The present disclosure relates to the field of packaging machinery. Specifically, the present disclosure is for a feeding mechanism used in supplying imbricated, or shingled, taped bags to a packaging machine.
Taped bags and machinery using such bags are generally well known in the art. For example, U.S. Pat. No. 3,587,843 discloses a chain of imbricated bags connected and supported by two strands of tape; U.S. Pat. No. 3,698,547 discloses a packaging apparatus having imbricated bags connected by two strands of tape which are attached to a rotatable spool; U.S. Pat. No. 4,032,038 discloses a taped bag dispenser having a wind-up surface; U.S. Pat. No. 4,796,412 discloses a taped bag feeder having the take-up reels housed within a cassette; and British Patent Application GB 2 064 477 A discloses taped bag dispenser with a drive means for imparting rotational motion to take-up reels.
Typically taped bags are made from various thermoplastic materials. Common thermoplastic materials known in the art include polyethylenes, polyesters, ethylene vinyl alcohols (EVOH), and other polymers known in the art which may be configured alone or in combination depending on the desired properties of the packaging material. Taped bags are supplied in a folded or rolled arrangement with the leading end, typically the open end of the bag, configured in an imbricated, or shingled, arrangement with the leading edge of a subsequent bag offset behind the leading edge of a previous bag. Typically, a pair of tapes is provided to advance the bags into machinery that inserts product into the bag. Taped bag packaging equipment is commonly used in food packaging applications, particularly meat packing.
Taped bag feeders are used throughout meat packaging plants to aid in loading products efficiently into an opened bag. These taped bag feeders utilize bags that are shingled on evenly spaced tape. By using the tape as an advancing mechanism, the taped bag feeder, by use of a drive unit, can ensure an opened bag is always ready for an operator or machine to place product into. The drive mechanism on the taped bag feeder is coupled to take-up reels to draw the bags forward. The tapes are removably attached to the bags by adhesive or other means. When product has been inserted into a bag, the bag is peeled away from the tapes and moved to the next stage in the packaging operation.
Most packing plants are very cramped and do not leave very much space for workers and thoroughfares. One major problem with current taped bag feeders in the industry is that the take-up reels are aligned concentrically with the output shafts of the drive. This means that there is a take-up reel on each side of the taped bag feeder. Since many of these taped bag feeders are part of full production lines, it is hard to access the non-operator side reel. This costs valuable production time as workers need to walk around to the nearest opening or stoop below low conveyors to access the non-operator side reel. In a typical packaging operation, taped bags must be reloaded into the machine at periodic intervals, commonly every 30-45 minutes at a minimum. Therefore, an operator must access the take-up reel on the non-operator side of the machine to empty the accumulated tape and to feed the new tape for the next batch of bags. Production time is consumed in accessing the rear reel.
Another reason for the present invention is that some automated pieces of equipment are beginning to use taped bag feeders integrated into the machines. Due to the design of these complete packaging systems, access to the back-side is limited or fully guarded. Mounting the taped bag feeder on carriage rails is one option, but this adds much cost to the overall equipment. Additionally, the use of carriage rails is not a desirable option because of housekeeping and sanitation concerns, especially in food packaging applications. Carriage rails provide surfaces for the accumulation of dust, dirt, food scraps, or other contaminants, and require labor intensive cleaning. This adds much expense and requires workers to remove the whole tape bag feeder from the machine every time access is required at the back-side reel. Therefore, it is desirable for an easier way to allow workers to access the take-up reels without hindering production up-time.
Additionally, the current method of changing and or splicing tape on the non-operator side take-up reel of standard taped bag feeders was not very effective. Operators often have to crawl under very low conveyors or walk to a catwalk in order to reach the opposing tape reel located on the opposite side of the line. This can cause back strain as well as cross contaminate production areas as an operator may come in contact with the floor or peripheral area. Operator safety, coupled with additional machine down-time is why the present invention is desired.
In view of the foregoing discussion, it is desirable for a taped bag feeder having both take-up reels accessible to an operator. This is accomplished by positioning both take-up reels on one side of the machine that is along side the bag flow path rather than in-line with the flow path. In other words, the take up reels may be positioned on the side of the feeder rather than on the downstream end.
One embodiment of the present disclosure incorporates a timed drive pulley arrangement attached to parallel shafts. By keeping the pulley ratio the same between the two shafts, a 1:1 windup ratio could be maintained between the two take-up reels. By bringing the second parallel shaft back through the body of the taped bag feeder, both reels could be placed on the operator side of the machine.
