Claims
- 1. A thermal actuator for a micro-electromechanical device comprising:
(a) a base element; (b) a cantilevered element including a thermo-mechanical bender portion extending from the base element and a free end tip residing in a first position, the thermo-mechanical bender portion having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; and (c) apparatus adapted to apply a heat pulse having a spatial thermal pattern directly to the thermo-mechanical bender portion, causing the deflection of the free end tip of the cantilevered element to a second position, and wherein said spatial thermal pattern results in a substantially greater temperature increase of the base end than the free end of the thermo-mechanical bender portion.
- 2. The thermal actuator of claim 1 wherein the ratio of the base end width to the free end width is greater than 1.5, wb/wƒ>1.5.
- 3. The thermal actuator of claim 1 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in a substantially monotonic function of the distance from the base element.
- 4. The thermal actuator of claim 3 wherein the substantially monotonic function is linear resulting in a trapezoidal-shaped thermo-mechanical bender portion.
- 5. The thermal actuator of claim 3 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0(a−b(x+c)2) having
a=(1+2b(1+3c+3c2)/3)/2 and c<(1/b-4/3)/2.
- 6. The thermal actuator of claim 3 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0 a/(x+b)n and
having 2a=(n−1)/(b1−n-(1+b)1−n), n≧.0, and b>0.
- 7. The thermal actuator of claim 1 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in at least one width reduction step.
- 8. The thermal actuator of claim 7 wherein the thermo-mechanical bending portion has a length L and the at least one reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.84 L.
- 9. The thermal actuator of claim 1 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 10. The thermal actuator of claim 2 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 11. The thermal actuator of claim 3 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 12. The thermal actuator of claim 4 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 13. The thermal actuator of claim 5 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 14. The thermal actuator of claim 6 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 15. The thermal actuator of claim 1 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step.
- 16. The thermal actuator of claim 8 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step located at Ls.
- 17. The thermal actuator of claim 1 wherein the apparatus adapted to apply a heat pulse comprises a thin film resistor formed in a thin film resistor layer.
- 18. The thermal actuator of claim 17 wherein the spatial thermal pattern results in part from spatially modifying the conductivity of the thin film resistor layer.
- 19. The thermal actuator of claim 1 wherein the thermo-mechanical bender portion includes a first deflector layer constructed of a first material having a high coefficient of thermal expansion and a second layer, attached to the first deflector layer, constructed of a second material having a low coefficient of thermal expansion.
- 20. The thermal actuator of claim 19 wherein the first material is electrically resistive and the apparatus adapted to apply a heat pulse includes a resistive heater formed in the first deflector layer.
- 21. The thermal actuator of claim 20 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 22. The thermal actuator of claim 19 wherein the first material is titanium aluminide.
- 23. A liquid drop emitter comprising:
(a) a chamber, formed in a substrate, filled with a liquid and having a nozzle for emitting drops of the liquid; (b) a thermal actuator having a cantilevered element including a thermo-mechanical bender portion extending from a wall of the chamber and a free end tip residing in a first position proximate to the nozzle, the cantilevered element including a thermo-mechanical bender portion extending from the base element to the free end tip, the thermo-mechanical bender portion having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; and (c) apparatus adapted to apply a heat pulse having a spatial thermal pattern directly to the thermo-mechanical bender portion causing a rapid deflection of the free end tip and ejection of a liquid drop, and wherein said spatial thermal pattern results in a substantially greater temperature increase of the base end than the free end of the thermomechanical bending portion.
- 24. The liquid drop emitter of claim 23 wherein the liquid drop emitter is a drop-on-demand ink jet printhead and the liquid is an ink for printing image data.
- 25. The liquid drop emitter of claim 23 wherein the ratio of the base end width to the free end width is greater than 1.5, wb/wƒ>1.5.
- 26. The liquid drop emitter of claim 23 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in a substantially monotonic function of the distance from the base element.
- 27. The liquid drop emitter of claim 26 wherein the substantially monotonic function is linear resulting in a trapezoidal-shaped electromechanical bending portion.
