data sensor for reading data tracks of a magnetic medium. In some approaches, the apparatus 800 includes one or more arrays of such data sensors.
According to other embodiments, the sensor 809 may be configured as a servo pattern reading sensor of a servo reader. For example, the sensor 809 may be configured as a servo pattern reading sensor where apparatus 800 includes one or more arrays of data sensors and/or writers and one or more servo pattern reading sensors for reading servo data on a medium.
Looking to
Furthermore, in one embodiment of apparatus 800, the sensor 809 in the thin film region 814 of the module 801 may have a reference layer 815. Particularly, as shown in
Moreover, the free layer 816 may be positioned between the reference layer 815 and the first edge 806.
First and second spacer layers 817, 818 may also be included in the transducer structure of the thin film region 814 as shown in
As shown in
For present purposes, the wrap angle α is measured between a plane 835 of the tape bearing surface 808 and a straight line 823 drawn tangent to the tape supporting surface of the respective guide 862, 860 and intersecting the edge 804. As shown, the tape tends to bow as it wraps the edge, and consequently the angle the tape makes relative to the plane 835 of the tape bearing surface 808 at the edge is smaller than the wrap angle α.
Any wrap angle α1 greater than 0° results in a tent 811 being formed by the tape 802 proximate the leading edge 806 of the tape bearing surface 808. A wrap angle α2 greater than 0° at the trailing edge 804 results in a tent 810 being formed by the tape 802 proximate the trailing edge 804 of the tape bearing surface 808. This effect is a function of the wrap angle, tape bending stiffness, tape surface roughness, tape surface compressibility, atmospheric pressure, and tape tension, and to a lesser extent, tape speed. For given geometrical wrap angles for example, stiffer tapes tend to produce larger tents 810, 811. Nonetheless, where conditions such as wrap angle and tape tension are otherwise identical, tapes of a given type from a particular manufacturer tend to exhibit a similar tenting profile whereby the tenting region defined thereunder varies only slightly from tape to tape. Tapes from different manufacturers and/or generations may exhibit dissimilar tenting characteristics under otherwise identical conditions. Fortunately, tenting characteristics are readily determinable using numerical modeling techniques known to those of skill in the art, such as Finite Element Modeling (FEM), Finite Difference Modeling (FDM), etc. and combinations thereof. Nonetheless, differences in tenting characteristics from tape to tape in the same generation under otherwise identical conditions may be considered negligible.
If the wrap angle α1 is high, the tape 802 will tend to bend away further from the tape bearing surface 808 in spite of the vacuum. The larger the wrap angle α1, the larger the tent 810,811. Ultimately, the forces (atmospheric pressure) urging the tape 802 towards the tape bearing surface 808 may be overcome and the tape 802 becomes decoupled from the tape bearing surface 808. Therefore, the wrap angle α1 is preferably selected to provide the desired tenting without destroying the vacuum induced by skiving. In a preferred embodiment of apparatus 800, the wrap angle α1 created by the guide may be in a range of about 0.1 to about 1.5 degrees, but may be higher or lower.
A guide mechanism 860 may be configured to set a wrap angle α1 of the magnetic recording tape 802 at the first edge 806 of the module 801. Another guide mechanism 862 may be configured to set the wrap angle at the second edge 804. One or both of such guide mechanisms 860, 862 may include, e.g., a tape guide such as guide 125 of
Multiple modules may be assembled to form a tape head having an internal wrap angle that may be selected based on a measurement of the edge-to-sensor separation for each module.
According to the illustrative embodiment in
The length of the tape bearing surface 808 may accommodate tape tenting regions 807, 813 along the tape bearing surface 808. The first tape tenting region 813 is generally defined as the region along the tape bearing surface under the tape 802 as the tape 802 forms a tent 811 while moving. The second tape tenting region 807 is generally defined as the region along the tape bearing surface 808 under the tape 802 as the tape 802 forms the tent 810 while moving. Preferably, the two tents 811, 810 formed by the tape 802 do not overlap and thus the two tents 811, 810 may not interfere with one another.
Furthermore, the module 801 includes a sensor 809 in a thin film region 814, where a distance d1 from the first edge 806 to the sensor 809 may be less than a distance d2 from the second edge 804 to the sensor 809. As shown, the sensor 809 may be positioned in the first tape tenting region 813. Moreover, in some approaches, the distance d2 from the second edge 804 to the sensor 809 may be at least as long as the first tape tenting region 813.