To further simplify the design, a second embodiment of the present disclosure incorporates a direct drive gear system internal to the taped bag feeder. This allows for a smaller package, and a more dependable drive arrangement. An intermediate parallel shaft is incorporated with a free-turning spur gear to ensure the secondary take-up reels rotate in the same direction and for ease of threading by the operator.
The major benefit of the present disclosure is that both reels of the taped bag feeder are located on one side of the unit, the operator side. Therefore, when a worker needs to obtain access to the tape reels, they do not have to take extra time out of production to go around to the opposite side of the machine. This is typically done when the carrier tape breaks, box of bags needs to be changed, or simply the tape needs to be emptied from the tape reels.
The taped bag feeder of this disclosure also allows the machine to be placed against a wall or other equipment that does not allow rear access for tape reel removal. Formerly, this was not possible or the machine had to be moved to gain access.
The device of the present disclosure can be used to advance shingled tape bags for a worker in a meat packing plant. The device may include a bag guide whereby bags are brought over the guide and the tape threaded over the properly spaced tape guide slot. The spaced tape guide may include various slots to run the tape through depending on the tape spacing when attached to the bags. The tape is then fed through the round tape guides and presented to the take-up reels. A simple knot is tied in the end of each tape strand and slid into the slot in the outer reel, knot facing out. The tape that is threaded through the round tape guide closest to the side-plate gets attached to the reel closest to the side-plate. The second tape running through the other round tape guide gets attached to the second reel. As bags are pulled off the tape over the bag guide, a sensor located atop the guide prompts the drive mechanism to advance the tape forward by means of the take-up reels. Thus, the bag-train advances forward, pulling up the next bag to be inflated and then filled with product.
A compressed gas stream is used to separate the bag mouth and inflate the bag. In one embodiment, an air amplifier or nozzle located upstream of the bag opening is used to open the bag and maintain it in its opened state. This air supply can run continuously for fast paced operations, or be activated via sensor means to save utility costs on slower equipment. An operator or machine is then able to push product into the opened bag and remove the bag from the tape. The product is then free to move to downstream packaging equipment. In addition to air, certain other compressed gasses may be used to open the bags, such as nitrogen, carbon dioxide, or other gasses depending on the desired atmosphere within the final package.
The device of the present disclosure was specifically designed for use in taped bag feed operations, but might be adapted to other uses. This concept could be applied to rewinding of scrap or trim from a manufacturing process.
One aspect of the present disclosure is a taped bag feeder having a housing with an upstream end, a downstream end and a longitudinal axis therebetween which defines a direction of flow or a drive path for a bag, a drive mechanism operatively connected to a first shaft having a first end and an opposing second end and a second shaft having a first end and an opposing second end, a first reel disposed on a first end of the first shaft and a second reel disposed on a first end of the second shaft. The drive mechanism is adapted to impart rotation to the first and second reels through the first and second shafts such that the first and second reels receive and wind the tape strands upon the reels, and advance the assembly of imbricated bags along the drive path from the upstream end to the downstream end. The first and second reels are both disposed on a face of the housing and oriented in a plane spaced from and parallel to the longitudinal axis of the housing.
Alternatively, the present invention is directed to a taped bag feeder having a drive mechanism further comprising a ratchet shaft having a first end and an opposing second end, and positioned between and operationally connected to the first and second shafts such that the first shaft is operationally connected to the second shaft by means of the ratchet shaft.
The present invention is a taped bag feeder comprising drive mechanism further including a differential unit positioned between the second end of the first shaft and a first end of a third shaft, and configured to maintain a substantially equal torque loading on the first and second shafts. The first and third shafts are operationally connected to the differential unit and along a common longitudinal axis therethrough.
The present disclosure is a taped bag feeder having a drive mechanism further comprising a pneumatic cylinder pivotally connected adjacent to a first end of a ratchet shaft such that the pneumatic cylinder imparts rotational motion to the ratchet shaft.
The present disclosure is directed to a taped bag feeder having a drive mechanism further comprising a means for transferring motion from a third shaft to a second shaft. Preferably, the means for transferring motion from a third shaft to a second shaft includes a first gear positioned on an opposing second end of a third shaft and a second gear positioned on an opposing second end of a second shaft.
The present disclosure is directed to a taped bag feeder having a drive mechanism which may further comprise a means for maintaining rotation of a first shaft, a second shaft and a third shaft, all in one direction. Preferably, the means for maintaining rotation of a first shaft, a second shaft and a third shaft, all in one direction, includes a third gear positioned on an opposing second end of a ratchet shaft.
Additional features will become apparent to those skilled in the art upon consideration of the following detailed description of drawings, illustrative of at least one embodiment of the disclosure.
