The present invention relates to medical devices and more particularly to endovascular devices.
Endoluminal prostheses may be inserted into a body lumen such as an anatomical vessel or duct for various purposes. Prostheses may maintain or restore patency in a formerly blocked or constricted passageway or they may be used for different procedures. For example, a prosthesis may include one or more stents disposed in or about a graft, and the stents may hold the graft in an open configuration to treat an aneurysm. Additionally, stents coupled to one or both ends of a graft may extend proximally or distally away from the graft to engage a healthy portion of a vessel wall away from a diseased portion of an aneurysm to provide endovascular graft fixation.
Modular stent graft pieces can be deployed in stages to form a combined stent graft assembly. First, a central or main stent graft body can be deployed. Subsequently, secondary or attachment stent graft body can be deployed and positioned within the main stent graft body.
One of the most common complications associated with endoluminal grafting for abdominal aortic aneurysms (“AAA”) is the stove piping effect that can occur in the overlap length into the proximal taper of a main stent graft body. It is desirable to create a stent graft assembly that reducing the stove piping effect and reduces the chance of turbulent flow of blood and possible thrombotic buildup through the main stent graft body.
According to a first aspect of the present disclosure, there is provided a modular stent graft system comprising a first stent graft having a first open end, a first cylindrical zone extending from the first open end for a first length, a tapered zone extending from the cylindrical zone for a second length, the tapered zone tapering from a first diameter to a second diameter smaller than the first diameter, and a second cylindrical zone extending from the tapered zone for a third length to a second open end, wherein the third length is greater than both the first length and the second length and the first length is greater than the second length; a second stent graft configured for insertion within the first stent graft, the second stent graft comprising a first open end, a tapered zone extending from the first open end for a first length, the tapered zone tapering from a first diameter to a second diameter smaller than the first diameter, and a cylindrical zone extending from the tapered zone to a second open end for a second length longer than the first length; wherein the first diameter of the tapered zone of the second stent graft is substantially the same as the first diameter of the tapered zone of the first stent graft, the second diameter of the tapered zone of the second stent graft is substantially the same as the second diameter of the tapered zone of the first stent graft, wherein each tapered zone has an angle of taper and the angle of taper of the tapered zone of the second stent graft is substantially the same as the angle of taper of the tapered zone of the first stent graft, wherein the second stent graft cylindrical zone is longer than the first stent graft second cylindrical zone such that when the second stent graft is disposed within the first stent graft and the tapered zones are mated, the second stent graft cylindrical zone extends beyond the second open end of the first stent graft, wherein the second stent graft comprises a first internal seal stent at the first open end of the second stent graft, the first seal stent having X proximal apices and a length, and a second internal seal stent directly adjacent and partially nesting with the first internal stent, the second seal stent having ½ X top apices and a length greater than the first seal stent; and wherein when the second stent graft is disposed within the first stent graft, the tapered zone of the second stent graft conforms precisely to the tapered zone of the first stent graft.
According to a second aspect of the present disclosure, there is provided a modular stent graft system comprising: a first stent graft having a first open end, a first cylindrical zone extending from the first open end for a first length, a tapered zone extending from the cylindrical zone for a second length, the tapered zone tapering from a first diameter to a second diameter smaller than the first diameter, and a second cylindrical zone extending from the tapered zone for a third length to a second open end, wherein the third length is greater than both the first length and the second length and the first length is greater than the second length; a second stent graft configured for insertion within the first stent graft, the second stent graft comprising a first open end, a tapered zone extending from the first open end for a first length, the tapered zone tapering from a first diameter to a second diameter smaller than the first diameter, and a cylindrical zone extending from the tapered zone to a second open end for a second length longer than the first length; wherein the first diameter of the tapered zone of the second stent graft is substantially the same as the first diameter of the tapered zone of the first stent graft, the second diameter of the tapered zone of the second stent graft is substantially the same as the second diameter of the tapered zone of the first stent graft; wherein each tapered zone has an angle of taper and the angle of taper of the tapered zone of the second stent graft is substantially the same as the angle of taper of the tapered zone of the first stent graft; and wherein the second stent graft cylindrical zone is longer than the first stent graft second cylindrical zone such that when the second stent graft is disposed within the first stent graft and the tapered zones are mated, the second stent graft cylindrical zone extends beyond the second open end of the first stent graft, and wherein when the second stent graft is disposed within the first stent graft, the tapered zone of the second stent graft conforms precisely to the tapered zone of the first stent graft.