In some approaches, the first distance d1 from the first edge 806 to the sensor 809 may be about equal to a second distance d2 from the second edge 804 to the sensor 809. Where length d1 and length d2 are about equal and the wrap angles α1, α2 are about the same at both edges 806, 804, the sensor 809 within the thin film region 814 may be positioned at about a peak of the locations of the tenting 811 and 810.
Furthermore, the configuration of the two tenting regions 813, 807 along a tape bearing surface 808 may include a region 803 where the tape 802 may not be subject to significant bending from the edges 804, 806 but rather may be essentially parallel to the tape bearing surface 808. Thus, at the region 803, the tape 802 may be in very close contact with the tape bearing surface 808.
With continued reference to
As alluded to above, the second wrap angle α2 may be at a different angle than the first wrap angle α1 to induce tenting having differing characteristics, as described in more detail below. In some approaches, the second wrap angle α2 may be greater than the first wrap angle α1. In other approaches, the second wrap angle α2 may be less than the first wrap angle α1, e.g., as shown in
In one embodiment of apparatus 850 as shown in
Referring once again to
In one embodiment of apparatus 800, the sensor 809 may have a reference layer 815, and a spacer layer 812 positioned between the free layer 816 and the reference layer 815. Moreover, the free layer 816 may be positioned between the reference layer 815 and the first edge 806. In some approaches, the spacer layer 812 may be a tunnel barrier layer.
As shown, apparatus 1000 includes a module 901 having a tape bearing surface 808, a first edge of the tape bearing surface 808 forming a first edge 906, a second edge of the tape bearing surface 808 forming a second edge 904, where tents 910, 911 formed by the magnetic tape 902 may extend from the edges 904, 906 along the tape bearing surface 808. A sensor 909 is positioned in a thin film region 914 of the module 901. Moreover, the sensor 909 includes a free layer.
Furthermore, the distance d1 from the first edge 906 along the tape bearing surface 808 of the free layer of the sensor 909 may be less than a distance d2 from the second edge 904 to the free layer of the sensor 909.
In other approaches of apparatus 1000, a media facing side of the sensor 909 may be recessed from the tape bearing surface 808.
In an exemplary embodiment, e.g., as shown in
In yet another approach of apparatus 1000, the guide may be a second module having magnetic transducers thereon such as one of the other modules, e.g., as shown in the various FIGS. (see
One embodiment of apparatus 1000 may include a drive mechanism such as a motor or other known mechanism that is configured to cause the tape to move over the first block and a controller electrically coupled to the drive mechanism. For example, the motor or other known mechanism may drive a tape supply cartridge, e.g., tape supply cartridge 120 of
In the modeling examples of
Wear of the coating slows significantly or effectively stops when the tape begins to contact the edges of the ceramic of the head at the substrate and closure. At this level of wear on the module, the coating tends to acquire a bevel. With continued reference to
Furthermore, the region of the tape having a convex curvature (as opposed to a flatter shape at the inflection point) tended to move towards the sensor position. Thus, without wishing to be bound by any theory, the inventor believes that having a thick durable coating gives the surprising benefit that as the coating slowly wears, the curvature of the tape above the sensors may change to a convex shape but may not increase in head-to-tape spacing. In other words, on a coated head, the convex region may move into a desired location above the sensors where the coating is approximately twice as thick as the magnetic head-to-tape spacing (as illustrated in
The simulation shown in
Without wishing to be bound by any theory, it appears that any sensitivity to changes with wear may not be dependent on starting shape of the module or wrap angles. Thus, there are advantages to this design. Namely, the asymmetrical head geometry may accommodate variations in tape and head design. Moreover, the wrap angle on the distant edge (second edge) may be adjusted to help stiffen the tape profile along with narrowing the land. In turn, stiffening the tape may improve flutter and help mitigate shorting.
