Tapered cuvette and method of collecting magnetic particles

Abstract
A vessel for use in clinical analysis including an open top, a closed bottom, and at least four tapered sides. A method for collecting magnetic particles in a fluid comprising the steps of providing a magnet and a vessel containing magnetic particles in a fluid, attracting the magnetic particles to the magnet, and moving the magnetic particles with the magnet out of the fluid.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to cuvettes for holding samples and more specifically to cuvettes for holding samples to be analyzed in an automated immunoassay device utilizing magnetic particles, and methods thereof.


BACKGROUND OF THE INVENTION

Cuvettes are typically used for holding samples, such as aliquots of a reaction mixture, an environmental sample, blood, urine or fractions thereof, for use in medical diagnostic test procedures requiring optical measurements. Immobilization, capture or recovery of an analyte of interest in the sample may be accomplished using magnetic particles.


A goal of medical laboratories is to enhance laboratory efficiency by automating clinical diagnostic test procedures, such as immunoassay, and increasing throughput. Automated clinical diagnostic devices analyze a greater number of samples than manual assays in a given timeframe, while at the same time minimize the number of interactions between laboratory personnel, the samples, and the clinical diagnostic instrument. Clinical samples, usually available in small quantities, and the reagents used in clinical diagnostic procedures are costly. Automated assays utilizing magnetic particle must capture substantially all of the magnetic particles in a sample to collect and analyze the analyte of interest.


Therefore, it would be desirable to provide a cuvette for use in an automated clinical diagnostic device that accommodates a small volume of fluid, such as the sample and reagent fluids, and captures, washes, and resuspends the magnetic particles within the small volume of fluid.


SUMMARY OF THE INVENTION

The invention described herein features a vessel for use in automated clinical sample analysis, for example, automated immunoassay.


In one aspect, the invention relates to a device, such as a vessel or cuvette including an open top, a closed bottom, and at least four sides. At least two of the four sides are opposite to each other. In one embodiment, the opposite sides are flat and symmetrical. At least two of the sides of the vessel are tapered from the open top to the closed bottom of the vessel. The vessel has a larger interior cross-sectional area at the open top and a smaller interior cross-sectional area at the closed bottom. The tapered sides of the vessel are tapered at an angle of about 5.82 degrees relative to the normal. In one embodiment, the closed bottom is convex.


In one embodiment of the invention, the combined surface area of the pair of opposite sides is greater than the combined surface area of the other sides. The ratio of the combined surface area of the opposite sides compared to the combined surface area of the other sides is in the range of about 4:1 to about 2:1, preferably about 3:1. In one embodiment of the invention, the interior cross-sectional area of the vessel is greater at the top of the vessel than at the bottom of the vessel.


In one embodiment of the invention, at least one pair of opposite sides is composed of a substantially transparent material.


In one embodiment of the invention, the vessel also contains a flange positioned at the open top of the vessel to hold the vessel in an upright and level position in an analytical instrument. In another embodiment of the invention, the vessel comprises two flanges that extend 1.33 mm outward from the top of the vessel on opposite sides of the vessel. In another embodiment, the flange extends substantially the same distance from the sides of the vessel on all sides.


In one embodiment of the invention, the vessel also contains a projection on an exterior surface of one side of the vessel. The projection extends from the flange and along the side of the vessel. In one embodiment of the invention, the vessel is stacked with like vessels. The projections on the sides of the vessel serve to separate the vessels when in a stacked configuration. The exterior surface of a first vessel and the interior surface of a second vessel define a space between the first and second vessels of at least 4.5 mm. In one embodiment, the space between the vessels is substantially equivalent to the depth of the projection.


In another aspect, the invention relates to a vessel cartridge for loading vessels in an automated clinical diagnostic device. The vessel cartridge comprises a plurality of vessels. The exterior surface of a first vessel and the interior surface of a second vessel define a space between the first and second vessels. The space between the first and second vessels is at least 4.5 mm. In another embodiment, the space between the first and second vessels is defined by a projection on the surface of the first vessel. The vessel cartridge may be loaded onto and automatically fed into an automated clinical diagnostic device.


In another aspect, the invention relates to a method for collecting magnetic particles comprising the steps of providing a magnet and a vessel containing magnetic particles in a fluid, attracting the magnetic particles to the magnet, and moving the magnetic particles with the magnet out of the fluid. In one embodiment, the method further comprises the step of removing the fluid from the vessel after the magnetic particles have been moved out of the fluid. In one embodiment, the magnet is moved to move the magnetic particles out of the fluid. In another embodiment, the vessel is moved to move the magnetic particles out of the fluid.


In another aspect, the invention relates to a device for washing magnetic particles in a vessel. The device includes a holder comprising a lumen or receiving the vessel. The holder includes a straight side and a sloped side opposite to the straight side. The straight side includes a lever arm that is reciprocally moveable from a position within the holder lumen to a position outside the holder lumen. The lever arm is biased toward the holder lumen to retain the vessel in the holder lumen. In one embodiment of the invention, the lever arm further includes a spring. In another embodiment of the invention, the device further includes a magnet.





BRIEF DESCRIPTION OF THE FIGURES

These and other aspects of this invention will be readily apparent from the detailed description below and the appended drawings, which are meant to generally illustrate and not to limit the invention, and in which:



FIG. 1 is a schematic front perspective view of a tapered vessel according to an illustrative embodiment of the invention.



FIG. 2 is a schematic top view of a tapered vessel according to an illustrative embodiment of the invention.



FIG. 3 is a schematic side view of a tapered vessel including a projection according to an illustrative embodiment of the invention.



FIG. 4 is a schematic cross-sectional side view of a projection on a side of a tapered vessel according to an illustrative embodiment of the invention.



FIG. 5 is a schematic side view of two stacked tapered vessels according to an illustrative embodiment of the invention.



FIG. 6A is a schematic drawing of a tapered vessel entering a magnetic particle washing device and engaging with a magnet.



FIG. 6B is a schematic drawing of the tapered vessel in a magnetic particle washing device shown in FIG. 6A following capture of the magnetic particles to the side of the vessel, and moved out of the fluid as the magnet is moved toward the top of the vessel.