- 28. The liquid drop emitter of claim 26 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0(a−b(x+c)2) having
a=(1+2b(1+3c+3c2)/3)/2 and c<(1/b-4/3)/2.
- 29. The liquid drop emitter of claim 26 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x =1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0a/(x+b)n and
having 2a=(n−1)/(b1−n-(1+b)1−n), n≧.0, and b>0.
- 30. The liquid drop emitter of claim 23 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in at least one width reduction step.
- 31. The liquid drop emitter of claim 30 wherein the thermo-mechanical bending portion has a length L and the at least one reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.84.
- 32. The liquid drop emitter of claim 23 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 33. The liquid drop emitter of claim 25 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 34. The liquid drop emitter of claim 26 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 35. The liquid drop emitter of claim 27 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 36. The liquid drop emitter of claim 28 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 37. The liquid drop emitter of claim 29 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 38. The liquid drop emitter of claim 23 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step.
- 39. The liquid drop emitter of claim 31 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step located at Ls.
- 40. The liquid drop emitter of claim 23 wherein the apparatus adapted to apply a heat pulse comprises a thin film resistor formed in a thin film resistor layer.
- 41. The liquid drop emitter of claim 40 wherein the spatial thermal pattern results in part from spatially modifying the conductivity of the thin film resistor layer.
- 42. The liquid drop emitter of claim 23 wherein the thermo-mechanical bender portion includes a first deflector layer constructed of a first material having a high coefficient of thermal expansion and a second layer, attached to the first deflector layer, constructed of a second material having a low coefficient of thermal expansion.
- 43. The liquid drop emitter of claim 42 wherein the first material is electrically resistive and the apparatus adapted to apply a heat pulse includes a resistive heater formed in the first deflector layer.
- 44. The liquid drop emitter of claim 43 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 45. The liquid drop emitter of claim 42 wherein the first material is titanium aluminide.
- 46. A thermal actuator for a micro-electromechanical device comprising:
(a) abase element; (b) a cantilevered element including a thermo-mechanical bender portion extending from the base element to a free end tip residing at a first position, the thermo-mechanical bender portion including a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, a second deflector layer, and a barrier layer constructed of a dielectric material having low thermal conductivity wherein the barrier layer is bonded between the first deflector layer and the second deflector layer, the thermo-mechanical bender portion further having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; (c) a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is substantially greater than a first deflector layer free end temperature increase, ΔT1f, in the first deflector layer at the free end; and (d) a first pair of electrodes connected to the first heater resistor portion to apply an electrical pulse to apply a pulse of heat energy having the spatial thermal pattern to the first deflector layer, resulting in a thermal expansion of the first deflector layer relative to the second deflector layer and deflection of the cantilevered element to a second position, followed by restoration of the cantilevered element to the first position as heat diffuses through the barrier layer to the second deflector layer and the cantilevered element reaches a uniform temperature.
- 47. The thermal actuator of claim 46 wherein the ratio of the base end width to the free end width is greater than 1.5, wb/wƒ>1.5.
- 48. The thermal actuator of claim 46 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in a substantially monotonic function of the distance from the base element.
- 49. The thermal actuator of claim 48 wherein the substantially monotonic function is linear resulting in a trapezoidal-shaped thermo-mechanical bender portion.
- 50. The thermal actuator of claim 48 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0(a−b(x+c)2) having
a=(1+2b(1+3c+3c2)/3)/2 and c<(1/b−4/3)/2.
- 51. The thermal actuator of claim 48 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0a/(x+b)n and
having 2a=(n−1)/(b1−n−(1+b)1−n), n≧.0, and b>0.
- 52. The thermal actuator of claim 46 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in at least one width reduction step.
- 53. The thermal actuator of claim 52 wherein the thermo-mechanical bending portion has a length L and the at least one reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.84.