Moreover, as demonstrated by
According to one embodiment as shown in
In one embodiment, the distance d1 is a stored value that is retrieved. In another embodiment, the distance d1 is detected. In some approaches, the distance d1, from first edge 806 to sensor 809, and/or the distance d2 from the second edge 804 to the sensor 809, may be measured mechanically using conventional techniques. For example, atomic force microscopy and/or stylus profilometry may be used. In other approaches, the distance d1 and/or distance d2 may be measured optically using conventional techniques. For example, machine vision may be used. In one approach, laser or other optical interferometry may be used. Preferably, the resolution of the optical detector is in the sub-micron level. The module may have a distance d1 from edge 806 to sensor 809, of less than 100 μm in order for the module to be wide enough for accurate positioning of the guide to determine a wrap angle α1.
With continued reference to
In various embodiments of method 1200, the wrap angle may be selected based on one or more desired tenting characteristics that are variable with changing wrap angle.
One such tenting characteristic is peak height of the tenting formed at a particular wrap angle α1. See, e.g., peak height h of a tent 811 in
In some approaches, the tenting characteristic may be a length of a tent 811 formed at a particular wrap angle α1.
Tenting characteristics corresponding to differing wrap angles may be determined experimentally, e.g., by running a tape over the module and measuring characteristics; determined via modeling; extrapolated from experimental or modeled data; etc. Tenting characteristics may be approximated and/or averaged across several different types of tapes that are compatible with the module to select a wrap angle that is a best fit for all types of tape. In some approaches, the wrap angle may be selected under an assumption that the tenting characteristics of all tapes suitable for use with the module behave in a substantially similar manner and therefore any commercially-available tape may be used in experimentation or modeling to determine the tenting characteristics.
In another approach, wrap angles may be calculated for each of a plurality of magnetic recording tapes from different manufacturers to create a similar desired tent region above the tape bearing surface of the sensor. The results can be stored in a table and applied when each particular tape is detected by the drive.
Whichever approach is used to determine a wrap angle, the determined wrap angle(s) may be output, e.g., for use in positioning components of a tape drive for creating the desired wrap angle.
With continued reference to
With continued reference to
In various embodiments of method 1200, the wrap angle may be selected based on one or more tenting characteristics that vary with changing wrap angle.
In one embodiment of method 1200, consideration may be given to whether the wrap angles are to be set using a second module. If so, then positioning a second module may be used to set the selected wrap angle. If not, positioning a guide may be used to set the selected wrap angle.
In some approaches, one or both of the wrap angles α1,α2 may be set in the drive by dynamic guides. One approach employs eccentric rollers, whereby the offset axis creates an orbital arc of rotation, allowing precise alignment of the wrap angles α1,α2. Alternatively, outriggers of a type known in the art may be used to set the wrap angles α1,α2.
In some embodiments, the wrap angles α1,α2 may be dynamically set in the drive. In one approach, a dynamically-positionable tape head may be used with fixed rollers. In another approach, the wrap angles α1,α2 may be set by a positionable tape support within the drive. Following method 1200 in which the distance of the sensor to the edge closest thereto is measured and may be used to determine the wrap angle at a given sensor-to-tape spacing, the tape guide may be adjusted to set the desired wrap angle.
Magnetic recording tapes from different manufacturers may perform differently as the tape runs over the edge. Thus, different wrap angles may be calculated for magnetic recording tapes from different manufacturers to create a similar desired tent region above the tape bearing surface of the sensor. Various embodiments described herein provide a method to determine a wrap angle for a magnetic recording tape over a sensor.
As shown in
Step 1304 of method 1300 involves detecting magnetic fields from the tape e.g., data, where an extent of spacing is detectable as spacing loss, and representative of the distance at differing wrap angles of the tape over the edge for a height of tenting of the tape above the sensor.
Step 1306 of method 1300 includes selecting one of the wrap angles to provide about a desired height of tenting of the tape above the sensor. In preferred embodiments, the portion of the tape directly above the sensor is convex. See, e.g.,
In some approaches, method 1300 may involve positioning a second module to set the selected wrap angle. In other approaches, method 1300 may involve positioning a guide to set the selected wrap angle.
In some approaches to method 1300, the wrap angle may be selected based on a tenting characteristic that varies with changing wrap angle. In other approaches, the tenting characteristic may be a peak height of a tent formed at a particular wrap angle. In yet other approaches, the peak height may be in a range of from about 5 to about 30 nanometers from a media facing side of the transducer.
