The present invention relates generally to fluid dispensing devices and more particularly to metered-dose pump devices useful for dispensing high-viscosity semi-solid substances.
It is common in the cosmetic industry and the medical industry to provide liquids and pastes in dispensing containers. For example, topical ointments and creams are often provided in dispensing containers configured with pump mechanisms that deliver a specified amount or dose of the fluid in response to user-actuation of the pump mechanism. Examples of such containers and pump mechanisms are shown in U.S. Pat. Nos. 5,217,050, 5,950,880 and 5,961,005, which are each hereby incorporated by reference in its entirety. Typical dispensing devices as shown therein include a substantially tubular hollow container body having a substantially circular cross section fitted with a finger-operable pump mechanism and a follower, or take-up, piston. The finger-operable pump includes a dip tube having an inlet at its end that provides the fluid to a pump chamber for discharge at a dispensing outlet. As fluid product is dispensed, the follower piston slides toward the pump mechanism due to atmospheric pressure acting on the exterior surface of the piston. This action decreases the internal volume of the body by an amount equal to the volume of product discharged. The piston may be fully enclosed by the container body, in which case a vent is typically provided to ensure atmospheric pressure at the external surface of the piston.
It is therefore desirable to provide dispensing devices that overcome the problems associated with prior devices, and which efficiently dispense fluid, particularly highly viscous substances, after a significant portion of the fluid has been dispensed.
The present invention provides dispensing devices and systems that efficiently dispense fluid, particularly highly viscous substances, after a significant portion of the fluid has been dispensed.
According to the present invention, a dispensing device includes a follower piston coupled within a hollow body and a pump mechanism having a dip tube coupled at the other end of the body and defining a chamber for holding fluid therebetween. A well provided in the piston is generally larger in diameter than the dip tube to allow fluid, and particularly highly viscous fluid, in the chamber to flow down into the well as the dip tube enters the well to facilitate fluid removal after a significant portion of the fluid has already been removed. In some aspects, the well walls and dip tube end are substantially conical shaped with the well walls either substantially parallel to the dip tube end or having a greater angle relative to the axis of the dip tube.
According to an aspect of the present invention, a metered-dose pump device is provided for dispensing doses of a semi-solid substance. The device typically includes a substantially cylindrical body having a central axis and defining a chamber for housing the semi-solid substance, and a dispensing mechanism coupled to one end of the body, the mechanism including a dip tube having an end with an orifice extending into the chamber along the central axis for extracting the semi-solid substance from the chamber. The device also typically includes a piston slidably coupled within the other end of the body, wherein the piston slides with sealable contact within the body, wherein the piston includes a central well which is positioned in line with the central axis, the well having walls with a substantially conical shape and extending outwards from the bottom of the well relative to the central axis, and wherein the bottom of the well is substantially the same size as the orifice of the dip tube. In operation, as the dip tube enters the well, the semi solid substance is able to flow down into the well around the end of the dip tube so as to facilitate extraction of the remaining semi-solid substance after a substantial portion of the semi-solid substance has already been extracted.
According to another aspect of the present invention, a metered-dose pump device is provided for dispensing controlled amounts of a semi-solid substance. The device typically includes a substantially cylindrical body having a central axis and defining a chamber for housing the semi-solid substance, and a dispensing mechanism coupled to one end of the body, the mechanism including a substantially cylindrical dip tube having an end with an orifice extending into the chamber along the central axis for extracting the semi-solid substance from the chamber. The device also typically includes a piston positioned at the other end of the body and within the body, wherein the piston slides with sealable contact within the body, wherein the piston includes a contact surface defining a boundary of the chamber in contact with the semi-solid substance, the surface having a central well which is positioned in line with the central axis, the well having walls extending outwards from the bottom of the well relative to the central axis with a substantially conical shape, and wherein the bottom of the well is substantially the same size as the orifice of the dip tube. In operation, as the semi solid substance is extracted, the piston slides within the body toward the dispensing mechanism so that when a substantial portion of the semi-solid substance has been removed, the dip tube enters the well, and wherein the remaining semi-solid substance flows down into the well proximal the end of the dip tube so as to facilitate extraction of the remaining semi-solid substance.
According to yet another aspect of the present invention, a metered-dose pump device is provided for dispensing a semi-solid substance. The device typically includes a substantially cylindrical body having a central axis and defining a chamber for housing a semi-solid substance, and a dip tube having an end with an orifice extending into the chamber along the central axis. The device also typically includes a pump means, coupled to one end of the body and to the dip tube, for extracting a portion of the semi-solid substance from the chamber through the dip tube, and for providing the extracted semi-solid substance to a user, and a piston, slidably coupled within the other end of the body, wherein the piston slides with sealable contact within the body, wherein the piston includes a central well which is positioned in line with the axis, the well having walls with a substantially conical shape and extending outwards from the bottom of the well relative to the axis, and wherein the bottom of the well is substantially the same size as the orifice of the dip tube. In operation, as the dip tube enters the well, the semi solid substance is able to flow down into the well around the end of the dip tube so as to facilitate extraction of the remaining semi-solid substance after a substantial portion of the semi-solid substance has already been extracted.
Reference to the remaining portions of the specification, including the drawings and claims, will realize other features and advantages of the present invention. Further features and advantages of the present invention, as well as the structure and operation of various embodiments of the present invention, are described in detail below with respect to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements.
a and 8b illustrate a side view and an isometric view, respectively, of a follower piston according to another embodiment of the present invention.
As shown in
As shown in
An optional cap or cover 30 may be releasably mounted over pump mechanism 20 as shown. An optional bottom portion 44 is provided, which for embodiments including a vacuum-filled chamber 12 also includes a vent 42 to ensure atmospheric pressure at the external surface (e.g., bottom) of piston 25. A lip seal 46 provides a seal at the contact perimeter between piston 25 and body 15.
U.S. Pat. Nos. 5,217,050, 5,950,880 and 5,961,005, which were previously incorporated by reference, disclose additional aspects of such dispensing devices including manufacturing, filling and using such dispensing devices.
In the above and later embodiments, the angle 151 between axis 150 and well walls 145 and/or tube walls 138 is preferably not greater than 30 degrees, but may be greater such as 40 degrees, 45 degrees or more. Additionally, the relative angle between the well walls 145 and axis 150 is preferably greater than or equal to the relative angle between the dip tube walls 138 and axis 150.
It should be appreciated that the dip tube configurations as shown in
a and 8b illustrate a side view and an isometric view, respectively, of a follower piston 325 according to another embodiment of the present invention. Follower piston 325 is similar in many respects to follower piston 125 of FIG. 3. In piston 325, the walls 345, however, do not extend above the main body as shown, whereas walls 145 of piston 125 extend above the main body, e.g., above the circumference defined by lip 146. It should be appreciated that other piston configurations may be implemented within the scope of the present invention.
While the invention has been described by way of example and in terms of the specific embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
This application claims the benefit of Provisional Application Ser. No. 60/386,014, filed Jun. 4, 2002, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5921438 | Kobayashi et al. | Jul 1999 | A |
6375045 | Ki | Apr 2002 | B1 |
6418978 | Bailly | Jul 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
20030222105 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
60386014 | Jun 2002 | US |