- 54. The thermal actuator of claim 46 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 55. The thermal actuator of claim 47 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 56. The thermal actuator of claim 48 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 57. The thermal actuator of claim 49 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 58. The thermal actuator of claim 50 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 59. The thermal actuator of claim 51 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 60. The thermal actuator of claim 46 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing from ΔT1b to ΔT1f in at least one temperature reduction step.
- 61. The thermal actuator of claim 53 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step located at Ls.
- 62. The thermal actuator of claim 46 wherein the first electrically resistive material is titanium aluminide.
- 63. The thermal actuator of claim 46 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 64. The thermal actuator of claim 46 wherein the second deflector layer is constructed of the first electrically resistive material and the first deflector layer and the second deflector layer are substantially equal in thickness.
- 65. The thermal actuator of claim 46 wherein the electrical pulse has a time duration of τP, the barrier layer has a heat transfer time constant of τB, and τB>2 τP.
- 66. A method for operating a thermal actuator, said thermal actuator comprising a base element; a cantilevered element including a thermo-mechanical bender portion extending from the base element to a free end tip residing at a first position, the thermo-mechanical bender portion including a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, a second deflector layer, and a barrier layer having a heat transfer time constant τB, constructed of a dielectric material having low thermal conductivity wherein the barrier layer is bonded between the first deflector layer and the second deflector layer, the thermo-mechanical bender portion further having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is greater than a first deflector layer free end temperature increase, ΔT1f, in the first deflector layer at the free end; and a first pair of electrodes connected to the first heater resistor portion to apply an electrical pulse; the method for operating comprising:
(a) applying to the first pair of electrodes an electrical pulse having duration τP, and which provides sufficient heat energy to cause thermal expansion of the first deflector layer relative to the second deflector layer, resulting in deflection of the cantilevered element to a second position, where τP<½ τB; and (b) waiting for a time τC before applying a next electrical pulse, where τC>3 τB, so that heat diffuses through the barrier layer to the second deflector layer and the cantilevered element is restored substantially to the first position before next deflecting the cantilevered element.
- 67. A liquid drop emitter comprising:
(a) a chamber, formed in a substrate, filled with a liquid and having a nozzle for emitting drops of the liquid; (b) a thermal actuator having a cantilevered element including a thermo-mechanical bender portion extending from a wall of the chamber and a free end tip residing in a first position proximate to the nozzle, the thermo-mechanical bender portion including a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, a second deflector layer, and a barrier layer constructed of a dielectric material having low thermal conductivity wherein the barrier layer is bonded between the first deflector layer and the second deflector layer, the thermo-mechanical bender portion further having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; (c) a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is greater than a first deflector layer free end temperature increase, ΔT1f, in the first deflector layer at the free end; and (d) a first pair of electrodes connected to the first heater resistor portion to apply an electrical pulse to apply a pulse of heat energy having the spatial thermal pattern to the first deflector layer, resulting in a thermal expansion of the first deflector layer relative to the second deflector layer and rapid deflection of the cantilevered element, ejecting liquid at the nozzle, followed by restoration of the cantilevered element to the first position as heat diffuses through the barrier layer to the second deflector layer and the cantilevered element reaches a uniform temperature.
- 68. The liquid drop emitter of claim 67 wherein the liquid drop emitter is a drop-on-demand ink jet printhead and the liquid is an ink for printing image data.
- 69. The liquid drop emitter of claim 67 wherein the ratio of the base end width to the free end width is greater than 1.5, wb/wƒ>1.5.
- 70. The liquid drop emitter of claim 67 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in a substantially monotonic function of the distance from the base element.
- 71. The liquid drop emitter of claim 70 wherein the substantially monotonic function is linear resulting in a trapezoidal-shaped thermo-mechanical bender portion.
- 72. The liquid drop emitter of claim 70 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0(a−b(x+c)2) having
a=(1+2b(1+3c+3c2)/3)/2 and c<(1/b-4/3)/2.
- 73. The liquid drop emitter of claim 70 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0a/(x+b)n and
having 2a=(n−1)/(b1−n-(1+b)1−n), n>.0, and b>0.