In another embodiment of method 1300 the tenting characteristic may be a length of a tent formed at a particular wrap angle.
Now referring to
Each of the steps of the method 1400 may be performed by any suitable component of the operating environment. For example, in various embodiments, the method 1400 may be partially or entirely performed by a controller, a processor, a tape drive, or some other device having one or more processors therein. The processor, e.g., processing circuit(s), chip(s), and/or module(s) implemented in hardware and/or software, and preferably having at least one hardware component, may be utilized in any device to perform one or more steps of the method 1400. Illustrative processors include, but are not limited to, a CPU, an ASIC, a FPGA, etc., combinations thereof, or any other suitable computing device known in the art.
As shown in
Method 1400 may proceed with operation 1404 in which the processor receives a predefined height of tenting of a magnetic recording tape above the sensor.
Method 1400 includes operation 1406 where the processor calculates the wrap angle when the magnetic recording tape moves over the module.
In some embodiments of method 1400, a module of a tape head may be adjusted in a vertical direction to create the calculated wrap angle when the magnetic recording tape moves over the module.
In other embodiments of method 1400, a guide may be set to create the calculated wrap angle of the magnetic recording tape.
The present invention may be a system, a method, and/or a computer program product. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.
The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
Moreover, a system according to various embodiments may include a processor and logic integrated with and/or executable by the processor, the logic being configured to perform one or more of the process steps recited herein. By integrated with, what is meant is that the processor has logic embedded therewith as hardware logic, such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), etc. By executable by the processor, what is meant is that the logic is hardware logic; software logic such as firmware, part of an operating system, part of an application program; etc., or some combination of hardware and software logic that is accessible by the processor and configured to cause the processor to perform some functionality upon execution by the processor. Software logic may be stored on local and/or remote memory of any memory type, as known in the art. Any processor known in the art may be used, such as a software processor module and/or a hardware processor such as an ASIC, a FPGA, a central processing unit (CPU), an integrated circuit (IC), etc.
It will be clear that the various features of the foregoing systems and/or methodologies may be combined in any way, creating a plurality of combinations from the descriptions presented above.
It will be further appreciated that embodiments of the present invention may be provided in the form of a service deployed on behalf of a customer.
The inventive concepts disclosed herein have been presented by way of example to illustrate the myriad features thereof in a plurality of illustrative scenarios, embodiments, and/or implementations. It should be appreciated that the concepts generally disclosed are to be considered as modular, and may be implemented in any combination, permutation, or synthesis thereof. In addition, any modification, alteration, or equivalent of the presently disclosed features, functions, and concepts that would be appreciated by a person having ordinary skill in the art upon reading the instant descriptions should also be considered within the scope of this disclosure.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of an embodiment of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4479158 | Froehlich et al. | Oct 1984 | A |