DESCRIPTION OF THE INVENTION

The invention, described herein, relates to a vessel, such as an optical cuvette, for use in clinical analytical instruments, including immunoassay instruments. The embodiments of the invention described below have the following common features: a vessel including an open top and a closed bottom, at least four sides, and at least two of the four sides are tapered. The sides also include at least two sides that are opposite to each other and are flat. The tapered sides are tapered from the open top to the closed bottom.


In general, the vessel is a cuvette that serves as a reservoir for washing, rinsing, or otherwise manipulating magnetic particles, such as beads, in a fluid medium such as a suspension or a solution including analytical reagents.



FIG. 1 is a schematic front perspective view of a tapered vessel according to an illustrative embodiment of the invention. Referring to FIG. 1, the illustrative vessel 2 has an open top 20 and a closed bottom 18. The vessel 2 has at least four sides 4a, 4a′, 4b, 4b′ and at least two of the at least four sides 4a, 4b, 4b′ oppose each other. These two opposite sides, for example the two opposite sides 4b, 4b′, form a pair of opposite sides. The vessel 2 may have more than four sides, such as 5, 6, 7, 8 or more.


With continued reference to FIG. 1, the pair of opposite sides, for example 4b, 4b′, are flat, meaning the entire surface of each side 4b, 4b′ is substantially planar and does not bend or arc outside the plane. In another embodiment of the invention, two pairs of opposite sides 4a, 4a′, 4b, 4b′ are flat. In another embodiment, the vessel may have more than four sides (not shown) and more than two pairs of opposite sides 4a, 4a′, 4b, 4b′ are flat.


With continued reference to FIG. 1, in one embodiment, one pair of opposite sides includes an optical window in each side of the pair of sides for use in an optical measurement instrument, for example, a spectrophotometer. The pair of optical sides including an optical window, for example 4b, 4b′, are symmetrical, meaning the sides 4b, 4b′ have identical widths at the top 20 of the vessel 2 and at the bottom 18 of the vessel 2, respectively, and the sides 4b, 4b′ have identical taper angles 24 from the top 20 of the vessel 2 to the bottom 18 of the vessel 2. The taper angles 24 of the sides 4a, 4a′, 4b, 4b′ are measured from the top 20 of the vessel 2, parallel to and relative to the vertical axis 28 of the vessel 2 and range from 4 to 10 degrees. In one embodiment, each side 4a, 4a′, 4b, 4b′ forms an isosceles trapezoid.


Referring still to FIG. 1, in one embodiment of the invention, the surface area of the pair of sides 4b, 4b′ including an optical window is greater than the surface area of the sides 4a, 4a′ that do not include optical windows. The ratio of the surface area of the sides 4b, 4b′ including an optical window to the surface area of the sides 4a, 4a′ that do not include an optical window is in the range of about 4:1 to about 2:1, preferably 3:1. In another embodiment according to the invention, the surface area of each side 4a, 4a′, 4b, 4b′ of the vessel 2 is equal (not shown).


The sides not including an optical window, for example 4a, 4a′, serve as magnetic particle engagement sites during magnetic particle wash procedures. For example, the particle engagement sides 4a, 4a′, according to one embodiment, are flat, more narrow than the sides 4b, 4b′ having optical windows, and form one or more pairs of opposite sides. During a magnetic wash procedure, the flat surface of the particle engagement sides 4a, 4a′ provides a uniform surface for a magnet (not shown) to engage the vessel 2, and thereby creates a uniform magnetic flux density across the entire surface of the particle engagement sides 4a, 4a′. When the magnet is engaged with the particle engagement sides 4a, 4a′ of the vessel 2, magnetic particles are attracted to the magnet and accumulate uniformly along the flat surface of the particle engagement sides 4a, 4a′. The advantage of a flat surface compared to a curved or arched surface is that a curved or arched particle engagement surface engages a magnet at only one central point of engagement and the magnet exerts a very strong flux density at this point. Surfaces adjoining this central point of magnet engagement experience a reduced magnetic flux density. As a result of the variable magnetic flux density, the magnetic particles congregate and stack upon one another at the point of greatest flux density. When particles stack, fewer magnetic particles are pulled out of the solution and a greater number of magnetic particles are destroyed, damaged, or lost during the magnetic wash procedure. Particle stacking also traps contaminants and other waste materials between particles, resulting in inadequate particle washing.


With continued reference to FIG. 1, in one embodiment of the invention, the closed bottom 18 of the vessel 2 may have various shapes, including, for example, convex, concave or flat, relative to the interior volume of the vessel 2. The corners between the closed bottom 18 and the sides 4a, 4a′, 4b, 4b′ of the vessel 2 may have various shapes, including, for example, rounded or square. The closed bottom 18 of the vessel 2 has a surface area that is less than the surface area of the open top 20 of the vessel 2.


Referring still to FIG. 1, the sides 4a, 4a′, 4b, 4b′ of the vessel 2 are tapered from the open top 20 of the vessel 2 to the closed bottom 18 of the vessel 2. The sides 4a, 4b, 4b′ are tapered such that the interior cross-sectional area 22 of the vessel 2, measured in a plane perpendicular to the vertical axis 28 of the vessel 2, is greater at the top 20 of the vessel 2 than at the bottom 18 of the vessel 2. The sides 4a, 4a′, 4b, 4b′ of the vessel 2 are tapered at an angle 24 of about 5 degrees to about 7 degrees relative to the vertical axis 28 of the vessel 2, preferably about 5.8 degrees.


The tapered sides 4a, 4a′, 4b, 4b′ of the vessel 2 facilitate attraction of the magnetic particles to one side 4a, 4a′, 4b, 4b′ of the vessel 2 by a magnet, for example, a magnet composed of Neodymium, in a clinical instrument used to separate magnetic particles from the fluid medium in which they are suspended. For example, a magnet (not shown) attracts the magnetic particles in the narrow bottom 18 of the vessel 2, where the magnetic particles travel a shorter distance. The magnet is then moved vertically along the side 4a, 4a′, 4b, 4b′ of the vessel 2, carrying with it the magnetic particles. In a preferred embodiment, collection of magnetic particles occurs along the narrow, particle engagement side 4a, 4a′ of the vessel 2 illustrated in FIG. 1. Collecting the magnetic particles along the narrow width of the flat particle engagement side 4a, 4a′ of the vessel 2 requires less time for particle separation and results in fewer lost particles than in a cylindrical vessel that is cylindrical in shape and has curved or bowed sides.