- 74. The liquid drop emitter of claim 67 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in at least one width reduction step.
- 75. The liquid drop emitter of claim 74 wherein the thermo-mechanical bending portion has a length L and the at least one reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.84 L.
- 76. The liquid drop emitter of claim 67 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 77. The liquid drop emitter of claim 69 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 78. The liquid drop emitter of claim 70 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 79. The liquid drop emitter of claim 71 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 80. The liquid drop emitter of claim 72 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 81. The liquid drop emitter of claim 73 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 82. The liquid drop emitter of claim 67 wherein the spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing from ΔT1b to ΔT1f in at least one temperature reduction step.
- 83. The liquid drop emitter of claim 75 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step located at Ls.
- 84. The liquid drop emitter of claim 67 wherein the first electrically resistive material is titanium aluminide.
- 85. The liquid drop emitter of claim 67 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 86. The liquid drop emitter of claim 67 wherein the second deflector layer is constructed of the first electrically resistive material and the first deflector layer and the second deflector layer are substantially equal in thickness.
- 87. The liquid drop emitter of claim 67 wherein the electrical pulse has a time duration of τP, the barrier layer has a heat transfer time constant of τB, and τB>2 τP.
- 88. A method for operating a liquid drop emitter, said liquid drop emitter comprising a chamber, formed in a substrate, filled with a liquid and having a nozzle for emitting drops of the liquid; a cantilevered element including a thermo-mechanical bender portion extending from a wall of the chamber and a free end tip residing at a first position proximate to the nozzle, the thermo-mechanical bender portion including a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, a second deflector layer, and a barrier layer having a heat transfer time constant τB, constructed of a dielectric material having low thermal conductivity wherein the barrier layer is bonded between the first deflector layer and the second deflector layer, the thermo-mechanical bender portion further having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is greater than a first deflector layer free end temperature increase, ΔT1f , in the first deflector layer at the free end; and a first pair of electrodes connected to the first heater resistor portion to apply an electrical pulse; the method for operating comprising:
(a) applying to the first pair of electrodes an electrical pulse of duration τP, and which provides sufficient heat energy to cause thermal expansion of the first deflector layer relative to the second deflector layer resulting in liquid drop emission, where τP<½τB; and (b) waiting for a time τC before applying a next electrical pulse, where τC>3 τB so that heat diffuses through the barrier layer to the second deflector layer and the free end is restored substantially to the first position before next emitting liquid drops.
- 89. A thermal actuator for a micro-electromechanical device comprising:
(a) abase element; (b) a cantilevered element including a thermo-mechanical bender portion extending from the base element to a free end tip residing at a first position, the thermo-mechanical bender portion including the cantilevered element including a barrier layer constructed of a dielectric material having low thermal conductivity, a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, and a second deflector layer constructed of a second electrically resistive material having a large coefficient of thermal expansion wherein the barrier layer is bonded between the first and second deflector layers; the thermo-mechanical bender portion further having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; (c) a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a first spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is greater than a first deflector layer free end temperature increase, ΔT1f, in the first deflector layer at the free end; (d) a second heater resistor formed in the second deflector layer and adapted to apply heat energy having a second spatial thermal pattern which results in a second deflector layer base end temperature increase, ΔT2b, in the second deflector layer at the base end that is greater than a second deflector layer free end temperature increase, ΔT2f, in the second deflector layer at the free end; (e) a first pair of electrodes connected to the first heater resistor to apply an electrical pulse to cause resistive heating of the first deflector layer, resulting in a thermal expansion of the first deflector layer relative to the second deflector layer; (f) a second pair of electrodes connected to the second heater resistor portion to apply an electrical pulse to cause resistive heating of the second deflector layer, resulting in a thermal expansion of the second deflector layer relative to the first deflector layer, wherein application of an electrical pulse to either the first pair or the second pair of electrodes causes deflection of the cantilevered element away from the first position to a second position, followed by restoration of the cantilevered element to the first position as heat diffuses through the barrier layer and the cantilevered element reaches a uniform temperature.