According to a third aspect of the present disclosure, there is disclosed a method of deploying a modular stent graft system, the method comprising: inserting into the body a first stent graft having a first open end, a first cylindrical zone extending from the first open end for a first length, a tapered zone extending from the cylindrical zone for a second length, the tapered zone tapering from a first diameter to a second diameter smaller than the first diameter, and a second cylindrical zone extending from the tapered zone for a third length to a second open end, wherein the third length is greater than both the first length and the second length and the first length is greater than the second length; inserting into the body a second stent graft within the first stent graft, the second stent graft comprising a first open end, a tapered zone extending from the first open end for a first length, the tapered zone tapering from a first diameter to a second diameter smaller than the first diameter, and a cylindrical zone extending from the tapered zone to a second open end for a second length longer than the first length; wherein the first diameter of the tapered zone of the second stent graft is substantially the same as the first diameter of the tapered zone of the first stent graft, the second diameter of the tapered zone of the second stent graft is substantially the same as the second diameter of the tapered zone of the first stent graft, wherein each tapered zone has an angle of taper and the angle of taper of the tapered zone of the second stent graft is substantially the same as the angle of taper of the tapered zone of the first stent graft, wherein the second stent graft cylindrical zone is longer than the first stent graft second cylindrical zone such that when the second stent graft is disposed within the first stent graft and the tapered zones are mated, the second stent graft cylindrical zone extends beyond the second open end of the first stent graft, wherein when the second stent graft is disposed within the first stent graft, the tapered zone of the second stent graft conforms precisely to the tapered zone of the first stent graft.
An embodiment of the present invention will not be described by way of example with reference to the accompanying drawings, in which:
In the present application, the term “proximal” when referring to a delivery device refers to a direction that is farthest away from the operator using a delivery device, while the term “distal” refers to a direction that is generally closest to the operator using the delivery device. The proximal and distal ends of a delivery device can also be referred to as the introduction end of the delivery device and the operator end of the delivery device. The operator end of the delivery device is that portion of the device that is intended to remain outside of a patient during a procedure. When referring to the prosthesis itself relative to the delivery device, the proximal end of the prosthesis is that part of the prosthesis nearest the delivery end of the delivery device and the distal end of the prosthesis is that end that is closest to the operator end of the delivery device. When referring to the prosthesis relative to placement in the human body, the ends of the various devices and parts of devices may be referred to as the inflow end (that end that receives fluid first, and the outflow end (that end from which the fluid exits).
The stent graft assembly 10 of the present invention (shown for example in
The main stent graft body 12 and attachment stent graft 14 will now be described in greater detail.
The main stent graft body 12 and attachment stent graft 14 may be supported with one or more stents 20 that are secured to and along the graft material 18 either along the outer surface 22 or inner surface 24 of the graft material 18 such as by sutures 26. In one example, stent 20 may be a Z-stent. For example, stent 20 may have a distal end with a series of distal apices 28 and a proximal end with a series of proximal apices 30. Stent 20 may also have one or more elongate struts 32 connecting the distal apices 28 to the proximal apices 30.
Suitable stents 20 for use in connection with the main stent graft body 12 or the attachment stent graft 14 described herein may be self-expanding or mechanically-expandable stents or both, and may be deployed according to conventional methodology. A self-expanding stent may be manufactured from a shape-memory alloy, such as nickel titanium alloy (Nitinol). If the stent comprises a self-expanding material such as Nitinol, the stent may be heat-set into the desired expanded state whereby the stent can assume a relaxed radially expanded configuration. The stent may be made from other metals and alloys that allow the stent to return to its original expanded configuration upon deployment, such as, for example, stainless steel, cobalt-chrome alloys, amorphous metals, and/or non-metallic materials as would be recognized by one of skill in the art. Additionally or alternatively, the main stent graft body 12 and the attachment stent graft 14 may be mechanically expanded, such as through the use of an expandable balloon placed within the lumen 19 of the stent graft and then radially outwardly expanded.
The main stent graft body 12 may have a proximal end portion 34 and a distal end portion 36, with a tapered transition portion 38 that interconnects the proximal end portion 34 and the distal end portion 36. The distal end portion 36 may have a constant diameter and the proximal end portion 34 may have a selected larger diameter. An attachment stent 40 may be secured to the proximal end portion 34, with the attachment stent 40 extending proximally from the graft material 18. The attachment stent 40 may and have one or more barbs 42 configured to secure the main stent graft body 12 to a vessel wall.