The tapered sides 4a, 4a′, 4b, 4b′ of the vessel 2 also facilitate optical reading of a fluid sample contained within the vessel 2. In a preferred embodiment, the optical side 4b, 4b′ of the vessel 2 is used for optical reading. The optical side 4b, 4b′ of the vessel 2 is wider than the particle engagement side 4a, 4a′ of the vessel. In combination with the adjacent narrow, particle engagement side 4a, 4a′, the tapered vessel 2 provides a large surface area on the optical side 4b, 4b′ of the vessel 2 for optical detection, requiring a small volume of fluid for analysis.


Referring still to FIG. 1, in one embodiment, the vessel 2 has a liquid volume of about 0 uL to about 1300 uL, preferably about 450 uL to about 1340 uL, and more preferably about 450 uL.


With continued reference to FIG. 1, in one embodiment according to the invention, the vessel 2 includes projections 8 on the exterior surface 38 of opposite sides 4a, 4a′, 4b, 4b′ at the top 20 of the vessel 2. In one embodiment, the vessel 2 contains projections 8 on one pair of opposite sides 4a, 4a′, 4b, 4b′. In another embodiment, the vessel 2 contains projections 8 on more than one pair of opposite sides 4a, 4a′, 4b, 4b′. In a preferred embodiment, illustrated in FIG. 1, the vessel 2 contains projections 8 on the pair of narrow, particle engagement sides 4a, 4a′.



FIG. 2 is a schematic top view of a tapered vessel. The exemplary vessel 2 includes a flange 14, 14′ around the perimeter of the open top 20, extending a distance 30, 30′, respectively, from the interior surface 40 of the sides 4a, 4a′, 4b, 4b′ of the vessel 2. In one embodiment, the flange 14, 14′ extends in a plane perpendicular to the vertical axis 28 of the vessel 2. In one embodiment, the width of the flange 14, 14′ is substantially equal on each side 4a, 4a′, 4b, 4b′ of the vessel 2 and extends a distance 30, 30′, respectively, of about 1 mm to about 2 mm from the interior surface 40 of the sides 4a, 4a′, 4b, 4b′ of the vessel 2 on the top 20 of the vessel 2, preferably about 1.5 mm. In another embodiment, the flange 14 on the optical sides 4b, 4b′ of the vessel 2 extends an equal distance 30, but a distance unequal to the distance 30′ the flange 14′ extends on the particle engagement sides 4a, 4a′. In another embodiment, the flange 14, 14′ extends an unequal distance 30, 30′ on each side 4a, 4a′, 4b, 4b′. In a preferred embodiment, the flange 14 on the optical sides 4b, 4b′ extends a distance 30 of about 0.5 mm to about 2 mm, preferably about 0.5 mm and the flange 14′ on the particle engagement sides 4a, 4a′ extends a distance 30′ of about 0.5 mm to about 2 mm, preferably about 0.5 mm. The flange 14, 14′ serves to hold the vessel 2 in an upright and level position. In another embodiment, the vessel 2 does not have a flange.


Referring still to FIG. 2, in one embodiment of the invention, each of the inner corners 26 of the vessel 2, where the optical sides 4b, 4b′ and the particle engagement sides 4a, 4a′ meet form an angle in the range of about 70 degrees to about 110 degrees, preferably about 80 degrees to about 100 degrees, and more preferably 90 degrees. Right angled corners maximize the internal volume of the vessel 2 while minimizing, for example, the length of the vessel 2.



FIG. 3 is a schematic side view of a tapered vessel including a projection according to an illustrative embodiment of the invention. Referring to FIG. 3, according to one embodiment of the invention, the vessel 2 contains a projection 8 that extends from the top 20 of the vessel 2 and along the side 4a, 4a′ of the vessel 2 a length 10 of about 4 mm to about 7 mm, preferably about 5 mm. The projection 8 projects from the side 4a, 4a′ of the vessel 2 a width 12 of about 3 mm to about 4 mm, preferably about 3.5 mm. In another embodiment, the width 12 of the projection 8 extends the entire width of the side 4a, 4a′, 4b, 4b′ of the vessel 2.


With continued reference to FIG. 3, in one embodiment, the projection 8 is centered on the side 4a, 4a′, 4b, 4b′ of the vessel with respect to the top 20 surface of the vessel 2. The bottom 44 of the projection 8 may have a variety of shapes, including, for example, rounded, pointed, or flat.



FIG. 4 is a schematic cross-sectional side view of a projection on a side of a tapered vessel according to an illustrative embodiment of the invention. The top width 50 of the exemplary projection 8 is equal to the width 30, 30′ of the corresponding flange 14, 14′ along the corresponding side 4a, 4a′, 4b, 4b′ of the vessel 2. In another embodiment, the top width 50 of the projection 8 is greater or less than the width 30, 30′ of the corresponding flange 14, 14′ along the corresponding side 4a, 4a′, 4b, 4b′ of the vessel by an amount in the range of about 0.1% to about 30%.


With continued reference to, FIG. 4, according to one embodiment of the invention, the exterior surface 52 of the projection 8 is substantially parallel to the vertical axis 28 of the vessel 2. The angle between the exterior surface 52 of the projection 8 and the exterior surface 38 of the side 4a, 4a′, 4b, 4b′ of the vessel 2 is substantially equal to the taper angle 24 of the side 4a, 4a′, 4b, 4b′ of the vessel 2 relative to the vertical axis 28 of the vessel 2.


The vessel 2, according to one embodiment of the invention, is composed of a substantially translucent polymer or other substance known to those in the field with similar optical qualities. The polymer may be for example polypropylene, polyethylene, or polytetrafluoroethylene.



FIG. 5 is a schematic drawing of two stacked tapered vessels according to an illustrative embodiment of the invention. The illustrative vessel 2 is stackable with like vessels 2. A first vessel 2 is inserted, along the vertical axis 28 of the vessel 2, into a second vessel 2′. When in a stacked configuration, in one embodiment, the bottom 44 of the projection 8 of the first vessel 2 is supported on the top 20 of the second vessel 2′. In another embodiment, the first vessel 2 is supported on the flange 14′ of the second vessel 2′. The tops 20, 20′ of the vessels 2, 2′, respectively, are separated by a distance 58 substantially equal to the length 10 of the projection 8. The distance 58 between the first vessel 2 and the second vessel 2′ is about 4 mm to about 5 mm, preferably 4.2 mm.