- 90. The thermal actuator of claim 89 wherein the first and second electrically resistive materials are the same material and the first and second deflector layers are substantially equal in thickness.
- 91. The thermal actuator of claim 89 wherein the first and second electrically resistive materials are titanium aluminide.
- 92. The thermal actuator of claim 89 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in a substantially monotonic function of the distance from the base element.
- 93. The thermal actuator of claim 89 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in at least one width reduction step.
- 94. The thermal actuator of claim 93 wherein the thermo-mechanical bending portion has a length L and the at least one reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.84 L.
- 95. The thermal actuator of claim 89 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 96. The thermal actuator of claim 89 wherein the second spatial thermal pattern results in the temperature increase of the second layer of the thermo-mechanical bender portion reducing monotonically from ΔT2b to ΔT2f as a function of the distance from the base element.
- 97. The thermal actuator of claim 89 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing from ΔT1b to ΔT1f in at least one temperature reduction step.
- 98. The thermal actuator of claim 89 wherein the second spatial thermal pattern results in the temperature increase of the second layer of the thermo-mechanical bender portion reducing from ΔT2b to ΔT2f in at least one temperature reduction step.
- 99. The thermal actuator of claim 94 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing from ΔT1b to ΔT1f in at least one temperature reduction step located at Ls.
- 100. The thermal actuator of claim 94 wherein the second spatial thermal pattern results in the temperature increase of the second deflector layer of the thermo-mechanical bender portion reducing from ΔT2b to ΔT2f in at least one temperature reduction step located at Ls.
- 101. The thermal actuator of claim 89 further comprising a first conductor layer constructed of a first electrically conductive material adjacent the first deflector layer wherein the first spatial thermal pattern results in part from patterning the first conductor layer in a first current shunt pattern.
- 102. The thermal actuator of claim 89 further comprising a second conductor layer constructed of a second electrically conductive material adjacent the second deflector layer wherein the second spatial thermal pattern results in part from patterning the second conductor layer in a second current shunt pattern.
- 103. A method for operating a thermal actuator, said thermal actuator comprising a base element; a cantilevered element including a thermo-mechanical bender portion extending from the base element to a free end tip residing at a first position, the thermo-mechanical bender portion including the cantilevered element including a barrier layer having a heat transfer time constant τB, constructed of a dielectric material having low thermal conductivity, a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, and a second deflector layer constructed of a second electrically resistive material having a large coefficient of thermal expansion wherein the barrier layer is bonded between the first and second deflector layers; the thermo-mechanical bender portion further having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a first spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is greater than a first deflector layer free end temperature increase, ΔT1f , in the first deflector layer at the free end; a second heater resistor formed in the second deflector layer and adapted to apply heat energy having a second spatial thermal pattern which results in a second deflector layer base end temperature increase, ΔT2b, in the second deflector layer at the base end that is greater than a second deflector layer free end temperature increase, ΔT2f, in the second deflector layer at the free end; a first pair of electrodes connected to the first heater resistor to apply an electrical pulse to cause resistive heating of the first deflector layer, resulting in a thermal expansion of the first deflector layer relative to the second deflector layer; a second pair of electrodes connected to the second heater resistor portion to apply an electrical pulse to cause resistive heating of the second deflector layer, the method for operating comprising:
(a) applying to the first pair of electrodes a first electrical pulse which provides sufficient heat energy to cause a first deflection of the cantilevered element; (b) waiting for a time τW1; (c) applying to the second pair of electrodes a second electrical pulse which provides sufficient heat energy to cause a second deflection of the cantilevered element; wherein the time τW1 is selected to achieve a predetermined resultant of the first and second deflections.
- 104. The method of claim 103 wherein the first electrical pulse has a time duration of τP1, where τP1<½τB, and the second electrical pulse has a time duration of τP2, where τP2<½τB.
- 105. The method of claim 103 wherein the time τW1 is selected so that the second deflection acts to restore the cantilevered element to the first position.