While the present disclosure will be described fully hereinafter with reference to the accompanying drawings in which a particular embodiment is shown, it is understood at the outset that persons skilled in the art may modify the disclosure herein described while still achieving the desired result of this disclosure. Accordingly, the description which follows is to be understood as a broad informative disclosure directed to persons skilled in the appropriate arts and not as limitations of the present disclosure.
Referring to
Tape guides 8a, 8b are positioned to correspond to the take-up reels 34a, 34b, respectively. Take-up reels 34a and 34b are horizontally offset from each other to prevent interference between the tape strands, therefore tape guides 8a and 8b are offset to align with their corresponding take-up reel. From the tape guide 7, the tape gets threaded through the aperture in the round tape guides 8a, 8b located inline with two take-up reels 34a, 34b.
A knot is tied in the end of each tape strand 4, 5 and slid into the slot 11 on reel 10, knot facing out. The tape 4 that is threaded through the round tape guide 8a gets attached to the corresponding inline reel 34a. Tape 5 runs through the second round tape guide 8b and gets attached to the second reel 34b.
To start, the bags 1 should be located behind the switch actuator 13 (see
The tape bag feeder advances bags 1 forward as an operator or machine moves product 14 into the opened bag 15 on the bag guide 3. Bags 1 are opened by use of a compressed gas stream. In the embodiment shown, a pneumatically operated air amplifier or nozzle 6 is focused towards the bag opening. The bag 15 to be filled is popped open from the air turbulence as the lower portion of the bag is held by the two pieces of tape 4, 5. As bag 15 is removed, the switch actuator 13, which was held down by the just removed bag, tips upward, prompting advance switch 18 to activate.
Referring now to
Firmly affixed to the ratchet shaft 23 is a spur gear 25. Gear 25 mates to another spur gear 26 attached to the outer housing of differential unit 28. Differential 28 consists of three shafts each with bevel gears incorporated into them, as is shown in
Referring again to
The secondary output differential shaft 30 has another spur gear 39 affixed to it. Gear 39 meshes with an intermediate spur gear 40 that rolls freely on the opposite end of the ratchet shaft 23. The purpose of this freely rotating gear 40 is to get the same rotational reference between the two tape take-up reels 34a and 34b. The intermediate spur gear 40 meshes with another spur gear 41 mounted on the secondary tape rewind shaft 12. The secondary tape rewind shaft 12 is attached to a second reel 34b to accept a second length of tape 5. It will be appreciated by those skilled in the art that first gear 39 positioned on an opposing second end of said third shaft 30 and second gear 41 positioned on said second end of said second shaft 12 provide the drive mechanism with a means for transferring motion 44 from said third shaft 30 to said second shaft 12.
While an embodiment has been illustrated and described in the drawings and foregoing description, such illustrations and descriptions are considered to be exemplary and not restrictive in character, it being understood that only an illustrative embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. The applicant has provided description and figures which are intended as an illustration of certain embodiments of the disclosure, and are not intended to be construed as containing or implying limitation of the disclosure to those embodiments. There are several advantages of the present disclosure arising from various features set forth in the description. It will be noted that alternative embodiment of the disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of the disclosure and associated methods that incorporate one or more of the feature of the disclosure and fall within the spirit and scope of the present disclosure as defined by the impendent claims.
Number | Name | Date | Kind |
---|---|---|---|
3782069 | Fischbein et al. | Jan 1974 | A |
3908343 | Farrelly | Sep 1975 | A |
4003782 | Farrelly | Jan 1977 | A |
4113139 | Berry et al. | Sep 1978 | A |
4435944 | Meyer | Mar 1984 | A |
4516384 | Imperiale | May 1985 | A |
4616472 | Owensby et al. | Oct 1986 | A |
4693372 | O'Neill | Sep 1987 | A |
4796412 | O'Neill | Jan 1989 | A |
5402625 | Halstead | Apr 1995 | A |
5826405 | Killinger et al. | Oct 1998 | A |
20020130058 | Carson et al. | Sep 2002 | A1 |
20030009990 | Main et al. | Jan 2003 | A1 |
20030029141 | Townsend | Feb 2003 | A1 |
20030037510 | McGrane et al. | Feb 2003 | A1 |
20030154692 | Parsons et al. | Aug 2003 | A1 |
20040154689 | Brahier et al. | Aug 2004 | A1 |
20060000565 | Billebault et al. | Jan 2006 | A1 |
20070210201 | Palumbo | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
0 396 838 | Oct 1989 | EP |
0 265 989 | Sep 1990 | EP |
2064477 | Jun 1981 | GB |
2 176 460 | Dec 1986 | GB |
WO 2004031036 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080073836 A1 | Mar 2008 | US |