With continued reference to FIG. 5, according to one embodiment of the invention, when the vessels 2, 2′ are in a stacked configuration, the exterior surface 38 of the first vessel 2 is separated from the interior surface 40′ of the second vessel 2′ by a separation gap 60. The separation gap 60 between the first vessel 2 and the second vessel 2′ is determined by the length 10 of the projection 8. Increasing the length 10 of the projection 8 increases the separation gap 60 between the vessels 2, 2′. Decreasing the length 10 of the projection 8 decreases the separation gap 60 between the vessels 2, 2′.


The separation gap 60 between the first vessel 2 and the second vessel 2′ is advantageous because the gap 60 prevents the surfaces 38, 40′ of the vessels 2, 2′ from touching and being scratched. Scratches on the sides 4a, 4a′, 4b, 4b′ of the vessel 2 interfere with the transmission of an analytical beam of light through the two opposite optical sides 4b, 4b′ and through a fluid sample contained by the vessel 2. Interference with light transmission alters the characteristics of a sample measured by analytical instruments that use light, for example, spectrophotometers.


With continued reference to FIG. 5, in one embodiment, a plurality of vessels 2 are stacked to form a vessel cartridge 92 for loading vessels 2 in an automated clinical diagnostic device. The vessel cartridge 92 comprises a plurality of vessels 2, with the exterior surface 38 of a first vessel 2 and the interior surface 40′ of a second vessel 2′ defining a gap 60 between the first vessel 2 and the second vessel 2′. The gap 60 between the first vessel 2 and the second vessel 2′ is in the range of about 0 mm to about 0.25 mm, preferably about 0.1 mm. The gap 60 between the first vessel 2 and the second vessel 2′ is defined by the projection 8 on the exterior surface 38 of the first vessel 2. The vessel cartridge 92 contains 10 to 20 vessels 2, preferably 15 vessels 2.


Referring still to FIG. 5, by stacking the vessel 2 in the vessel cartridge 92, a greater number of vessels 2 may be arranged in a smaller volume than the same number of vessels not stacked. The vessel cartridge 92 loads a plurality of vessels 2 onto a clinical analytical instrument in one step. A vessel loader (not shown) located on the clinical analytical instrument automatically feeds one vessel 2 into the clinical analytical instrument at a time as needed. The vessel cartridge 92 also maintains the sterility of interior vessels during storage and requires less operator interaction.



FIG. 6A is a schematic drawing of a tapered vessel entering a magnetic particle washing device and engaging with a magnet. The illustrative vessel 2 is used in an automated clinical diagnostic device (not shown) including a magnetic particle washing device 90 and undergoes one or more particle wash procedures. An automated clinical diagnostic device may have one or more than one magnetic particle washing device 90 station(s), for example 2, 4, 8, or 12 stations. The particle wash procedure includes the steps of diluting a reaction fluid 80, for example, a sample, in the vessel 2 with a wash solution, magnetically attracting the magnetic particles 82 in the reaction fluid 80 to the particle engagement side 4a, 4a′ of the vessel 2, aspirating the reaction fluid 80 to a waste container (not shown), and washing the magnetic particles 82 with an injected wash solution (not shown).


In the magnetic particle washing device 62, according to one embodiment of the invention, the vessel 2 is kept in place in a vessel holder 62 by a lever arm 64, for example, a spring-loaded lever arm 64. As the vessel 2 is lowered into the vessel holder 62, the force of the vessel 2 compresses the spring 84 of the lever arm 64. The body of the lever arm 64 retracts into the body of the vessel holder 62 a distance 86 measured from the interior surface of the vessel holder 62 to the exterior surface of the lever arm 64. In one embodiment, the exterior surface of the vessel holder 62 is cut out to allow the lever arm 64 to pass through the vessel holder 62. The tension of the spring-loaded lever arm 64 maintains the vessel 2 in the proper orientation within the vessel holder 62.


Referring still to FIG. 6A, in one embodiment according to the invention, the vessel 2 is lowered into the vessel holder 62 and is engaged by the magnet 66. The magnet 66 first engages the vessel 2 at the narrow bottom 18 of the vessel 2. The magnetic particles 82 suspended in the fluid 80 are attracted to the magnet 66 and collect along the particle engagement side 4a, 4a′ of the vessel 2 at the location where the magnet 66 is engaged with the vessel 2. The magnetic particles 82 are collected in the narrow bottom 18 portion of the vessel 2, where the magnetic particles 82 travel a short distance and low magnetic flux density is needed to pull the magnetic particles 82 out of the fluid 80. The magnet 66 then moves upward along the particle engagement side 4a, 4a′ of the vessel 2 toward the top 20 of the vessel 2, carrying the magnetic particles 82 in the direction toward the top 20 of the vessel 2. In one embodiment, the magnet is a Neodymium magnet, for example, having a facing surface area in the range of about 20 mm2 to about 30 mm2, preferably about 25 mm2, and a magnetic strength in the range of about 12,000 Gauss to about 13,000 Gauss, preferably about 12,500 Gauss [Grade 38 Neodymium magnet].



FIG. 6B is a schematic drawing of the tapered vessel in a magnetic particle washing device shown in FIG. 6A following capture of the magnetic particles on to the side of the vessel, by the magnet, and moved out of the fluid. The illustrative vessel 2 is lowered into the vessel holder 62, and the force of the spring-loaded lever arm 64 tilts the vessel 2 until the particle engagement side 4a of the vessel 2 against the magnet 66 is substantially vertical. In the tilted position, the opposite side 4a′ of the vessel 2 against the lever arm 64 is held at an angle 68 of about 10 degrees to about 14 degrees relative to the vertical surface of the vessel holder 62, preferably about 12 degrees. The angle 68 of the opposite side 4a′ of the vessel 2 in the tilted position is substantially equal to twice the taper angle 24 of the vessel 2 when the vessel 2 is centered about its vertical axis 28. In the same tilted position, the bottom 18 of the vessel 2 is held at an angle 70 of about 4 degrees to about 6 degrees relative to the horizontal surface of the vessel holder 62, preferably about 5 degrees. The angle 68 of the bottom 18 of the vessel 2 in the tilted position is substantially equal to the taper angle 24 of the vessel 2 when the vessel 2 is centered about its vertical axis 28.


