Claims
- 1. A tapered hollow shaft made of a fiber reinforced composite material, which comprises:(a) at least one angle layer consisting essentially of polyacrylonitrile-based carbon fibers having a tensile modulus ranging from 200 to 500 GPa and a tensile strength ranging from 4000 to 5600 MPa; (b) at least one straight layer consisting essentially of polyacrylonitrile-based carbon fibers having a tensile modulus ranging from 200 to 460 GPa and a tensile strength ranging from 3500 to 5600 MPa; (c) at least one reinforcing layer consisting essentially of pitch-based carbon fibers or polyacrylonitrile-based carbon fibers each having a compressive breaking strain of 1.7 to 5.0 %, a tensile modulus ranging from 5 to 160 GPa, a tensile strength ranging from 500 to 3000 MPa and a density ranging from 1.5 to 1.9 g/cm3 with the carbon fibers in the reinforcing layer being oriented to incline at an angle of 0° to ±50° to the axial direction of the shaft, with said reinforcing layer being arranged at a thinner portion of the shaft to extend from a tip end thereof up to at least {fraction (1/20)} and not more than ¾ of the entire length of the shaft, and with the reinforcing layer being arranged at an outermost portion of the shaft.
- 2. The tapered hollow shaft according to claim 1, wherein said reinforcing layer is arranged at the thinner portion of the shaft to extend from a tip end thereof up to at least {fraction (1/10)} and not more than ⅔ of the entire length of the shaft.
- 3. The tapered hollow shaft according to claim 1, wherein the reinforcing layer covers a portion of the shaft extending from a tip end thereof up to a point that is 250 mm apart from the tip end at least, and wherein the reinforcing layer covers a portion of the shaft extending from a tip end thereof up to a point that is 500 mm apart from the tip end at most.
- 4. The tapered hollow shaft according to claim 3, wherein said shaft has impact absorption energy of 5.5 J to 20 J, measured by an impact test for a reinforced portion of the thinner portion of the shaft, the flexural rigidity ranging from 0.8×107 N·mm2 to less than 3.0×107 N·mm2 of the reinforced portion covering a per portion of the shaft extending from the tip end of the shaft up to a point that is 300 mm apart from the tip end, and the flexibility rate of backward flexibility/forward flexibility of 1.05 to 1.50.
- 5. The tapered hollow shaft according to claim 4, wherein said shaft has weight in the range of 40 g to 65 g, the length in the range of 1016 mm to 1220 mm, an outer diameter at the tip end of the shaft in the range of 8.2 mm to 9.5 mm and an outer diameter of a butt end of the shaft in the range of 14.5 mm to 18 mm.
- 6. The tapered hollow shaft according to claim 3, wherein said shaft has impact absorption energy of 6.5 J to 25 J, measured by an impact test for an reinforced portion of the thinner portion of the shaft, the flexural rigidity ranging from 1.5×107 N·mm2 to less than 5.0×107 N·mm2 of the reinforced portion covering a portion of the shaft extending from the tip end of the shaft up to a point that is 300 mm apart from the tip end of the shaft, and the flexibility rate of backward flexibility/forward flexibility of 1.00 to 1.50.
- 7. The tapered hollow shaft according to claim 6, wherein said shaft has weight in the range of 60 g to 85 g, the length in the range of 860 mm to less than 1016 mm, an outer diameter at the tip end of the shaft in the range of 9.2 mm to 10.5 mm and an outer diameter of a butt end of the shaft in the range of 14.5 mm to less than 18 mm.
Priority Claims (1)
Number |
Date |
Country |
Kind |
8-122173 |
Apr 1996 |
JP |
|
Parent Case Info
This application is a continuation-in part of application Ser. No. 08/839,807, filed Apr. 18, 1997.
US Referenced Citations (16)
Foreign Referenced Citations (1)
Number |
Date |
Country |
8-217896 |
Aug 1996 |
JP |
Non-Patent Literature Citations (1)
Entry |
E. J. Walker, “The Importance of Fibre Type and Fibre Surface in Controlling Composite Properties”, Charpter 2 of “Essentials of Carbon-Carbon Composites”, The Royal Society of Chemistry, 1993. |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
08/839807 |
Apr 1997 |
US |
Child |
09/384385 |
|
US |