- 106. The method of claim 103 wherein the time τW1 is selected so that the second deflection acts to increase a residual velocity of the cantilevered element resulting from the first deflection.
- 107. A liquid drop emitter comprising:
(a) a chamber, formed in a substrate, filled with a liquid and having a nozzle for emitting drops of the liquid; (b) a thermal actuator having a cantilevered element including a thermo-mechanical bender portion extending from a wall of the chamber and a free end tip residing in a first position proximate to the nozzle, the thermo-mechanical bender portion including a barrier layer constructed of a dielectric material having low thermal conductivity, a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, and a second deflector layer constructed of a second electrically resistive material having a large coefficient of thermal expansion wherein the barrier layer is bonded between the first and second deflector layers; the thermo-mechanical bender portion further having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; (c) a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a first spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is greater than a first deflector layer free end temperature increase, ΔT1f, in the first deflector layer at the free end; (d) a second heater resistor formed in the second deflector layer and adapted to apply heat energy having a second spatial thermal pattern which results in a second deflector layer base end temperature increase, ΔT2b, in the second deflector layer at the base end that is greater than a second deflector layer free end temperature increase, ΔT2f, in the second deflector layer at the free end; (e) a first pair of electrodes connected to the first heater resistor to apply an electrical pulse to cause resistive heating of the first deflector layer, resulting in a thermal expansion of the first deflector layer relative to the second deflector layer; (f) a second pair of electrodes connected to the second heater resistor portion to apply an electrical pulse to cause resistive heating of the second deflector layer, resulting in a thermal expansion of the second deflector layer relative to the first deflector layer, wherein application of electrical pulses to the first and second pairs of electrodes causes rapid deflection of the cantilevered element, ejecting liquid at the nozzle, followed by restoration of the cantilevered element to the first position as heat diffuses through the barrier layer and the cantilevered element reaches a uniform temperature.
- 108. The liquid drop emitter of claim 107 wherein the liquid drop emitter is a drop-on-demand ink jet printhead and the liquid is an ink for printing image data.
- 109. The liquid drop emitter of claim 107 wherein the first and second electrically resistive materials are the same material and the first and second deflector layers are substantially equal in thickness.
- 110. The liquid drop emitter of claim 107 wherein the first and second electrically resistive materials are titanium aluminide.
- 111. The liquid drop emitter of claim 107 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in a substantially monotonic function of the distance from the base element.
- 112. The liquid drop emitter of claim 107 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in at least one width reduction step.
- 113. The liquid drop emitter of claim 112 wherein the thermo-mechanical bending portion has a length L and the at least one reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.84 L.
- 114. The liquid drop emitter of claim 107 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing monotonically from ΔT1b to ΔT1f as a function of the distance from the base element.
- 115. The liquid drop emitter of claim 107 wherein the second spatial thermal pattern results in the temperature increase of the second layer of the thermo-mechanical bender portion reducing monotonically from ΔT2b to ΔT2f as a function of the distance from the base element.
- 116. The liquid drop emitter of claim 107 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing from ΔT1b to ΔT1f in at least one temperature reduction step.
- 117. The liquid drop emitter of claim 107 wherein the second spatial thermal pattern results in the temperature increase of the second layer of the thermo-mechanical bender portion reducing from ΔT2b to ΔT2f in at least one temperature reduction step.
- 118. The liquid drop emitter of claim 113 wherein the first spatial thermal pattern results in the temperature increase of the first deflector layer of the thermo-mechanical bender portion reducing from ΔT2b to ΔT1f in at least one temperature reduction step located at Ls.
- 119. The liquid drop emitter of claim 113 wherein the second spatial thermal pattern results in the temperature increase of the second deflector layer of the thermo-mechanical bender portion reducing from ΔT2b to ΔT2f in at least one temperature reduction step located at Ls.