Referring still to FIG. 6B, in one method according to the invention, as the vessel 2 is lowered into the vessel holder 62, the position of the magnet 66 moves relative to the particle engagement side 4a of the vessel 2. As the magnet 66 moves along the particle engagement side 4a of the vessel 2, the magnetic particles 82 remain attracted to the magnet 66 and move with the magnet 66 relative to the particle engagement side 4a of the vessel 2. In one embodiment, the vessel 2 is held stationary while the vessel holder 62, the magnet 66, and the magnetic particles 82 are moved in an upward direction. In another embodiment, the vessel holder 62, the magnet 66, and the magnetic particles 82 are held stationary while the vessel 2 is moved in a downward direction. By either means of moving the particles along the particles engagement side 4a, 4a′, of the vessel 2, the magnetic particles 82 are moved from within the fluid 80 toward the top 20 of the vessel 2 along the particle engagement side 4a of the vessel 2 and out of the fluid 80.


With continued reference to FIG. 6B, in one method according to the invention for removing the fluid, for example, wash fluid, reagent fluid or sample fluid, the tilted vessel 2 is held in a tilted position while an aspirator probe 78 is lowered into the vessel 2 to a point of aspiration 72. The point of aspiration 72 is formed at the corner of the tilted opposite side 4a′ of the vessel 2, held at an angle 68 relative to the vertical surface of the vessel holder 62, and the titled bottom 18 of the vessel 2, held at an angle 70 relative to the horizontal surface of the vessel holder 62. In this position, the fluid medium 80 within the vessel 2 flows toward the point of aspiration 72 and is aspirated out of the vessel 2 by the aspirator probe 78. The point of aspiration 72 created by the tilted vessel 2 allows a more complete aspiration than if the vessel 2 was level and aspiration was conducted across the entire surface area of the bottom 18 of the vessel 2. The tapered sides 4a, 4a′, 4b, 4b′ of the vessel 2 allow the vessel 2 to tilt and to assume a point of aspiration 72.


Referring still to FIG. 6B, according to one method of the invention, the magnetic particles 82 are drawn out of the fluid 80 and held above the fluid 80 along the particle engagement side 4a of the vessel 2 before the fluid 80 is aspirated out of the vessel 2. Holding the magnetic particles 82 out of the fluid 80 reduces the number of magnetic particles 82 lost during fluid aspiration.


EXAMPLE

In the following examples, a vessel containing 450 uL+/−30 uL of fluid medium and magnetic particles [Dynabeads M280, Dynal, Oslo, Denmark] was placed in a magnetic particle washing device of an automated clinical diagnostic device. If the fluid volume was below 420 uL, fluid medium was added until the desired fluid volume was reached. The magnet was moved to contact the vessel and was held stationary for about 25 seconds to separate the magnetic particles from the fluid medium. Once the magnetic particles were separated, the magnet moved upward, pulling the magnetic particles above the meniscus of the fluid medium and holding the magnetic particles above the fluid while the aspiration probe removed the fluid medium. After aspiration, the magnet was moved downward, resubmerging the magnetic particles in the fluid medium.


After the fluid was aspirated out of the vessel, rinse solution was injected into the vessel by an injector tube located above the top of the vessel. Rinse solution was injected at an angle directed toward the particle engagement side of the vessel. The magnetic particles are washed down the vessel wall thereby resuspending the magnetic particles in the wash solution. Several wash cycles may be performed, depending on the assay. In each wash cycle, the steps of magnetic separation of the particles from the fluid medium, aspiration of the fluid medium, and washing by injecting rinse solution are repeated, followed by a final aspiration of the fluid medium before analysis of the vessel contents.


Holding the magnetic particles 82 out of the fluid 80 reduces the number of magnetic particles 82 lost during aspiration to a rate of about 0.0% to about 0.5% of the total number of magnetic particles that were in the fluid medium per cycle. In trials using the same device, but retaining the magnetic particles 82 within the fluid 80 during aspiration, the number of magnetic particles 82 lost during aspiration increased to a rate of about 5% to about 20%. The percent loss was determined by measuring the absorbence of the vessel after 1 to 10 magnetic particle wash cycles at 500 nm and subtracting the measured absorbence from the average absorbence from 3 to 5 reference vessels which did not undergo magnetic particle washing.