The main stent graft body 12 may have several additional stents 44, 46, 48, 50, 52 and 54 adjacent to the attachment stent 40. In one example, stent 44 may be secured to the inner surface 24 of the graft material 18 in the proximal end portion 34 of the main stent graft body 12. Stents 46, 48, 50, 52, and 54 may be secured about the outer surface 22 of the graft material 18 along the length thereof. In one example, stents 46, 48, 50, 52, and 54 are located distal to the attachment stent 40 and stent 44.
The proximal end portion 34 may contain a plurality of radiopaque markers (not shown) such as gold marker members for facilitating fluoroscopic visualization of the proximal end of the graft material 18. For example, radiopaque markers may be used to place the main body stent graft 12 distal to the renal arteries (not shown).
As shown in
The attachment stent graft 14 shown in
The attachment stent graft 14 may have several stents 66, 68, 70, 72, 74, and 76 which may be secured to the graft material 18 along the length of the attachment stent graft 14. In one example, a first stent 66 and a second stent 68 may be secured to the inner surface 24 of the graft material 18 near the flared proximal end portion 58. In one example, additional stents 70, 72, 74, and 76 may be secured about the outer surface 22 of the graft material 18.
Importantly, the proximal end of the attachment stent graft 14 may have a flared proximal end portion 58. In one example, the flared portion 58 may complement or conform to the transition portion 36 on the interior of the main stent graft body 12. For example, as seen comparing
In one example of a stacked stent arrangement 78, a first stent 66 and a second stent 68 are mounted on an interior surface 24 of the graft material 18 in the attachment stent graft 14. The first stent 66 and second stent 68 may be formed as a wire ring that has proximal and distal generally curved apex portions (apices) 30, 28 separated from each other by intermediate generally straight portions called struts 32.
First stent 66 and second stent 68 may not have the same proximal to distal length. For example, as illustrated in
In one embodiment the first stent 66 and second stent 68 may overlap axially such that the stents apices of the second stent 68 nest within the apices of the first stent 66. In another embodiment the first stent 66 and second stent 68 do not overlap or nest. For example, the first stent 66 and second stent 68 do not overlap axially, but are very close together. In one example, the first stent 66 is located slightly distal to the second stent 68.
In one embodiment (not shown), each of the proximal apices 30 of the first stent 66 may be circumferentially offset from each of the proximal apices 30 of the second stent 68. In another example, each of the distal apices 30 of the first stent 66 may be circumferentially offset from each of the distal apices 30 of the second stent 68. In another example, the first stent 66 and the second stent 68 comprise identical geometries. The two stents 66 and 68 may be arranged in an out-of-phase alignment or may be in-phase alignment. The first stent 66 and second stent 68 may have any configuration and geometry as disclosed in U.S. Pat. No. 8,728,145, which is incorporated by reference herein.
The attachment stent graft 14 and the main stent graft body 12 may be coupled or connected.
In one example, the attachment stent graft 14 may have a reduced diameter delivery configuration (not shown) and a deployment configuration. When in the delivery configuration, the attachment stent graft 14 can be deployed into a lumen 19 in the main stent graft body 12.
The attachment stent graft 14 can be positioned and deployed to any location along the length of the main stent graft body 12. In this way, the stent graft assembly 10 may be any suitable customizable length. For example, if the attachment stent graft 14 is placed in a more proximal location of the main stent graft 12, the total length of the stent graft assembly 10 may be shorter. If the attachment stent graft 14 is placed in a more distal location on the main stent graft 12, the total length of the stent graft assembly 10 may be longer.
When in a deployed state, the attachment stent graft 14 may expand and conform to the shape of the interior of the main stent graft body 12.
The radial force of the stacked stent arrangement 78 may hold the attachment stent graft 14 tightly against the interior of the main stent graft body 12. In this way, there is a tight seal between the attachment stent graft 14 and the main stent graft body 12. As described in more detail below, this tight seal can prevent turbulent vascular flow through the lumen 19 of the stent graft assembly 10.
As shown in
As shown in
As shown in
As shown in
While various embodiments of the invention have been described, the invention is not to be restricted except in light of the attached claims and their equivalents.
This application claims the benefit of priority of U.S. Provisional Application Ser. No. 62/365,103 filed Jul. 21, 2016, which us incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62365103 | Jul 2016 | US |