Claims
- 1. A thermal actuator for a micro-electromechanical device comprising:(a) a base element; (b) a cantilevered element including a thermo-mechanical bender portion extending from the base element and a free end tip residing in a first position, the thermo-mechanical bender portion having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wf, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; and (c) apparatus adapted to apply a heat pulse having a spatial thermal pattern directly to the thermo-mechanical bender portion, causing the deflection of the free end tip of the cantilevered element to a second position, and wherein said spatial thermal pattern results in a substantially greater temperature increase of the base end than the free end of the thermo-mechanical bender portion.
- 2. The thermal actuator of claim 1 wherein the ratio of the base end width to the free end width is greater than 1.5, wb/wf>1.5.
- 3. The thermal actuator of claim 2 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 4. The thermal actuator of claim 1 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in a substantially monotonic function of the distance from the base element.
- 5. The thermal actuator of claim 4 wherein the substantially monotonic function is linear resulting in a trapezoidal-shaped thermo-mechanical bender portion.
- 6. The thermal actuator of claim 5 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 7. The thermal actuator of claim 4 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0(a−b(x+c)2) havinga=(1+2b(1+3c+3c2)/3)/2 and c<(1/b−4/3)/2.
- 8. The thermal actuator of claim 7 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 9. The thermal actuator of claim 4 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0a/(x+b)n andhaving 2a=(n−1)/(b1−n−(1+b)1−n), n≧. 0, and b>0.
- 10. The thermal actuator of claim 9 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 11. The thermal actuator of claim 3 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 12. The thermal actuator of claim 1 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in at least one width reduction step.
- 13. The thermal actuator of claim 12 wherein the thermo-mechanical bending portion has a length L and the at least one reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.84 L.
- 14. The thermal actuator of claim 13 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step located at Ls.
- 15. The thermal actuator of claim 1 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 16. The thermal actuator of claim 1 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step.
- 17. The thermal actuator of claim 1 wherein the apparatus adapted to apply a heat pulse comprises a thin film resistor formed in a thin film resistor layer.
- 18. The thermal actuator of claim 17 wherein the spatial thermal pattern results in part from spatially modifying the conductivity of the thin film resistor layer.
- 19. The thermal actuator of claim 1 wherein the thermo-mechanical bender portion includes a first deflector layer constructed of a first material having a high coefficient of thermal expansion and a second layer, attached to the first deflector layer, constructed of a second material having a low coefficient of thermal expansion.
- 20. The thermal actuator of claim 19 wherein the first material is electrically resistive and the apparatus adapted to apply a heat pulse includes a resistive heater formed in the first deflector layer.
- 21. The thermal actuator of claim 20 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 22. The thermal actuator of claim 19 wherein the first material is titanium aluminide.
- 23. A liquid drop emitter comprising:(a) a chamber, formed in a substrate, filled with a liquid and having a nozzle for emitting drops of the liquid; (b) a thermal actuator having a cantilevered element including a thermo-mechanical bender portion extending from a wall of the chamber and a free end tip residing in a first position proximate to the nozzle, the cantilevered element including a thermo-mechanical bender portion extending from the base element to the free end tip, the thermo-mechanical bender portion having a base end and base end width, wb, adjacent the base element, and a free end and free end width, wf, adjacent the free end tip, wherein the base end width is substantially greater than the free end width; and (c) apparatus adapted to apply a heat pulse having a spatial thermal pattern directly to the thermo-mechanical bender portion causing a rapid deflection of the free end tip and ejection of a liquid drop, and wherein said spatial thermal pattern results in a substantially greater temperature increase of the base end than the free end of the thermomechanical bending portion.
- 24. The liquid drop emitter of claim 23 wherein the liquid drop emitter is a drop-on-demand ink jet printhead and the liquid is an ink for printing image data.
- 25. The liquid drop emitter of claim 23 wherein the ratio of the base end width to the free end width is greater than 1.5, wb/wf>1.5.
- 26. The liquid drop emitter of claim 25 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 27. The liquid drop emitter of claim 23 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in a substantially monotonic function of the distance from the base element.