Claims
  • 1. A method for collecting and washing magnetic particles in a vessel, comprising: a) providing a vessel with magnetic particles suspended in a first fluid, said vessel comprising a planar area particle engagement side;b) introducing the vessel into a vessel holder comprising,i) a holder lumen,ii) a vertical surface, comprising a magnet, andiii) a lever arm,wherein a lever arm is mounted to a pivot point proximal to a lower end of said lever arm;reciprocally moving said lever arm from a vertical position to a lever arm tilted position relative to the vertical surface of the holder when said vessel is received in the holder lumen between the vertical surface and said lever arm, biasing said lever arm toward said vertical position;c) collecting the magnetic particles in said vessel at a bottom portion of said planar area particle engagement side of said vessel by magnetic attraction to said magnet; andd) washing said magnetic particles.
  • 2. The method of claim 1 further comprising tilting said vessel with said lever arm to retain the vessel in a tilted position relative to the vertical surface of the holder wherein the particle engagement side of the tilted vessel against the magnet is substantially vertical.
  • 3. The method of claim 2 further comprising moving the magnetic particles attracted to the magnet out of the fluid along the planar area particle engagement side of said vessel using the magnet.
  • 4. The method of claim 3 further comprising aspirating the first fluid from said vessel from an aspiration point located and towards a side of the vessel opposing the planar area particle engagement side of the vessel while said vessel is tilted.
  • 5. The method of claim 1 further comprising injecting a second fluid into said vessel toward the planar area particle engagement side of said vessel.
  • 6. The method of claim 1 wherein the vessel is moved to move the magnetic particles out of the first fluid.
  • 7. The method of claim 5, wherein the second fluid is injected into the vessel toward the planar area particle engagement side of the vessel to dislodge the magnetic particles from the planar area particle engagement side of the vessel and to resuspend the magnetic particles in the second fluid in the vessel.
  • 8. The method of claim 1, wherein said vessel in said tilted position is at an angle of about 10 degrees to about 14 degrees relative to said vertical surface of said holder.
  • 9. The method of claim 1, wherein the planar area particle engagement side is tapered from a larger open top of the vessel to a smaller closed bottom of the vessel.
  • 10. The method of claim 2, wherein said tilting comprises holding the vessel against the vertical surface of the holder with said lever anti that is mounted to a pivot point proximal to a lower end of said lever arm and reciprocally moveable from a lever arm vertical position to a lever arm tilted position relative to the vertical surface of the holder when the vessel is received in the holder lumen between the vertical surface and said lever arm, said lever arm being biased toward said vertical position to retain said vessel in a tilted position relative to the vertical surface of the holder.
  • 11. The method of claim 1 wherein the magnet is moved to move the magnetic particles out of the first fluid.
  • 12. A method for collecting and washing magnetic particles in a vessel, comprising: a) providing a vessel with magnetic particles, said vessel comprising a planar area particle in a first fluid engagement side;b) introducing the vessel into a vessel holder comprising,i) a holder lumen,ii) a vertical surface comprising a magnet, andiii) a lever arm,wherein said lever arm is mounted to a pivot point proximal to a lower end of said lever arm; reciprocally moving said lever arm from a vertical position to a lever arm tilted position relative to the vertical surface of the holder when said vessel is received in the holder lumen between the vertical surface and said lever arm, biasing said lever arm toward said vertical position;c) tilting said vessel with said lever arm to retain the vessel in a tilted position relative to the vertical surface of the holder wherein the particle engagement side of the tilted vessel against the magnet is substantially vertical; andd) collecting the magnetic particles in said vessel at a bottom portion of said planar area particle engagement side of said vessel by magnetic attraction to said magnet having a flat side creating a uniform magnetic flux density over the flat side, wherein the flat side of the magnet is located adjacent the planar area particle engagement side of the vessel;e) moving the magnetic particles attracted to the magnet out of the first fluid along the planar area particle engagement side of said vessel using the magnet;f) aspirating the first fluid from said vessel from an aspiration point located and towards a side of the vessel opposing the planar area particle engagement side of the vessel; andg) injecting a second fluid into said vessel toward the planar area particle engagement side of said vessel.
  • 13. The method of claim 12 comprising optionally repeating one or more steps from (c) through (g).
  • 14. The method of claim 12, wherein the second fluid dislodges the magnetic particles from the planar area particle engagement side of the vessel.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation application and claims priority to and the benefit of co-pending U.S. Ser. No. 10/863,881, filed on Jun. 8, 2004, the entire contents of which are incorporated herein by reference.