4809110 | Hertrich | Feb 1989 | A |
4888657 | Lacey | Dec 1989 | A |
5289330 | Wade | Feb 1994 | A |
5307227 | Okada | Apr 1994 | A |
5751527 | Sundaram et al. | May 1998 | A |
5905613 | Biskeborn et al. | May 1999 | A |
6018444 | Beck | Jan 2000 | A |
6122147 | Fahimi et al. | Sep 2000 | A |
6151191 | Muftu et al. | Nov 2000 | A |
6433959 | Lakshmikumaran et al. | Aug 2002 | B1 |
6452744 | Tamaru et al. | Sep 2002 | B1 |
6633449 | Anderson et al. | Oct 2003 | B1 |
6760177 | Biskeborn | Jul 2004 | B2 |
6886766 | Weng et al. | May 2005 | B1 |
7006329 | Johnson et al. | Feb 2006 | B2 |
7193813 | Biskeborn | Mar 2007 | B2 |
7206167 | Beck et al. | Apr 2007 | B2 |
7248438 | Biskeborn | Jul 2007 | B2 |
7271983 | Saliba | Sep 2007 | B2 |
7382581 | Biskeborn | Jun 2008 | B2 |
7414811 | Biskeborn | Aug 2008 | B2 |
7486479 | Nakao et al. | Feb 2009 | B2 |
8310783 | Kawakami et al. | Nov 2012 | B2 |
8531796 | Biskeborn | Sep 2013 | B2 |
8699169 | Biskeborn | Apr 2014 | B2 |
8797682 | Biskeborn et al. | Aug 2014 | B1 |
8917476 | Holmberg et al. | Dec 2014 | B2 |
8958175 | Lakshmikumaran et al. | Feb 2015 | B1 |
9030779 | Dellmann et al. | May 2015 | B2 |
9653109 | Biskeborn et al. | May 2017 | B2 |
9734849 | Biskeborn | Aug 2017 | B2 |
9837104 | Biskeborn | Dec 2017 | B1 |
9928855 | Biskeborn | Mar 2018 | B1 |
9997193 | Hasegawa | Jun 2018 | B1 |
10068591 | Biskeborn et al. | Sep 2018 | B2 |
10224065 | Biskebom | Mar 2019 | B2 |
10304481 | Biskeborn | May 2019 | B2 |
20020057524 | Beck | May 2002 | A1 |
20020075594 | Aoki | Jun 2002 | A1 |
20040061972 | Biskeborn | Apr 2004 | A1 |
20050128640 | Biskeborn | Jun 2005 | A1 |
20050254170 | Dugas et al. | Nov 2005 | A1 |
20050284207 | Biskeborn | Dec 2005 | A1 |
20070047141 | Biskeborn et al. | Mar 2007 | A1 |
20080049358 | Biskeborn et al. | Feb 2008 | A1 |
20080170328 | Kawakami et al. | Jul 2008 | A1 |
20090015970 | Biskeborn et al. | Jan 2009 | A1 |
20090135520 | Hachisuka | May 2009 | A1 |
20090174967 | Biskeborn et al. | Jul 2009 | A1 |
20090185314 | Hachisuka | Jul 2009 | A1 |
20100053810 | Biskeborn | Mar 2010 | A1 |
20100053817 | Biskeborn et al. | Mar 2010 | A1 |
20100134929 | Ito | Jun 2010 | A1 |
20110013313 | Bui et al. | Jan 2011 | A1 |
20110058271 | Biskeborn et al. | Mar 2011 | A1 |
20120287527 | Biskeborn et al. | Nov 2012 | A1 |
20120300338 | Biskeborn | Nov 2012 | A1 |
20120307396 | Biskeborn et al. | Dec 2012 | A1 |
20130186172 | Biskeborn et al. | Jul 2013 | A1 |
20140063646 | Biskeborn et al. | Mar 2014 | A1 |
20160125900 | Biskeborn et al. | May 2016 | A1 |
20160232936 | Poorman et al. | Aug 2016 | A1 |
20180122408 | Biskeborn | May 2018 | A1 |
20180122410 | Biskeborn | May 2018 | A1 |
20180158472 | Biskeborn | Jun 2018 | A1 |
20180158478 | Biskeborn | Jun 2018 | A1 |
20180322897 | Biskeborn et al. | Nov 2018 | A1 |
20180366148 | Biskeborn et al. | Dec 2018 | A1 |
20190164569 | Biskeborn | May 2019 | A1 |
20190206429 | Biskeborn | Jul 2019 | A1 |
20190206430 | Biskeborn | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
1167625 | Oct 1969 | GB |
S55150126 | Nov 1980 | JP |
2015005926 | Jan 2015 | WO |
Entry |
---|
Biskeborn, R. G., U.S. Appl. No. 15/789,477, filed Oct. 20, 2017. |
Notice of Allowance from U.S. Appl. No. 15/339,829, dated Nov. 16, 2017. |
Supplemental Notice of Allowance from U.S. Appl. No. 15/339,829, dated Dec. 5, 2017. |