- 120. The liquid drop emitter of claim 107 further comprising a first conductor layer constructed of a first electrically conductive material adjacent the first deflector layer wherein the first spatial thermal pattern results in part from patterning the first conductor layer in a first current shunt pattern.
- 121. The liquid drop emitter of claim 108 further comprising a second conductor layer constructed of a second electrically conductive material adjacent the second deflector layer wherein the second spatial thermal pattern results in part from patterning the second conductor layer in a second current shunt pattern.
- 122. A method for operating a liquid drop emitter, said liquid drop emitter comprising a chamber, formed in a substrate, filled with a liquid and having a nozzle for emitting drops of the liquid; a cantilevered element including a thermo-mechanical bender portion extending from a wall of the chamber and a free end tip residing in a first position proximate to the nozzle, the thermo-comprising a base element; a cantilevered element including a thermo-mechanical bender portion extending from the base element to a free end tip residing at a first position, the thermo-mechanical bender portion including the cantilevered element including a barrier layer having a heat transfer time constant τB, constructed of a dielectric material having low thermal conductivity, a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, and a second deflector layer constructed of a second electrically resistive material having a large coefficient of thermal expansion wherein the barrier layer is bonded between the first and second deflector layers; the thermo-mechanical bender portion further having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wƒ, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; a first heater resistor formed in the first deflector layer and adapted to apply heat energy having a first spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, in the first deflector layer at the base end that is greater than a first deflector layer free end temperature increase, ΔT1f, in the first deflector layer at the free end; a second heater resistor formed in the second deflector layer and adapted to apply heat energy having a second spatial thermal pattern which results in a second deflector layer base end temperature increase, ΔT2b, in the second deflector layer at the base end that is greater than a second deflector layer free end temperature increase, ΔT2f, in the second deflector layer at the free end; a first pair of electrodes connected to the first heater resistor to apply an electrical pulse to cause resistive heating of the first deflector layer, resulting in a thermal expansion of the first deflector layer relative to the second deflector layer; a second pair of electrodes connected to the second heater resistor portion to apply an electrical pulse to cause resistive heating of the second deflector layer, the method for operating comprising:
(a) applying to the first pair of electrodes a first electrical pulse which provides sufficient heat energy to cause a first deflection of the cantilevered element; (b) waiting for a time τW1; (c) applying to the second pair of electrodes a second electrical pulse which provides sufficient heat energy to cause a second deflection of the cantilevered element; wherein the time τW1 is selected to achieve a predetermined motion of the thermal actuator resulting in liquid drop emission.
- 123. The method of claim 122 wherein the first electrical pulse has a time duration of τP1, where τP1<½τB, and the second electrical pulse has a time duration of τP2, where τP2<½τB.
- 124. The method of claim 122 wherein parameters of the first electrical pulse and second electrical pulses, and the time τW1, are adjusted to change a characteristic of the liquid drop emission.
CROSS REFERENCE TO RELATED APPLICATION
[0001] Reference is made to commonly-assigned co-pending U.S. patent applications: U.S. Ser. No. ______ Kodak Docket No. 85340/WRZ, filed concurrently herewith, entitled “Thermal Actuator with Spatial Thermal Pattern,” of Delametter, et al.; U.S. Ser. No. ______ Kodak Docket No. 84770CIP/WRZ, filed concurrently herewith, entitled “Tapered Thermal Actuator,” of Trauernicht, et al.; U.S. Ser. No. 10/227,079, entitled “Tapered Thermal Actuator,” of Delametter et al.; U.S. Ser. No. 10/154,634, entitled “Multi-layer Thermal Actuator with Optimized Heater Length and Method of Operating Same,” of Cabal et al.; U.S. Ser. No. 10/171,120, entitled “Tri-layer Thermal Actuator and Method of Operating,” of Furlani, et al.; U.S. Ser. No. 10/050,993, entitled “Thermal Actuator with Optimized Heater Length,” of Cabal, et al.; and U.S. Pat. No. 6,464,341, entitled “Dual Actuation Thermal Actuator and Method of Operating Thereof,” of Furlani, et al.