US Referenced Citations (269)
Number Name Date Kind
3627432 Bergmann Dec 1971 A
3932131 Rolfo-Fontana Jan 1976 A
3939834 McMahon Feb 1976 A
3952599 Ayres Apr 1976 A
3977794 Liedholz Aug 1976 A
3985649 Eddelman Oct 1976 A
3992150 Retzer Nov 1976 A
4022577 Brooker et al. May 1977 A
4037464 Wenander Jul 1977 A
4046515 de Leeuw Sep 1977 A
4058370 Suovaniemi Nov 1977 A
4066407 Lupica Jan 1978 A
4067776 Khan Jan 1978 A
4141687 Forrest et al. Feb 1979 A
4195526 Amos et al. Apr 1980 A
4229104 Lahme et al. Oct 1980 A
4243684 Pruss et al. Jan 1981 A
4275591 Wand Jun 1981 A
4292920 Smith et al. Oct 1981 A
4361032 Lessnig et al. Nov 1982 A
4390283 Meyer Jun 1983 A
4483825 Fatches Nov 1984 A
4526046 Oberli Jul 1985 A
4560269 Baldszun et al. Dec 1985 A
4567149 Sell et al. Jan 1986 A
4592338 Blackmore Jun 1986 A
4622847 Paoletti et al. Nov 1986 A
4677067 Schwartz et al. Jun 1987 A
4678752 Thorne et al. Jul 1987 A
4692609 Pettersson Sep 1987 A
4699881 Matschke Oct 1987 A
4701418 Katopodis Oct 1987 A
4721680 Jeffs et al. Jan 1988 A
4748128 Katopodis May 1988 A
4783250 Pons et al. Nov 1988 A
4787744 Hissung Nov 1988 A
4790176 Marteau d'Autry Dec 1988 A
4793973 Ringrose Dec 1988 A
4795698 Owen et al. Jan 1989 A
4798705 Jakubowicz et al. Jan 1989 A
4830832 Arpagaus et al. May 1989 A
4873875 Cork Oct 1989 A
4895650 Wang Jan 1990 A
4904396 Benet Feb 1990 A
4929427 Guala May 1990 A
4931257 Quenin et al. Jun 1990 A
4933291 Daiss et al. Jun 1990 A
4962044 Knesel, Jr. et al. Oct 1990 A
4970892 Enhorning Nov 1990 A
4980292 Elbert et al. Dec 1990 A
4988618 Li et al. Jan 1991 A
5009847 Solomons Apr 1991 A
5010930 Columbus Apr 1991 A
5013529 Itoh May 1991 A
5026526 Quenin et al. Jun 1991 A
5045453 Katopodis Sep 1991 A
5068089 Ericsson et al. Nov 1991 A
5084041 Oxley et al. Jan 1992 A
5098661 Froehlich et al. Mar 1992 A
5104621 Pfost et al. Apr 1992 A
5106584 Funakubo et al. Apr 1992 A
5110727 Oberhardt May 1992 A
5122342 McCulloch et al. Jun 1992 A
5128103 Wang et al. Jul 1992 A
5137352 Blitshteyn et al. Aug 1992 A
5138868 Long Aug 1992 A
5141871 Kureshy et al. Aug 1992 A
5147529 Lee et al. Sep 1992 A
5156948 Christensen et al. Oct 1992 A
5158895 Ashihara et al. Oct 1992 A
5160329 Oxley Nov 1992 A
5160378 Tuunanen et al. Nov 1992 A
5167922 Long Dec 1992 A
5171537 Wainwright et al. Dec 1992 A
5175086 Takekawa et al. Dec 1992 A
5183638 Wakatake Feb 1993 A
5186827 Liberti et al. Feb 1993 A
5200084 Liberti et al. Apr 1993 A
5200151 Long Apr 1993 A
5232665 Burkovich et al. Aug 1993 A
5250262 Heidt et al. Oct 1993 A
5250440 Kelln et al. Oct 1993 A
5262325 Zimmermann et al. Nov 1993 A
5268147 Zabetakis et al. Dec 1993 A
5270210 Weyrauch et al. Dec 1993 A
5271896 Jakubowicz et al. Dec 1993 A
5289385 Grandone Feb 1994 A
5296194 Igarashi Mar 1994 A
5334538 Parker et al. Aug 1994 A
5340749 Fujiwara et al. Aug 1994 A
5344610 Shaw Sep 1994 A
5360597 Jakubowicz et al. Nov 1994 A
5399497 Kumar et al. Mar 1995 A
5403707 Atwood et al. Apr 1995 A
5407798 Martinelli et al. Apr 1995 A
5411072 Starck et al. May 1995 A
5411863 Miltenyi May 1995 A
5422075 Saito et al. Jun 1995 A
5433716 Leopardi et al. Jul 1995 A
5437841 Balmer Aug 1995 A
5437979 Rampal et al. Aug 1995 A
5441895 Jakubowicz et al. Aug 1995 A
5453619 Asselain et al. Sep 1995 A
5456882 Covain Oct 1995 A
5458785 Howe et al. Oct 1995 A
5462715 Koch et al. Oct 1995 A
5466574 Liberti et al. Nov 1995 A
5482861 Clark et al. Jan 1996 A
5482864 Knobel Jan 1996 A
5489532 Charm et al. Feb 1996 A
5498550 Fujiwara et al. Mar 1996 A
5507410 Clark et al. Apr 1996 A
5536475 Moubayed et al. Jul 1996 A
5541072 Wang et al. Jul 1996 A
5565365 Glass Oct 1996 A
5565366 Akers, Jr. Oct 1996 A
5567326 Ekenberg et al. Oct 1996 A
5567387 Versluys et al. Oct 1996 A
5571479 Koch Nov 1996 A
5578270 Reichler et al. Nov 1996 A
5580524 Forrest et al. Dec 1996 A
5589350 Bochner Dec 1996 A
5595913 Lawlor et al. Jan 1997 A
5597531 Liberti et al. Jan 1997 A
5599501 Carey et al. Feb 1997 A
5607766 Berger Mar 1997 A
5620898 Yaremko et al. Apr 1997 A
5622831 Liberti et al. Apr 1997 A
5628428 Calhoun et al. May 1997 A
5646047 Bird et al. Jul 1997 A
5647994 Tuunanen et al. Jul 1997 A
5658532 Kurosaki et al. Aug 1997 A
5665558 Frame et al. Sep 1997 A
5681478 Lea et al. Oct 1997 A
5702950 Tajima Dec 1997 A
5705062 Knobel Jan 1998 A
5741708 Carey et al. Apr 1998 A
5789167 Konrad Aug 1998 A
5795470 Wang et al. Aug 1998 A
5827478 Carey et al. Oct 1998 A
5834197 Parton Nov 1998 A
5837144 Bienhaus et al. Nov 1998 A
5843312 Manz et al. Dec 1998 A
5849247 Uzan et al. Dec 1998 A
5869328 Antoci et al. Feb 1999 A
5877035 Fujino et al. Mar 1999 A
5885529 Babson et al. Mar 1999 A
5885530 Babson et al. Mar 1999 A
5888758 Wu Mar 1999 A
5888835 Bushnell et al. Mar 1999 A
5895631 Tajima Apr 1999 A
5897783 Howe et al. Apr 1999 A
5902548 Watts et al. May 1999 A
5910122 D'Angelo Jun 1999 A
5915583 Cloonan et al. Jun 1999 A
5919706 Tajima Jul 1999 A
5922284 Kinoshita et al. Jul 1999 A
5932299 Katoot Aug 1999 A
D414562 Tajima Sep 1999 S
5948363 Gaillard Sep 1999 A
5952233 Pellet et al. Sep 1999 A
5959221 Boyd et al. Sep 1999 A
5976369 Howe et al. Nov 1999 A
5985153 Dolan et al. Nov 1999 A
5985671 Leistner et al. Nov 1999 A
5993665 Terstappen et al. Nov 1999 A
6001573 Roelant Dec 1999 A
6006800 Nakano Dec 1999 A
6008010 Greenberger et al. Dec 1999 A
6013188 Terstappen et al. Jan 2000 A
6020211 Tuunanen Feb 2000 A
6040192 Tuunanen Mar 2000 A
6043205 Hoshiko et al. Mar 2000 A
6063260 Olesen et al. May 2000 A
6065605 Korpela et al. May 2000 A
6066297 Torti et al. May 2000 A
6074609 Gavin et al. Jun 2000 A
6096554 Tajima Aug 2000 A
6100079 Tajima Aug 2000 A
6100094 Tajima Aug 2000 A