- 28. The liquid drop emitter of claim 27 wherein the substantially monotonic function is linear resulting in a trapezoidal-shaped electromechanical bending portion.
- 29. The liquid drop emitter of claim 28 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 30. The liquid drop emitter of claim 27 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0(a−b(x+c)2) havinga=(1+2b(1+3c+3c2)/3)/2 and c<(1/b−4/3)/2.
- 31. The liquid drop emitter of claim 30 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 32. The liquid drop emitter of claim 27 wherein the width w(x) of the thermo-mechanical bending portion reduces from the base end width to the free end width as a function of a normalized distance x measured from x=0 at the base element to x=1 at length L from the base element and wherein w(x) has substantially a functional form w(x)=2w0a/(x+b)n andhaving 2a=(n−1)/(b1−n−(1+b)1−n), n≧. 0, and b>0.
- 33. The liquid drop emitter of claim 32 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 34. The liquid drop emitter of claim 27 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 35. The liquid drop emitter of claim 23 wherein the width of the thermo-mechanical bender portion reduces from the base end width to the free end width in at least one width reduction step.
- 36. The liquid drop emitter of claim 35 wherein the thermo-mechanical bending portion has a length L and the at least one reduction step occurs at a distance Ls from the base element, wherein 0.3 L≦Ls≦0.84.
- 37. The liquid drop emitter of claim 36 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step located at Ls.
- 38. The liquid drop emitter of claim 23 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermo-mechanical bender portion reduces monotonically from ΔTb to ΔTf as a function of the distance from the base element.
- 39. The liquid drop emitter of claim 23 wherein the application of a heat pulse having a spatial thermal pattern results in a base end temperature increase, ΔTb, of the base end, a free end temperature increase, ΔTf, of the free end, and the temperature increase of the thermomechanical bending portion reduces from ΔTb to ΔTf in at least one temperature reduction step.
- 40. The liquid drop emitter of claim 23 wherein the apparatus adapted to apply a heat pulse comprises a thin film resistor formed in a thin film resistor layer.
- 41. The liquid drop emitter of claim 40 wherein the spatial thermal pattern results in part from spatially modifying the conductivity of the thin film resistor layer.
- 42. The liquid drop emitter of claim 23 wherein the thermo-mechanical bender portion includes a first deflector layer constructed of a first material having a high coefficient of thermal expansion and a second layer, attached to the first deflector layer, constructed of a second material having a low coefficient of thermal expansion.
- 43. The liquid drop emitter of claim 42 wherein the first material is electrically resistive and the apparatus adapted to apply a heat pulse includes a resistive heater formed in the first deflector layer.
- 44. The liquid drop emitter of claim 43 further comprising a conductor layer constructed of an electrically conductive material adjacent the first deflector layer wherein the spatial thermal pattern results in part from patterning the conductor layer in a current shunt pattern.
- 45. The liquid drop emitter of claim 42 wherein the first material is titanium aluminide.
CROSS REFERENCE TO RELATED APPLICATION
Reference is made to commonly-assigned co-pending U.S. patent applications: U.S. Ser. No. 10/293,653 Kodak filed concurrently herewith, entitled “Thermal Actuator with Spatial Thermal Pattern,” of Delametter, et al.; U.S. Ser. No. 10/293,077 Kodak filed concurrently herewith, entitled “Tapered Thermal Actuator,” of Trauernicht, et al.; U.S. Ser. No. 10/227,079, entitled “Tapered Thermal Actuator,” of Delametter et al.; U.S. Ser. No. 10/154,634, entitled “Multi-layer Thermal Actuator with Optimized Heater Length and Method of Operating Same,” of Cabal et al.; U.S. Ser. No. 10/171,120, entitled “Tri-layer Thermal Actuator and Method of Operating,” of Furlani, et al.; U.S. Ser. No. 10/050,993, entitled “Thermal Actuator with Optimized Heater Length,” of Cabal, et al.; and U.S. Pat. No. 6,464,341, entitled “Dual Actuation Thermal Actuator and Method of Operating Thereof,” of Furlani, et al.
US Referenced Citations (21)
Foreign Referenced Citations (1)
Number |
Date |
Country |
20330543 |
Jan 1990 |
JP |