Advisory Action from U.S. Appl. No. 15/371,075, dated Dec. 8, 2017. |
Final Office Action from U.S. Appl. No. 15/369,651, dated Dec. 14, 2017. |
Advisory Action from U.S. Appl. No. 15/369,651, dated Feb. 28, 2018. |
Final Office Action from U.S. Appl. No. 15/789,477, dated Apr. 17, 2018. |
European Search and Examination Report from European Application No. GB1718781.6, dated Apr. 17, 2018. |
Notice of Allowance from U.S. Appl. No. 15/369,651, dated May 2, 2018. |
Supplemental Notice of Allowance from U.S. Appl. No. 15/339,829, dated Dec. 27, 2017. |
Non-Final Office Action from U.S. Appl. No. 15/789,477, dated Dec. 27, 2017. |
Non-Final Office Action from U.S. Appl. No. 15/371,075, dated Jan. 8, 2018. |
Final Office Action from U.S. Appl. No. 15/371,075, dated Jun. 18, 2018. |
Non-Final Office Action from U.S. Appl. No. 15/697,260, dated Jun. 22, 2018. |
Biskeborn et al., U.S. Appl. No. 16/019,386, filed Jun. 26, 2018. |
Wu, Yiqian et al., “Design of a Head-Tape Interface for Ultra Low Flying,” IEEE Transactions on Magnetics 32, No. 1, 1996, pp. 160-165. |
Biskeborn et al., U.S. Appl. No. 15/369,651, filed Dec. 5, 2016. |
Biskeborn et al., U.S. Appl. No. 15/371,075, filed Dec. 6, 2016. |
Biskeborn, R. G., U.S. Appl. No. 15/339,823, filed Oct. 31, 2016. |
Biskeborn, R. G., U.S. Appl. No. 15/339,829, filed Oct. 31, 2016. |
Non-Final Office Action from U.S. Appl. No. 15/339,823, dated Dec. 13, 2016. |
Restriction Requirement from U.S. Appl. No. 15/339,829, dated Jan. 30, 2017. |
Non-Final Office Action from U.S. Appl. No. 15/339,829, dated Apr. 21, 2017. |
Restriction Requirement from U.S. Appl. No. 15/371,075, dated May 4, 2017. |
Non-Final Office Action from U.S. Appl. No. 15/369,651, dated Jun. 1, 2017. |
Non-Final Office Action from U.S. Appl. No. 15/371,075, dated Jun. 12, 2017. |
Ex Parte Quayle from U.S. Appl. No. 15/339,823, dated Jun. 16, 2017. |
Notice of Allowance from U.S. Appl. No. 15/339,823, dated Jul. 28, 2017. |
Notice of Allowance from U.S. Appl. No. 15/339,829, dated Aug. 16, 2017. |
Biskeborn, R. G., U.S. Appl. No. 15/697,260, filed Sep. 6, 2017. |
Final Office Action from U.S. Appl. No. 15/371,075, dated Sep. 27, 2017. |
Supplemental Notice of Allowance from U.S. Appl. No. 15/339,829, dated Sep. 22, 2017. |
Non-Final Office Action from U.S. Appl. No. 15/371,075, dated Oct. 25, 2018. |
Notice of Allowance from U.S. Appl. No. 15/789,477, dated Jul. 11, 2018. |
Notice of Allowance from U.S. Appl. No. 15/789,477, dated Oct. 22, 2018. |
Supplemental Notice of Allowance from U.S. Appl. No. 15/789,477, dated Dec. 18, 2018. |
Notice of Allowance from U.S. Appl. No. 15/697,260, dated Jan. 14, 2019. |
Supplemental Notice of Allowance from U.S. Appl. No. 15/789,477, dated Jan. 8, 2019. |
Biskeborn, R. G., U.S. Appl. No. 16/243,976, filed Jan. 9, 2019. |
Biskeborn, R. G., U.S. Appl. No. 16/297,376, filed Mar. 8, 2019. |
Biskeborn, R. G., U.S. Appl. No. 16/297,411, filed Mar. 8, 2019. |
Notice of Allowance from U.S. Appl. No. 15/371,075, dated Mar. 6, 2019. |
Non-Final Office Action from U.S. Appl. No. 16/019,386, dated Apr. 4, 2019. |
Notice of Allowance from U.S. Appl. No. 15/371,075, dated May 8, 2019. |
Supplemental Notice of Allowance from U.S. Appl. No. 15/371,075, dated Jun. 4, 2019. |
Supplemental Notice of Allowance from U.S. Appl. No. 15/371,075, dated Jun. 21, 2019. |
Biskeborn et al., U.S. Appl. No. 16/445,069, filed Jun. 18, 2019. |
Biskeborn et al., U.S. Appl. No. 161445,076, filed Jun. 18, 2019. |
Number | Date | Country | |
---|---|---|---|
20180122409 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15339829 | Oct 2016 | US |
Child | 15802305 | US |