6114292 Hoshiko et al. Sep 2000 A
6117398 Bienhaus et al. Sep 2000 A
6123903 Tajima Sep 2000 A
6124142 Fujino et al. Sep 2000 A
6133037 Tajima Oct 2000 A
6136182 Dolan et al. Oct 2000 A
6143250 Tajima Nov 2000 A
6143578 Bendele et al. Nov 2000 A
6146838 Williams et al. Nov 2000 A
6150182 Cassaday Nov 2000 A
6174668 Cummins et al. Jan 2001 B1
6187270 Schmitt et al. Feb 2001 B1
6193892 Krueger et al. Feb 2001 B1
6225061 Becker et al. May 2001 B1
6225126 Cohen et al. May 2001 B1
6225128 White May 2001 B1
6231814 Tajima May 2001 B1
6232124 Selinfreund May 2001 B1
6249345 Kraack et al. Jun 2001 B1
6255051 Hammond et al. Jul 2001 B1
6268209 Pierson et al. Jul 2001 B1
6277332 Sucholeiki Aug 2001 B1
6291249 Mahant et al. Sep 2001 B1
6328934 Ljung et al. Dec 2001 B1
6331277 Tajima Dec 2001 B2
6332705 Herz et al. Dec 2001 B1
6333008 Leistner et al. Dec 2001 B1
6335166 Ammann et al. Jan 2002 B1
6337053 Tajima Jan 2002 B1
6346408 Chuch Feb 2002 B1
6368872 Juranas Apr 2002 B1
6370942 Dunfee et al. Apr 2002 B1
6372183 Akong et al. Apr 2002 B1
6372185 Shumate et al. Apr 2002 B1
6375898 Ulrich Apr 2002 B1
6396584 Taguchi et al. May 2002 B1
6409925 Gombinsky et al. Jun 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6447729 Tuunanen Sep 2002 B1
6448092 Tuunanen Sep 2002 B1
6455325 Tajima Sep 2002 B1
6461808 Bodner et al. Oct 2002 B1
6468810 Korpela Oct 2002 B1
6470279 Samsoondar Oct 2002 B1
6471917 Velkovska et al. Oct 2002 B1
6482328 Davidson et al. Nov 2002 B1
6500343 Siddiqi Dec 2002 B2
6509193 Tajima Jan 2003 B1
6517783 Horner et al. Feb 2003 B2
6537505 LaBudde et al. Mar 2003 B1
6543515 Hummell et al. Apr 2003 B2
6551833 Lehtinen et al. Apr 2003 B1
6569204 Aldecoa May 2003 B1
6572778 Sterman et al. Jun 2003 B2
6573088 Gemmell et al. Jun 2003 B2
6579453 Bachler et al. Jun 2003 B1
6597176 Simmonds et al. Jul 2003 B2
6602422 Miltenyi et al. Aug 2003 B1
6605213 Ammann et al. Aug 2003 B1
6610186 Mayer et al. Aug 2003 B1
6649419 Anderson Nov 2003 B1
6660159 Terstappen et al. Dec 2003 B1
6672458 Hansen et al. Jan 2004 B2
6691748 Tajima Feb 2004 B1
6723237 Tajima Apr 2004 B1
6764859 Kreuwel et al. Jul 2004 B1
6776174 Nisson et al. Aug 2004 B2
6790366 Terstappen et al. Sep 2004 B2
6805840 Tajima Oct 2004 B1
6884357 Siddiqi Apr 2005 B2
20010007312 Siddiqi Jul 2001 A1
20010007770 Tajima Jul 2001 A1
20010016178 Acosta et al. Aug 2001 A1
20020008053 Hansen et al. Jan 2002 A1
20020048534 Storek et al. Apr 2002 A1
20020048821 Storek et al. Apr 2002 A1
20030012699 Moore et al. Jan 2003 A1
20030049171 Tamura et al. Mar 2003 A1
20030215361 Jang Nov 2003 A1
20040004043 Terstappen et al. Jan 2004 A1
20040029291 Franzreb et al. Feb 2004 A1
20040047765 Gordon et al. Mar 2004 A1
20040265173 Matsumoto et al. Dec 2004 A1
20040265903 Mueller et al. Dec 2004 A1
20050013741 a'Brassard Jan 2005 A1
20050013746 Lee et al. Jan 2005 A1
20050047963 Safar et al. Mar 2005 A1
20050084423 Zarowitz et al. Apr 2005 A1
20050271550 Talmer et al. Dec 2005 A1
Foreign Referenced Citations (11)
Number Date Country
0638809 Feb 1995 EP
0831329 Mar 1998 EP
1037050 Sep 2000 EP
2002-243636 Aug 2002 JP
2004-077418 Apr 2004 JP
2004-336773 Nov 2004 JP
95-00247 Jan 1995 WO
01-28701 Apr 2001 WO
02-44725 Jun 2002 WO
03-090897 Nov 2003 WO
03090897 Nov 2003 WO
Non-Patent Literature Citations (14)
Entry
International Search Report for International Application No. PCT/US2005/019997, mailed Dec. 7, 2005 (8 pages).
Written Opinion of the International Searching Authority for International Application No. PCT/US2005/019997, mailed Dec. 7, 2005 (8 pages).
Boehringer Mannheim Biochemicals, “Magnetic protAspheres,” BMBiochemica, 1984, vol. 1 No. 3, pp. 1-2.
“Chemilumineszenz . . . bringt Licht ins Labor,” Publication of Ciba-Corning Diagnostics GmbH, 1996, pp. 1-11, Presented at the 4th International Bioluminescence and Chemiluminescence Symposium, Freiburg, Germany, Sep. 1986. Original German language publication and English translation.
Doyle et al., “Self-Assembled Magnetic Matrices for DNA Separation Chips,” Science vol. 295, Mar. 22, 2002 at 2297.
European Search Report for European Patent Application for EP 0638809 A2, Dec. 9, 1996.
Guesdon et al., “Magnetic Solid Phase Enzyme-Immunoassay,” Immunochemistry, 1977, vol. 14, pp. 443-447.
Landon, “Magneitsable Particles in Immunochemistry,” 1982, Technical Publication of Worldwide Technical Marketing, Corning Medical, Medfield, Massachusetts, pp. 1-5. (Please note: Applicant best estimates 1982 as the year when this document became publicly available.)
McNicol et al., “Automation of Dupont's Chromium Dioxide Magnetic Particle Based Immunoassays,” pp. 1-19, presented Apr. 13-14, 1988, in Savannah, Georgia, at the Oakridge Meeting of the Association for Clinical Chemists.
Ng et al., “Performance of Five Thyroid-Function Tests by Radioimmunoassays with Antibodies Attached to Paramagnetic Micro-Particles,” Clinical Chemistry, 1985, vol. 31 No. 1, pp. 87-90.
Nye et al., “Solid-Phase, Magnetic Particle Radioimmunoassay,” Clinica Chimica Acta, 1976, vol. 69, pp. 387-396.
Piran et al., “Immunochemiluminometric Assay of Creatine Kinase MB with a Monoclonal Antibody to the MB Isoenzyme,” Clinical Chemistry, 1987, vol. 33 No. 9, pp. 1517-1520.
Sturgess et al., “Chemiluminescent Labeled-Antibody Assay for Thyroxin in Serum, with Magnetic Separation of the Solid-Phase,” Clinical Chemistry, 1986, vol. 32 No. 3, pp. 532-535.
Weeks et al., “Chemiluminescence Immunoassay,” Journal of Clinical Immunoassay, Spring 1984, vol. 7 No. 1, pp. 82-89.
Related Publications (1)
Number Date Country
20120171777 A1 Jul 2012 US
Continuations (1)
Number Date Country
Parent 10863881 Jun 2004 US
Child 13415476 US